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Abstract
In recent years, vehicular ad-hoc network (VANET) is getting a growing interest due to its significant function in terms of
vehicle information services and vehicular entertainment applications. In particular, VANET enables parking vehicles (PVs)
and roadside units (RSUs) to share their contents with mobile vehicles (MVs), which improves the efficiency of content
delivery. However, content delivery in VANET still confronts with several challenges. Due to the selfishness of the PVs, an
incentive mechanism is needed to motivate them to contribute their cached contents. Moreover, MVs may be threatened by
the trustless or even malicious PVs. In this paper, we propose a reputation-based cooperative content delivery mechanism to
improve the efficiency and security of content delivery. We formulate the relationships among MVs, RSUs, and PVs as the
two-layer auction game. With the auction game, MVs find the optimal PV and RSU for delivering contents and offering the
optimized rewards. In addition, we present a dynamic reputation evaluation model. Based on the feature of content delivery,
this model incentivizes these honest PVs and isolates malicious PVs, which improves the security of content delivery. Finally,
simulation results show that the proposed mechanism can not only improve the effectiveness of content delivery in VANET,
but also avoid the attacks of malicious PVs.
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1 Introduction

Vehicular ad-hoc network (VANET), one of the types of
mobile ad-hoc networks [1], designed to build a robust
communication between the roadside unit (RSU) and the
on-board unit (OBU), provides the capability of data
transmission. With the VANET, drivers are able to request
contents such as vehicular entertainment services and
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vehicle information services more conveniently. However,
due to the high-speed mobility of vehicles and the high-
dynamic of network topology, the transmission delay of
content becomes an important issue in VANETs. It is
reported that the network coverage of vehicles will reach
100% by 2025 [2], and the number of vehicles on the
road will reach 250 million by 2050 [3]. As the number of
vehicles increases, a large amount of requested data will be
generated, resulting in congestion on the backbone network
and increasing the delay of content delivery.

Address-centric mechanism, uploading contents to cloud
servers located in backbone networks, is widely used in the
content delivery. However, the long transmission between
the content servers and the content requesters causes the
considerable network latency and additional costs [4]. Thus,
these RSUs which are close to content requesters can be
applied as the edge caching devices for delivering contents
conveniently and rapidly. However, providing contents to
moving vehicles (MVs) via RSUs is challenging with the
following reasons. On one hand, due to the limitation of
storage capacity, RSU is unable to cache all contents. If the
contents requested by MVs are not cached in RSU, the high
transmission delay will be caused by downloading contents
from cloud servers. On the other hand, frequent changes of
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popular contents on the network bring about periodically
update of caching strategies, resulting in economic losses.

Fortunately, with the rapid development of vehicle tech-
nologies, vehicles with caching capacities can assist content
delivery. Moreover, drivers tend to park their vehicles on the
side of the road [5], and the on-board battery can be used as
a power supply for the OBU without using up energy [6].
Thus, parking vehicles (PVs) are capable of being assistants
of RSUs to provide their cached contents and idle storage
spaces [7]. Recently, a number of works have used PVs to
improve the performance of content delivery [8–10]. Specif-
ically, PVs are used as small-scale content centers to collect
and disseminate data [8]. Moreover, the network connectiv-
ity and storage capacity of RSU can be effectively improved
by using PVs as relay nodes [9] and storage nodes [9]. How-
ever, few of them focus on the reputation mechanism and
incentive mechanism of PVs. PVs assisted content delivery
in VANETs is challenging with the following aspects: 1)
The insecurity of PVs: the validity and security of contents
cannot be guaranteed due to the non-authentication of PVs.
Therefore, the dynamic reputation model for PVs should
be efficiently designed to improve the security of content
delivery. 2) The selfishness of PVs: PVs are reluctant to con-
tribute their idle resources without incentives. Selfishness
and rationalism make them refuse to participate in content
delivery. Therefore, the incentive mechanism to facilitate
the cooperation between PVs and RSUs should be further
analyzed.

To address the above mentioned challenges, in this paper,
we propose a novel content delivery mechanism among
MVs, RSUs, and PVs. Specifically, in order to filter out
the malicious PVs and improve the security of content
delivery, the reputation evaluation model is first introduced
to manage the behavior of PVs. Next, the reverse auction
game between the RSU and the PVs is developed, where
the optimal bidding strategies of PVs are analyzed to obtain
high utility with low energy consumption. The optimal PV is
determined by the RSU to deliver content. At last, we model
the relationship between MV and RSUs as another auction
game to maximize the utility of MV.

To summarize, the main contributions of this paper can
be summarized as follows:

1) Reputation Evaluation Model: We develop a repu-
tation model to supervise the behavior of PVs during
content delivery. The reputation value is obtained from
the historical interaction of the PV, which reflects its
honesty. With the reputation model, RSU can prevent
the attacks of malicious PVs and guarantee the security
by cooperating with honest PVs.

2) Incentive Mechanism: We propose a two-tier auction
mechanism to improve the efficiency of content
delivery. We model the relationship between RSU

and PVs as the first-tier auction game. Different
from the traditional content delivery mechanism, PVs
cooperate with RSU to obtain benefits by contributing
their cached content and idle resources. Then, the
relationship between MV and RSUs is modeled as the
second-tier auction game to select the optimal RSU for
delivering contents.

3) Performance Effectiveness: We validate the proposed
cooperative content delivery mechanism by extensive
simulations. Simulation results show that, compared
with traditional mechanisms, the content delivery
mechanism can not only maximize the utility of MVs,
RSUs, and PVs, but also isolate malicious PVs, which
effectively improves the security of the system.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 presents the
system model. Reverse auction based cooperative content
delivery mechanism is described in Section 4. Performance
evaluations are shown in Section 5, and Section 6 closes this
paper with conclusions.

2 Related work

2.1 Content delivery in VANETs

There have been a number of works focusing on the
content delivery. Wang et al. [11] proposed a collaborative
content sharing approach. The approach broadcasts popular
content to RSUs, and uses the peer-to-peer (P2P) technology
to achieve popular content sharing among vehicles. By
combining vehicle trajectory prediction and coalition
game, Zhou et al. [12] proposed a content distribution
scheme in cooperative vehicle networks to improve content
distribution efficiency. By exploiting the mobility of
vehicles, Yao et al. [13] presented a cooperative content
caching scheme based on mobility prediction. Su et al.
[14] proposed an edge caching scheme to facilitate timely
delivery of the requested content.

Malandrino et al. [15] exploited parking vehicles to
extend the service coverage of RSU and improve the
efficiency of the content download process. Liu et al. [16]
presented the idea of parking vehicle assistance (PVA)
to improve connectivity in VANETs and assist moving
vehicles in content delivery. Reis et al. [17] used parking
vehicles as RSUs to support mobile vehicles in VANETs.
Liu et al. [6] proposed a parking-area-assisted routing
protocol to facilitate data packet transmission by using
parking vehicles as relay nodes.

However, unauthorized and selfish characteristics of
parking vehicles have not been fully discussed in most of
existing works.
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2.2 Reputation scheme in VANETs

Reputation scheme designed for vehicles is important
to improve the security and privacy of content delivery.
Dhurandher et al. [18] proposed a malicious node detection
and isolation algorithm in VANETs. The algorithm utilizes
V2V communication to check reputation and plausibility,
reducing the dependence on infrastructure. Lee et al.
[19] presented a reputation management scheme to isolate
poorly behaving nodes and ensure the efficiency of packet
delivery. Gyawali et al. [20] proposed a vehicle network
behavior detection scheme based on machine learning
and reputation to improve the detection accuracy and
ensure the reliability of messages. Engoulou et al. [21]
proposed a decentralized reputation management system.
The system provides a distributed evaluation scheme for
vehicles reputation to protect VANETs from the attacks of
malicious nodes. Considering the dynamic and diversified
attack strategy, Tian et al. [22] proposed an evaluation
scheme for quantifying the effectiveness of the reputation
management scheme in vehicle network.

In contrast to the above reputation schemes, our work
aims to supervise the behavior of PVs and ensure the
security of content delivery by considering the content
popularity, content size and transmission rate as evaluation
parameters of reputation.

3 Systemmodel

In this section, the system model includes network model,
content model, reputation model and communication model.
The illustration of the content delivery in VANETs is shown
in Fig. 1.

3.1 Networkmodel

In the networks, the set of MVs is denoted by K =
{1, 2, . . . , k, . . . , K}. In the road with length D, the arrival
process of MVs obeys the Poisson distribution [24], and the
distance between two adjacent MVs can be expressed as an
exponential distribution with a parameter of 1/λ [23]. Thus,
the number of MVs on the road with length D follows the
Poisson distribution [25]. The probability that there are m

MVs on the road can be expressed as

P [Mk = m] = e−λD

[
(λD)m

m!
]
. (1)

Then, the average number of vehicles on the road is
E [Mk] = D × λ.

RSUs deployed by mobile network operators are
capable of delivering contents to MVs. Let I =
{1, 2, . . . , i, . . . , I } denote the set of RSUs, and |I| is

the number of RSUs around the road. Generally, RSUs
are placed on the roadside with parking lots nearby.
Compared with off-street parking, on-street parking only
costs one fifth. Therefore, drivers are inclined to park
their vehicles on the street [8]. Let Mi denote the
number of vehicles parking around RSU i. For each RSU,
we use the set J= {1, 2, . . . , j, . . . , J } to represent the PVs
parking around it. Thus, we have Mi = |J | for each RSU.

3.2 Content model

Popular contents related to traffic, weather conditions, and
entertainment are indispensable to drivers. The traffic flow
may affect the number of content requests. For example,
during peak traffic periods, drivers obtain traffic informa-
tion at short interval and passengers request entertainment
content more frequently, resulting in a surge in requests.

Let Q = {1, 2, . . . , q, . . . , Q} denote the set of contents
in the networks, and a copy of all contents can be found in
the cloud server. Sq represents the size of content q. The
requesting probability of content q can be described by Zipf
model [26]. We have

fq =
(

1
τ(q)

)r

Q∑
q=1

(
1

τ(q)

)r
. (2)

Here, r is a positive parameter of Zipf distribution, used
to regulate the skewness of the popularity. τ(q) is the
descending order of accessing times of content q within a
period of time.

RSUs can cache a number of popular contents and
provide it to MVs with a low transmission delay. Let
Di represent the storage capacity of RSU i, and Xi,q ={
xi,1, xi,2, . . . , xi,Q

}
denotes the set of contents cached in

RSU i. Here, xi,q is a binary value. xi,q = 1 means that the
content q is cached in RSU i, otherwise xi,q = 0. To ensure
that the total size of the contents cached in the RSU does not

exceed its caching capacity, we have
|Q|∑
q

Sqxi,q ≤ Di .

The PVs come from all corners of the city, with different
travel routes, personal preferences and hardware conditions,
resulting in the diversity of cached contents. Let Di,j

indicate the storage capacity of the PV j parking around the
RSU i.Xi,j,q = {xi,j,1, xi,j,2, . . . , xi,j,Q

}
denotes the set of

contents cached on vehicle i. Similarly,
|Q|∑
q

Sqxi,j,q ≤ Di,j

is the constraint of storage capacity of PV j .

3.3 Reputationmodel

In order to evaluate the reputation of PVs, it is necessary to
predict the parking behavior of PVs. Firstly, the increasing
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Fig. 1 Framework of content delivery in VANETs

number of PVs supports the RSU with more cooperation
options, but it also leads to a surge in the number of
unauthorized drivers. Secondly, the number of PVs is
affected by various factors and changed widely throughout
the day [27]. Fluctuations in seasons, shifts in weekdays
and weekends, peak hours of traffic, and the occurrence
of hot spots will bring about changes in the number of
PVs. Therefore, RSU needs to dynamically evaluate the

reputation of PVs. Thirdly, for honest PVs, the increase
in reputation value corresponds to the parking time. As
the parking time increases, PVs have more opportunities to
assist RSU. The more PVs participate in cooperation, the
higher reputation they will achieve.

The parking behavior can be predicted based on the
parking history [28]. We consider that the parking behavior
is similar to the parking history such as yesterday, last week
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and the same date of the last year. In addition, parking
behavior will also be affected by hot spots such as concert,
conference, etc. Thus, let Mi,t denote the number of PVs
parking around RSU i at time t , which can be calculated by

Mi,t=α̃ × f
lastyear
t +β̃ × �lastweek

t ×(F lastweek
t

)T
+γ̃ × �

yesterday
t ×

(
F

yesterday
i

)T + λ̃ × Mi,t−1−Mi,t−2
�t

,

(3)

where α̃, β̃, γ̃ , and λ̃ are the weighted parameters. f lastyear
t

is the number of vehicles parked at time t last year. The
vector F lastweek

t = [
f lastweek
1 , f lastweek

2 , . . . , f lastweek
7

]
denotes the number of vehicles in the previous week.
For example, f lastweek

1 represents the number of vehi-

cles parked at time t on last monday. F
yesterday
i =[

f
yesterday

1 , f
yesterday

2 , . . . , f
yesterday

24

]
denotes the num-

ber of vehicles throughout yesterday. f
yesterday

1 is the
number of vehicles parked in the first hour of yester-
day. �lastweek

i and �
yesterday
i are the vectors of weighting

parameters that change the influence of the past on the
present. The last part of Eq. 3 is the differential term, which
is used to overcome the disturbance caused by hot spots.

Reputation value is a critical determinant for evaluating
the honesty and credibility of the PV, and it can be
quantified as the degree to which PV has fulfilled its
promise. In the initialization, the reputation value of each
PV is denoted by Repinit. Then, the reputation value will be
updated based on the behavior of the PV. For example, let
s∗
i,j,q and r∗

i,j,q denote the content size and the transmission
rate promised by the PV j to RSU i, respectively. If the PV
j fulfills its promise or performs better than its promise, the
reputation value will rise, otherwise it will fall.

The changes of reputation value can be calculated by

�Repi,j = μrepMi,t

[
αrep × si,j,q − s∗

i,j,q

s∗
i,j,q

+ βrep × ri,j,q − r∗
i,j,q

r∗
i,j,q

+ Ireq log

(
1 + γrep × si,j,q

Smax
q

+ ηreq × ri,j,q

rmax
i,j,q

)]
.

(4)

Here, μrep, αrep, βrep, γrep and ηreq are the nonnegative
adjustable parameters. si,j,q and ri,j,q are the actual
values of content size and transmission rate respectively.
Equation 4 means that if the transmission quality of the
content q does not reach the promised value, the reputation
will decrease. Conversely, if the quality of content delivery
outperforms the promise value, the reputation will rise. Ireq

is a binary variable, where Ireq = 1 if si,j,q = s∗
i,j,q and

ri,j,q = r∗
i,j,q . Namely, if the PV keeps its promises during

the process of cooperative content delivery, it will also gain
a positive reputation.

If Repi,j < Repthre, PV j will be banned. Re pthre

changed dynamically with content q can be obtained as

Repthre=δrep+αthre
rep log

(
1+ Sq

max
(
Sq

)
)

+βthre
rep log

(
1+ fq

max
(
fq

)
)
.

(5)

Here, δrep is a constant. αthre
rep and βthre

rep are the weighted
parameters. max (·) denotes the maximum function within
PVs.

3.4 Communicationmodel

The distance between the parking lot and the RSU, as
well as the communication capability of the PV, causes the
difference of transmission rate between PV and RSU. Let
ri,j denote the transmission rate between PV j and RSU i.
The transmission rate between MV k and RSU i is denoted
by rk,i . Let rcloud denote the transmission rate between RSU
and cloud server.

Nakagami-m model is adopted to evaluate the impact
of channel fading on the wireless communications [29].
The received power Pj

(
di,j

)
of PV j follows the Gamma

distribution, which can be calculated by

Pj

(
di,j

) =
{

∼ Gamma
(
m ,

P̃ (di,j )·Pi

m

)
, di,j < Ri,

0, di,j ≥ Ri,

(6)

where m is the factor of channel fading, di,j is the distance
between PV j and RSU i. Pi is the transmission power of
the RSU i. Ri denotes the coverage of RSU i. P̃ (di,j ) in
Eq. 6 can be described as

P̃ (di,j ) = GiGjλ
2

(4π)2d2
i,jL

, (7)

where Gi and Gj denote the antenna gain of RSU i and PV
j , respectively. λ and L represent the electromagnetic and
system loss, respectively. Similarly, the received power of
RSU i can be expressed as

Pi

(
di,j

) =
{

∼ Gamma
(
m ,

P̃ (di,j )·Pj

m

)
, di,j < Rj ,

0, di,j ≥ Rj .

(8)

Here, Pj and Rj are the transmission power and the
coverage of PV j , respectively.

To guarantee the quality of transmission, RSU i and PV
j can communicate with each other only if the conditions
Pi

(
di,j

) ≥ Pi
thre and Pj

(
di,j

) ≥ Pj
thre are satisfied.

Pi
thre and Pj

thre are the minimum receiving power.
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4 Analysis of the cooperative content
delivery mechanism

In this section, we introduce the proposed cooperative
content delivery mechanism from the perspectives of MVs,
RSUs and PVs, respectively.

4.1 Auction game between PVs and RSU

In order to deliver the content requested by MV, RSU
can obtain content from the cloud server or PVs. During
peak traffic periods, the congestion of backbone network
leads to a decrease in rcloud , which increases the latency
of the delivery process. In this case, the RSU will obtain
the content from PVs. However, the PVs is unwilling
to cooperate with RSU due to energy consumption and
economic costs. Therefore, the auction game between PVs
and RSU is formulated to incentivize PVs. The utility of
RSU i is defined as

uRSU
i,j,q = Repi,j
(si,j,q , ri,j,q) − pi,j,q , (9)

where si,j,q and ri,j,q are the size and transmission rate of
the content q provided by the PV i to RSU j , respectively.
Repi,j is the reputation value of parked vehicle j . Let pi,j,q

denote the price paid by RSU i to the PV j . 
(si,j,q , ri,j,q)

is the satisfactory function of RSU i, which is defined by


(si,j,q , ri,j,q ) = δ − αi,qfq

(
Sq − si,j,q

rcloud

+ si,j,q

ri,j,q

)
+ βi,qfqsi,j,q .

(10)

Here, the satisfactory function consists of the time
satisfaction

Sq−si,j,q
rcloud

+ si,j,q
ri,j,q

and the content size satisfaction
si,j,q . The evaluation parameters αi,q and βi,q are used to
adjust weights. δ is an invariant constant to ensure that the
satisfaction function is non-negative.

The utility of PV j can be expressed as

uPV
i,j,q = �i,j,q(pi,j,q − ξi,j,qθssi,j,q − ξi,j,qθr ri,j,q), (11)

where �i,j,q is a binary variable. We have �i,j,q = 1 if
the PV j is selected as the winner in the auction game,
otherwise �i,j,q = 0. Here, θs and θr are the fixed
coefficients of the content size and transmission rate, which
are common sense to all PVs. ξi,j,q is the cost parameter
of the PV j . Moreover, the detailed cost of the PV is the
private information and the chips to win the game. PV can
clearly understand itself, and the cost parameter of other
PVs follows the uniform distribution in [ξmin, ξmax].

To maximize the utility of PV j , the optimization
problem can be described as

max Pi,j (pi,j,q − ξi,j,qθssi,j,q − ξi,j,qθr ri,j,q ) + (1 − Pi,j ) · 0

s.t.

⎧⎪⎪⎨
⎪⎪⎩

smin
i,j,q � si,j,q � Sq,

rmin
i,j,q � ri,j,q � rmax

i,j,q ,

uPcar
i,j,q � 0,

(12)

where Pi,j is the probability that PV j wins the game.

Theorem 1 The optimal bidding strategy of the PV j can
be calculated by

{
s∗
i,j,q , r∗

i,j,q

}
= argmax

si,j,q ,ri,j,q

{
Repi,j

[
δ − αi,qfq

(
Sq − si,j,q

rcloud

+ si,j,q

ri,j,q

)
+ βi,qfqsi,j,q

]
− ξi,j,qθssi,j,q − ξi,j,qθr ri,j,q

}
.

(13)

Proof Refer to Appendix A.

The PV that maximizes the utility function of RSU will
be the winner of the auction. Although s∗

i,j,q and r∗
i,j,q have

been obtained, the optimal bidding price p*
i,j,q needs to be

determined.

Theorem 2 The optimal bidding price of PV j can be
obtained by

p*
i,j,q = ξi,j,qθss

∗
i,j,q + ξi,j,qθr r

∗
i,j,q

+
(
θss

∗
i,j,q+θr r

∗
i,j,q

)
N

(
ξmax
i,j,q − ξi,j,q

)
.

(14)

Proof Refer to Appendix B.

After receiving the bidding price p∗
i,j,q

, the content size
s∗
i,j,q , and the transmission rate r∗

i,j,q of all PVs, RSU
i chooses the PV to maximize its utility as the optimal
candidate. It can be chosen by

j∗ = argmax
j

uRSU
i,j,q , j ∈ J . (15)

Then, RSU i obtains the content from PV j∗. The
reputation value will be updated according to the Eq. 4.

After completing the first-tier auction game, the price
p∗

i,j,q
offered by RSU i is applied to encourage PV j∗ to

share cached content and compensate for the energy loss of
delivering content. As a content requester, MV k can obtain
content from different RSUs. Differences in the number
of PVs and caching status xi,j,q lead to the differences in
the first-tier auction game. p∗

i,j,q
, s∗

i,j,q , and r∗
i,j,q in the
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first-tier auction game can be regarded as the cost of the
RSUs to obtain content q. MV k will obtain higher utility by
receiving content from low-cost RSU. Therefore, we model
the relationship between RSUs and MV as the second-tier
auction game to maximize the utility of MV.

4.2 Auction game between RSUs andMV

There are a number of options for MVs to obtain content
from numerous RSUs. The MV k sends auction information
to the surrounding RSUs, and chooses the RSU that
maximizes its utility to be the winner. RSUs can be divided
into two cases. On one hand, if the content q has been
cached in the RSU, it can be delivered to the MV directly.
On the other hand, if the content q does not cached in
the RSU, the RSU will cooperate with PVs to prepare the
content or obtain the content from the cloud server.

The utility of the MV k can be expressed as

uk
i,k,q =

⎧⎪⎪⎨
⎪⎪⎩

δ′ + θqSqfq − pi,k,q ,
if content q is
cached in RSU i,

δ′ + θqSqfq − pi,k,q

−αi,k,q ti,q ,

if content q is not
cached in RSU i.

(16)

Here, δ′ guarantees that the utility function is non-negative.

θq and αi,k,q are the fixed parameters. Let ti,q = Sq−s∗
i,j∗,q

rcloud
+

s∗
i,j∗,q

r∗
i,j∗,q

denote the time loss caused by RSU obtaining content

q from PVs or cloud servers. pi,k,q is the cost paid by MV
k to RSU i for obtaining content q.

The utility of the RSU i can be defined as

uRSU
i,k,q =

⎧⎪⎪⎨
⎪⎪⎩

pi,k,q − μqSqξi,k,q ,
if content q is
cached in RSU i,

pi,k,q − μqSqξi,k,q

− (pi,j∗,q + pcloud,i,q

)
,

if content q is not
cached in RSU i.

(17)

If content q is not cached, pi,j∗,q will be the cost for the
RSU to obtain the content q from the surrounding PVs. The
details can be found in Section 4.1. Moreover, assume that
the size of content q delivered by the winning PV is less
than Sq . Then, the RSU is supposed to make up the rest of
content from the cloud server, resulting in additional costs
pcloud,i,q . Let ξi,k,q indicate the cost parameter for the RSU
i to deliver content to the MV k.

The maximum utility of MV k can be calculated by

ϕi,k,q =

⎧⎪⎪⎨
⎪⎪⎩

δ′ + θqSqfq − μqSqξi,k,q ,
if content q is
cached in RSU i,

δ′ + θqSqfq − (pi,j∗,q + pcloud,i,q

)
−μqSqξi,k,q − αi,k,q ti,q ,

if content q is not
cached in RSU i.

(18)

The RSU i has incomplete information for other RUSs,
so it estimates the caching condition of other RSUs with
probability P cache

i′,q . Equations 19 and 22 are utilized to solve
the optimal bidding price p∗

i,k,q . In order to win the auction
game, RSU determines the appropriate selling price pi,k,q

to maximize the utility uk
i,k,q of the MV k and ensures that

its utility function satisfies uRSU
i,k,q > 0. According to the

caching status of RSU i, we discuss the optimal bidding
price of the RSU in two cases.

Case 1 Content q is cached in the RSU i.

According to the full probability formula, we have

Pr
[
ϕi,k,q > ϕi′,k,q

] = P cache
i′,q · Pr

[
ϕi,k,q > ϕi′,k,q |Acache

i′,q

]

+
(
1 − P cache

i′,q

)
· Pr
[
ϕi,k,q > ϕi′,k,q |Acache

i′,q
]

= P cache
i′,q · Pr [ξi,k,q < ξi′,k,q

]+ 1 − P cache
i′,q

= 1 − P cache
i′,q �

(
ξi,k,q

)
,

(19)

where Acache
i′,q indicates that the content q is cached in RSU

i′. Otherwise, Acache

i′,q is used to indicate that the content
q is not cached. Let ξi,k,q denote the cost parameter of
RSU i. Due to the information asymmetry in the auction
mechanism, the RSU estimates that the cost parameters
of other RSUs obey the uniform distribution within[
ξmin
i,k,q , ξmax

i,k,q

]
. The probability distribution function can be

expressed as �(·). The number of RSUs participating in the
auction is expressed as I . Therefore, similar to the proof in
Appendix B, the optimal price can be calculated by

p∗
i,k,q = μqSqξi,k,q + μqSq

[
F
(
ξi,k,q

)
−
(
1 − P cache

i′,q

)I (
ξmax
i,k,q − ξmin

i,k,q

)]/
G
(
ξi,k,q

)
,

(20)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F
(
ξi,k,q

) =
(

ξmax
i,k,q−ξmin

i,k,q+P cache
i′,q ·ξmin

i,k,q−P cache
i′,q ·ξi,k,q

ξmax
i,k,q−ξmin

i,k,q

)I

,

G
(
ξi,k,q

) =
[
1 − P cache

i′,q
(
ξi,k,q−ξmin

i,k,q

)
ξmax
i,k,q−ξmin

i,k,q

]I−1

· I · P cache
i′,q .

(21)

Case 2 Content q is not cached in the RSU i.

According to the full probability formula, we can have

Pr
[
ϕi,k,q > ϕi′,k,q

] = P cache
i′,q · Pr

[
ϕi,k,q > ϕi′,k,q |Acache

i′,q

]

+
(
1 − P cache

i′,q

)
· Pr
[
ϕi,k,q > ϕi′,k,q |Acache

i′,q
]

= 0 +
(
1 − P cache

i′,q

)
· Pr (ξ ′

i,k,q < ξ ′
i′,k,q

)
= 1−P cache

i′,q − �′ (ξ ′
i,k,q

)+ P cache
i′,q �′ (ξ ′

i,k,q

)
,

(22)
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where �′ (·) is the probability distribution function of the

cost parameter ξ ′
i,k,q . A

cache
i′,q and A

cache

i′,q indicate the caching
status of the content q, respectively.

From the perspective of RSU i, pi,j∗,q + pcloud,i,q ,
μqSqξi,k,q and αi,k,q ti,q can be considered as the cost
of selling content q. Therefore, pi,j∗,q + pcloud,i,q +
μqSqξi,k,q + αi,k,q ti,q can be regarded as Sqξ ′

i,k,q . This
means that the larger the content q, the higher the cost for
RSU i to obtain and deliver the content. Similarly, RSU
i estimates the cost parameters of other RSUs following

the uniform distribution with
[
ξ ′

i,k,q
, ξ ′

i,k,q

]
. The optimal

price can be calculated by

p∗
i,k,q = pi,j∗,q + pcloud,i,q + μqSqξi,k,q

+Sq

(
ξ ′

i,k,q−ξ ′
i,k,q

)
F ′(ξ ′

i,k,q

)
G′(ξ ′

i,k,q

) ,
(23)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
(
ξ ′

i,k,q

) =
((

1−P cache
i′,q

)
·
(
ξ ′

i,k,q−ξ ′
i,k,q

)
ξ ′

i,k,q−ξ ′
i,k,q

)I−1

,

G
(
ξ ′

i,k,q

) = I

[
1 − P cache

i′,q − ξ ′
i,k,q−ξ ′

i,k,q

ξ ′
i,k,q−ξ ′

i,k,q

+P cache
i′,q

(
ξ ′

i,k,q−ξ ′
i,k,q

ξ ′
i,k,q−ξ ′

i,k,q

)]I−1

.

(24)

By comparing the utilities of MV k with the bidding price
of all RSUs, the optimal RSU is chosen by

i∗ = argmax
i

uk
i,k,q , i ∈ I . (25)

4.3 Algorithm design

Algorithm 1 is provided to depict the process of the
reputation-based cooperative content delivery mechanism,
which can be divided into two phases. In the Phase 1, the
reputation values of all PVs are initialized to be Repinit.
Then, according to the travel path and personal preference,
PVs set their content caching status xi,j,q to 1 or 0.
Similarly, xi,q will be initialized by each RSU.

After the MV sends the content request, the auction
process in Phase 2 will be executed until the optimal RSU
and PV are selected. Phase 2 consists of four parts: 1)
Calculate the optimal bidding price based on the caching
status xi,q for each RSU; 2) Calculate reputation threshold
based on the feature of the requested content to filter the
trustless PVs; 3) Calculate the optimal strategy for each PV;
4) Update the reputation value Repi,j , caching status xi,q ,
respectively.

5 Performance evaluation

The goal of this section is to evaluate the performance of the
proposed mechanism and compare it with the conventional
mechanisms. In the simulation scenario, the number of
RSUs is set to be [3, 15], and the initial number of PVs
around the RSU is randomly selected from [20, 300] [30].
Initially, we set the ratio of honest PVs, speculative PVs,
and malicious PVs to be 0.6, 0.3, and 0.1, respectively [27].
MV requests content once per second. Based on [8], [31],
other parameters are summarized in Table 1.

In Fig. 2, PVs are divided into three types: the honest PV,
the speculative PV, and the malicious PV. The honest PVs
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Table 1 Simulation parameters

Parameter Value Parameter Value

αi,k,q 0.5 βi,q 20

μq 0.5 θr 1.5

αi,q 40 rcloud 1 Mb/s

Gi 1 Gj 1

L 1 μrep 0.05

αrep 0.08 βrep 0.08

γrep 0.1 ηreq 0.1

δrep 0.25 αthre
rep 0.1

βthre
rep 0.1 Re pthre 0.5

αi,q 40 rcloud 1 Mb/s

θs 1 smin
i,j,q 1 Mb/s

δ 1 Sq {1, 5} Mb

δ′ 3 rmin
i,j,q , rmax

i,j,q {2, 3} Mb/s

θq 20 ξmin, ξmax {0.07, 0.13}
P cache

i′,q 0.33 ξmin
i,k,q , ξmax

i,k,q {0.07, 0.13}
Pcloud 0.6 ξ ′

i,k,q
, ξ ′

i,k,q {0.35, 0.80}

comply with the content size and transmission rate promised
in the auction. The malicious PVs refuse to provide content
after winning the auction. The speculative PVs switch to
be honest mode and malicious mode randomly. According
to the evolution of reputation value, we can observe that
the reputation value of the honest PV increases over time.
However, the reputation value of the malicious PV and the
speculative PV decline rapidly over time. The reason is that
the honest PV keeps its promise and provides high-quality
services to increase its reputation value. On the contrary, the
malicious PV fails to keep its promise, resulting in a rapid
decline in reputation. In addition, owing to the limitation

of reputation value, the reputation value of honest PV tends
to be 0.8. However, for malicious PV and speculative PV,
the lower limitation of the reputation value is determined by
Repthre. It means that PV with the reputation value less than
Repthre will be banned from participating in auctions, and
the reputation value will not change.

Figure 3 shows the utility of the PV by comparing the
proposal with three conventional mechanisms. We select
a PV with the requested content and change its bidding
strategy, while the other PVs maintain the proposed mecha-
nism. As the parking time increased, more content requests
are generated. We can observe that the utility of the PV

Fig. 2 The evolution of
reputation value with different
simulation time
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Fig. 3 Utility of PV with
different parking times and
mechanisms

increases with the simulation time. Moreover, the utility of PV
is higher than that of other mechanisms. This is because
the optimal bidding strategy selected by PV can not only
maximize its utility but also improve the utility of the RSU,
which increases the probability of the PV winning the game.

In Fig. 4, the proposed mechanism is compared with
the random selection mechanism and the fixed price
mechanism.

– The random selection mechanism [32]: In this
mechanism, the RSU randomly selects a PV with the
requested content to obtain content. The selected PV
randomly determines the strategies of si,j,q , ri,j,q and
pi,j,q to provide content.

– The fixed price mechanism [33]: In this mechanism,
the content size, transmission rate and price are fixed.

We use the average value of content size, transmission
rate, and PV transmission cost as the pricing scale for
RSU. If there are multiple PVs that meet the conditions,
RSU will choose the PV that maximizes its utility as the
winner.

Here, the simulation time is changed from 0.5 hour to 2.5
hours. Figure 4 shows that the proposed auction mechanism
can maximize the utility of the RSU compared with the
other two mechanisms. According to the simulation results
in Figs. 3 and 4, the proposed auction mechanism between
PVs and RSU can not only maximize the utility of the PV,
but also improve the utility of the RSU.

Figure 5 shows the changes in the content delivery
rate when the ratio of honest PV changes in different
mechanisms. Here, the honesty rate of PV is distributed in

Fig. 4 Utility of RSU with
different parking times and
mechanisms
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Fig. 5 Content delivery rate
with different ratio of honest PV
and different mechanism.

[0.5, 0.9]. The simulation results in Fig. 5 show that our
proposed mechanism can effectively improve the content
delivery rate. Especially, when the ratio of honest PV
at a low level, the proposed mechanism has significant
advantages over the other two mechanisms. The content
delivery rate of the random mechanism is greatly affected
by the honest PVs. The success rate of content delivery
will decrease as the honest PVs rate declines. In addition,
the auction-based content delivery mechanism, lacking
monitoring mechanisms for PV behavior, has the lowest
content delivery rate. The reason is that in the auction-based
mechanism, malicious PV will defraud the auction game by
lowering the bidding price.

Figure 6 shows that the utility of RSU changes with
the number of RSUs and PVs. When the number of PVs
parked around the RSU remains constant, the utility of the

RSU decreases as the number of RSUs participating in the
auction increases. This is because the increase in the number
of RSUs leads to the intense competition in auction game.
Thus, the RSU reduces the price to increase the probability
of winning the auction, which leads to a reduction in the
utility. On the contrary, when the number of RSUs remains
constant, as the number of PVs parked around the RSU
increases, the utility of this RSU gradually increases. This
is because the more PVs around the RSU, the more intense
competition among PVs. Therefore, the RSU can obtain
content from the surrounding PVs with a lower price and
a higher transmission rate, which results in the increase of
utility.

Figure 7 shows that the utility of MV changes with the
number of RSUs and PVs. In contrast to Fig. 6, the utility
of the MV increases as the number of RSUs participating

Fig. 6 Utility of RSU with
different number of RSUs and
number of PVs
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Fig. 7 Utility of MV with
different number of RSUs and
number of PVs

in the auction increases, when the number of PVs parked
around the RSU remains constant. The reason is that the
competition between RSUs leads to a decrease in bidding
prices, which increases the utility of MV. In addition, as the
number of PVs increases, the cost of RSU obtaining content
decreases, which is already shown in Fig. 6. In this case,
RSU will cut the selling price to increase the probability
of winning the auction. Therefore, MV can obtain content
from the RSU instead of the cloud server, which increases
the utility of MV.

Figure 8 is the comparison among the proposal mecha-
nism, random price mechanism and linear price mechanism.

– The random price mechanism [34]: In this mecha-
nism, RSU i randomly selects the bidding price based
on the content transmission cost. The random price
should be greater than the content transmission cost of
RSU i to ensure that the utility is positive and less than
the maximum transmission cost corresponding to the
maximum cost parameter ξ ′

i,k,q .
– The linear price mechanism [35]: In this mechanism,

RSU i linearly selects the bidding price based on the
cost of the content. To improve the performance of
the linear price mechanism, we set the linear pricing
coefficient to be 1.05.

Fig. 8 Utility of RSU with
different simulation times and
mechanisms
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Fig. 9 Utility of MV with
different simulation times and
mechanisms

Figure 8 shows that the proposed mechanism outper-
forms other two conventional mechanisms. By adopting the
bidding strategy proposed in this paper, the RSU can sig-
nificantly improve its utility. In Fig. 9, with the simulation
time ranged from 5 to 25, the proposal can maximize the
utility of the MV compared with the random mechanism
and the fixed price mechanism. The reason is that RSUs
compete with each other and reduce the selling prices to
win the auction. Thus, the MV can obtain the content with
the low cost and significantly improve its utility. In oppo-
site, due to the lack of incentives, RSUs in the conventional
mechanisms have no obligation to reduce prices. The higher
price improves the utility of RSU, but it increases the cost
of obtaining content for the MV as well.

Figure 10 shows the changes in the utility of MV when
the simulation time changes in different mechanisms. The
simulation time changes in [0, 23]. From Fig. 10, we can see
that our proposed mechanism can significantly improve the
utility of MV. Compared with the proposed mechanism, the
utility of MV in the random selection mechanism changes
significantly over time. The reason is that during peak parking
periods, RSU can cooperate with PV for content delivery.
However, in the low parking periods, the number of parked
vehicles with requested content is at a low level. The delay
of content delivery will be increased and the utility of the
MV will be reduced under the circumstance where there is
no suitable PV around the RSU that randomly selected by
MV.

Fig. 10 Utility of MV with
different times and mechanisms
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6 Conclusion

In this paper, we have proposed a reputation-based cooperative
content delivery mechanism to securely deliver content with
the assistance of PVs. In specific, the reputation model has
been developed to effectively isolate the malicious PVs and
guarantee the security of content delivery. Then, in the two-
layer auction game among PVs, RSUs, and MVs, PVs can
obtain the high utility with low energy consumption by
using the optimal bidding strategy. RSUs deliver content
more economically and efficiently by determining the
optimal PV. MVs can maximize their utility by adopting
the cooperation mechanism. Finally, numerical results have
demonstrated that the proposed mechanism outperforms
the conventional mechanisms. As for the future work, we
will further study the efficiency and security of cooperative
content delivery in VANETs.

Appendix A

Proof of Theorem 1

We assume that the bidding strategy
(
s∗
i,j,q , r∗

i,j,q

)
is not

the optimal of PV j . Then, there must be another optimal
bidding

(
s′

i,j,q , r ′
i,j,q , p′

i,j,q

)
to maximize the utility of PV

j . Here, s∗
i,j,q �= s′

i,j,q , r
∗
i,j,q �= r ′

i,j,q . Let

Repi,j

[
δ−αi,qfq

(
Sq − s′

i,j,q

rcloud

+ s′
i,j,q

r ′
i,j,q

)
+βi,qfqs′

i,j,q

]
− p′

i,j,q

=Repi,j

[
δ−αi,qfq

(
Sq − s∗

i,j,q

rcloud

+ s∗
i,j,q

r∗
i,j,q

)
+ βi,qfqs∗

i,j,q

]
− p∗

i,j,q .

(26)

Therefore, we have
p′

i,j,q − ξi,j,qθss
′
i,j,q − ξi,j,qθr r

′
i,j,q = p∗

i,j,q−

Repi,j

[
δ − αi,qfq

(
Sq − s∗

i,j,q

rcloud

+ s∗
i,j,q

r∗
i,j,q

)
+ βi,qfqs∗

i,j,q

]

+Repi,j

[
δ − αi,qfq

(
Sq − s′

i,j,q

rcloud

+ s′
i,j,q

r ′
i,j,q

)
+ βi,qfqs′

i,j,q

]

−ξi,j,qθss
′
i,j,q − ξi,j,qθr r

′
i,j,q � p∗

i,j,q−

Repi,j

[
δ − αi,qfq

(
Sq − s∗

i,j,q

rcloud

+ s∗
i,j,q

r∗
i,j,q

)
+ βi,qfqs∗

i,j,q

]

+ Repi,j

[
δ − αi,qfq

(
Sq − s∗

i,j,q

rcloud

+ s∗
i,j,q

r∗
i,j,q

)
+ βi,qfqs∗

i,j,q

]

−ξi,j,qθss
∗
i,j,q − ξi,j,qθr r

∗
i,j,q

= p∗
i,j,q − ξi,j,qθss

∗
i,j,q − ξi,j,qθr r

∗
i,j,q .

(27)

Obviously, Eq. (27) is contradictory to the initial

assumption. Therefore, the bidding strategy
(
s∗
i,j,q , r∗

i,j,q

)
is optimal.

Equation 13 is a binary function denoted as
f (si,j,q , ri,j,q). PV changes si,j,q and ri,j,q to maximize
this function. The maximum value can be obtained at
the boundaries ri,j,q = rmin

i,j,q , ri,j,q = rmax
i,j,q , si,j,q = smin

i,j,q ,
si,j,q = smax

i,j,q and the stagnation point of the function. By
taking the first partial derivatives on the four boundaries of
the function f (si,j,q , ri,j,q), we have

∂f (si,j,q , rmin
i,j,q)

∂si,j,q
= Repi,j

[
− αi,qfq

(
− 1

rcloud

+ 1

rmin
i,j,q

)

+ βi,qfq

]
− ξi,j,qθs,

(28)

∂f (si,j,q , rmax
i,j,q)

∂si,j,q
= Repi,j

[
− αi,qfq

(
− 1

rcloud

+ 1

rmax
i,j,q

)

+βi,qfq

]
− ξi,j,qθs,

(29)

∂f (smin
i,j,q , ri,j,q)

∂ri,j,q
= Repi,j αi,qfqsmin

i,j,q

r2i,j,q

− ξi,j,qθr , (30)

∂f (smax
i,j,q , ri,j,q)

∂ri,j,q
= Repi,j αi,qfqsmax

i,j,q

r2i,j,q

− ξi,j,qθr . (31)

By taking the first partial derivative of the function
f (si,j,q , ri,j,q), we can get the stagnation point⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s̃i,j,q = Repi,j ξi,j,qθrαi,qfqr2cloud

/(
r2cloudξ2i,j,qθ2s

−2r2cloudRepi,j ξi,j,qβi,qfqθ + r2cloudRep
2
i,j β2

i,qf 2
q

+Re p2i,j α
2
i,qf 2

q − 2rcloudRepi,j ξi,j,qαi,qfqθs

+2rcloudRep
2
i,j αi,qβi,qf 2

q

)
,

r̃i,j,q=Repi,j αi,qfqrcloud

/(
Repi,j rcloudβi,qfq

+Repi,j αi,qfq − rcloudξi,j,qθs

)
.

(32)

Therefore, the optimal bidding strategy of PV j can be
expressed as{

s∗
i,j,q , r∗

i,j,q

}
=

argmax
si,j,q ,ri,j,q∈�i,j,q

{
Repi,j

[
δ − αi,qfq

(
Sq − si,j,q

rcloud

+ si,j,q

ri,j,q

)
+ βi,qfqsi,j,q

]
− ξi,j,qθssi,j,q − ξi,j,qθr ri,j,q

}
.

(33)

Here, �i,j,q =
{(

s1
i,j,q

, r1i,j,q

)
, . . . ,

(
s5
i,j,q

, r5i,j,q

)}
is the set

of candidate points on stagnation point and boundaries.
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This completes our proof.

Appendix B

Proof of Theorem 2

When the optimal content size s∗
i,j,q and transmission rate

r∗
i,j,q are determined by PV j , the utility of RSU i can be
rewritten as

ũRSU
i,j,q = Repi,j

[
δ − αi,qfq

(
Sq − s∗

i,j,q

rcloud

+ s∗
i,j,q

r∗
i,j,q

)
+

βi,qfqs∗
i,j,q

]
− pi,j,q .

(34)

When the bidding price of PV j is equal to the cost price,
the utility of RSU i can be maximized. The maximum utility
of RSU i can be calculated by

ϕi,j,q = Repi,j

[
δ − αi,qfq

(
Sq − s∗

i,j,q

rcloud

+ s∗
i,j,q

r∗
i,j,q

)
+

βi,qfqs∗
i,j,q

]
− ξi,j,qθss

∗
i,j,q − ξi,j,qθr r

∗
i,j,q .

(35)

Combining Eq. (34) and Eq. (35), the expected utility of
PV j can be expressed as

E
{
uPV

i,j,q

}
= Pi,j (ϕi,j,q − ũRSU

i,j,q ), (36)

where Pi,j is the probability that PV j wins the game. Note
that RSU i wants to select the PV to obtain the maximum
utility. Namely, we can obtain

uRSU *
i,j,q = max

{
ũRSU

i,j,q |j = 1, 2, . . . N
}

, (37)

whereN is the number of PVs with content q parked around
RSU i. Thus, Pi,j also means that the probability of PV j to
maximize the utility of RSU i. It can be calculated by

Pi,j =
J∏

j ′=1,j ′ �=j,Xi,j,q=1

P
{
ũRSU

i,j,q > ũRSU
i,j ′,q

}
. (38)

Let ũRSU
i,j,q = ωi,j,q

(
ϕi,j,q

)
represent the relationship

function between ϕi,j,q and ũRSU
i,j,q . The greater the ϕi,j,q , the

higher the social welfare. It also means that PV j has more
choices in its bidding price. Therefore, the function ωi,j,q (·)
is an increasing function, we can have

P
{
ũRSU

i,j,q > ũRSU
i,j ′,q

}
= P

{
ϕi,j,q > ϕi,j ′,q

}
= P

{
ξi,j,q < ξi,j ′,q

}
= 1 − 


(
ξi,j,q

)
,

(39)

where 
(·) is the probability distribution function of the
cost parameter ξi,j ′,q of PV j ′. Therefore, the probability

Pi,j can be rewritten as

Pi,j = (1 − 

(
ξi,j,q

))N−1. (40)

We set Pi,j = H
(
ϕi,j,q

)
to reflect the relationship

between ϕi,j,q and the probability Pi,j . Thus, we have

Pi,j = H
(
ϕi,j,q

) = H
(
ωi,j,q

−1
(
ũRSU

i,j,q

))
. (41)

Then, the expected utility of PV j can be rewritten as

E
{
uPV

i,j,q

}
= H

(
ωi,j,q

−1
(
ũRSU

i,j,q

))
· (ϕi,j,q − ũRSU

i,j,q ). (42)

The first derivative of E
{
uPV

i,j,q

}
with respect to ũRSU

i,j,q can

be calculated by

∂E
{
uPV

i,j,q

}
∂ũRSU

i,j,q

=
(ϕi,j,q − ũRSU

i,j,q ) · Ḣ
(
ωi,j,q

−1
(
ũRSU

i,j,q

))
ω′

i,j,q

(
ϕi,j,q

)
−H

(
ωi,j,q

−1
(
ũRSU

i,j,q

))
.

(43)

where Ḣ (·) is the derivative of the function H (·) to ũRSU
i,j,q .

Let
∂E
{
uPV

i,j,q

}
∂ũRSU

i,j,q

= 0, we have

∂
[
H
(
ϕi,j,q

) · ωi,j,q

(
ϕi,j,q

)]
∂ϕi,j,q

= Ḣ
(
ϕi,j,q

) · ϕi,j,q . (44)

By solving Eq. (44), we can obtain

ωi,j,q

(
ϕi,j,q

) = 1

H
(
ϕi,j,q

)
∫ ϕi,j,q

0
Ḣ (x) · x · dx. (45)

By solving the integral equation in Eq. (45), we have

ωi,j,q

(
ϕi,j,q

)=ũRSU
i,j,q =ϕi,j,q− 1

H
(
ϕi,j,q

)
∫ ϕi,j,q

0
H (y) dy.

(46)

Substituting ũRSU
i,j,q and ϕi,j,q into Eq. (45), we can obtain

the optimal bidding price of PV j

p*
i,j,q = ξi,j,qθss

∗
i,j,q + ξi,j,qθr r

∗
i,j,q

+ 1

H
(
ϕi,j,q

)
∫ ϕi,j,q

0
H (y) dy,

(47)

whereH
(
ϕi,j,q

) = Pi,j = (1 − 

(
ξi,j,q

))N−1. Since ξi,j,q

obeys the uniform distribution, we can obtain



(
ξi,j,q

) = ξi,j,q − ξmin
i,j,q

ξmax
i,j,q − ξmin

i,j,q

. (48)

Therefore, the optimal bidding price of PV j is

p*
i,j,q = ξi,j,qθss

∗
i,j,q + ξi,j,qθr r

∗
i,j,q

+
(
θss

∗
i,j,q+θr r

∗
i,j,q

)
N

(
ξmax
i,j,q − ξi,j,q

)
.

(49)

This completes our proof.
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