
https://doi.org/10.1007/s12083-020-01028-8

A certificateless linearly homomorphic signature scheme
for network coding and its application in the IoT

Bin Wu1 · Caifen Wang2 ·Hailong Yao3

Received: 17 April 2020 / Accepted: 5 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Network coding is an effective method to optimize network throughput and improve routing reliability, and has been
widely used in a decentralized Internet of Things system. However, the packet-mixing property of network coding renders
transmission susceptible to pollution attacks, which may prevent the reconstruction of the original file. A homomorphic
signature scheme is a powerful tool that enables network coding to combat pollution attacks. Although a series of
homomorphic signature schemes already exists, no construction has been proposed to support both homomorphic network
coding signatures and the certificateless characteristic. In this paper, we construct a certificateless linearly homomorphic
signature scheme for network coding, thus avoiding the disadvantages of certificate management and key escrow problems.
We then prove the security of the scheme in a random oracle model against an adaptively chosen dataset attack under two
types of adversaries. Moreover, performance analysis results show that our scheme has a lower communication overhead
and enjoys a comparable computation cost with related schemes.

Keywords Homomorphic signature · Certificateless cryptography system · Network coding · Provable security

1 Introduction

Typical Internet of Things (IoT) deployments include
hardware technologies, sensing technologies (e.g., radio
frequency identification and sensors), actuators, and other
smart communication devices that are connected to the
Internet. These technologies and equipment facilitate the
extensive collection and exchange of information, files,
and other real-time content that are shared between more
and more smart terminals [1]. According to a report from
the International Data Corporation , nearly 28 billion IoT
devices will be installed by 2020, and the global economic
impact of the IoT is estimated to be 2 trillion [2].

Given the proliferation of shared data and the expanding
scale of the IoT, it is very worthwhile to increase

� Bin Wu
wubin1012@outlook.com

1 College of Mathematics and Statistics, Northwest Normal
University, Lanzhou, 730070, China

2 College of Big Data and Internet, Shenzhen Technology
University, Shenzhen, 518118, China

3 School of Electronic and Information Engineering,
Lanzhou City University, Lanzhou, 730070, China

throughput in such a large distributed network. The
initial motivation of network coding was to improve
the throughput of decentralized networks. In fact, this
technology is considered to be a good approach to improve
the distribution and sharing of digital content in peer-to-peer
streaming networks and wireless ad hoc networks [3].

More specifically, unlike the traditional store-and-
forward mechanism, in network coding, before the source
node transmits a message (file) to the target node, it first
divides the file into m packets, and then sends them to
the neighboring nodes, thereby allowing the intermediate
node (or router) to modify the received data packets and
forward them. In linear network coding, the coding packets
are regarded as vectors in linear space over some field.
The intermediate node calculates the linear combination of
these vectors by choosing random coefficients. If the target
node receives a certain number of correct data packets, it
can recover the original information with high probability.
As this technology can optimize network throughput [4, 5],
reduce energy consumption, and improve routing reliability
[6], it is important to apply network coding technology in
the IoT.

Because IoT devices typically interact with third-party
applications, in an IoT system with network coding
deployed, an important concern is preventing third-party

/ Published online: 7 January 2021

Peer-to-Peer Networking and Applications (2021) 14:852–872

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-020-01028-8&domain=pdf
http://orcid.org/0000-0001-7056-5769
mailto: wubin1012@outlook.com

Fig. 1 Network coding and pollution attack on network coding

applications from maliciously modifying data packets, that
is, pollution attacks. Specifically, network coding allows
nodes to mix data packets to make them more vulnerable to
pollution attacks. Errors introduced in only one packet can
propagate and generate more invalid packets, which causes
them to flow to their destination. A simplified version of the
network coding without pollution attack and under pollution
attack can be seen in Fig. 1, in which S is the source
node, I1, I2, I3, I4, I5 are the intermediate nodes, and D1,
D2 are destination nodes. According to the Fig. 1b, the
intermediate node I2 transmits a invalid packet v′

2 , which
affects the outputs of I4 and I5. Thus, the adversary can
prevents file reconstruction by maliciously modifying only
a small number of packets or injecting invalid packets.

To solve this problem, two main solutions have been pro-
posed: information theoretic and cryptographic approaches.
For the information theoretic approach, redundancy is intro-
duced into the original package to recover the original files
from malicious failures; however, the existing scheme can
only passively tolerate the pollution attack at the destination.
By contrast, the cryptographic approach does not restrict the
adversary’s behavior, and the intermediate node can detect
and discard invalid data packets in the process of trans-
mission, which can effectively mitigate pollution attacks.

Therefore, in recent years, cryptographic solutions have
attracted the attention of many scholars. They are divided
into public key methods (e.g., homomorphic signature [7–
10]) and symmetric key methods (e.g., homomorphic MAC
[11–15]). The public key method avoids the problem of
key distribution and is very suitable for a network coding
environment where senders send multiple files to multiple
receivers. In this paper, we focus on homomorphic signa-
tures in public key methods. The main idea is to provide
an approach to verify valid vectors. As shown in Fig. 2,
after the source node outputs a properly augmented basis
and the signatures of the basis, the intermediate node will
verify the validity of all the signatures received. If a vector
fails to pass the verification, the intermediate node will dis-
card the invalid vector, calculate the linear combination of
the remaining valid vectors, and generate a valid signature
for the linear combination without the signer’s secret key.
Finally, the destination node will recover the original file
from m linearly independent vectors.

In public key infrastructure, deployment costs are high
and management certificates are tricky, particularly in
resource-constrained environments, such as the IoT. To
mitigate this issue, [16] introduced the concept of identity-
based public key cryptography (ID-PKC). The concept is to
use the user’s identity information (e.g., IP address, driver’s
license number, and e-mail address) as a public key, and
then the trusted key generation center (KGC) is responsible
for generating private keys for users. Although ID-PKC
simplifies certificate management, it introduces the problem
of key escrow. Once the KGC is destroyed, the user’s private
key will be completely disclosed, making it unsuitable for
large-scale network environments.

Al Riyami et al. [28] proposed a certificateless public key
cryptosystem (CL-PKC) in which the user’s private key is
composed of some contributions of KGC, that is, the partial
private key and a secret value chosen by the user. Thus,
the CL-PKC eliminates the key escrow problem inherent
in ID-PKC, while retaining the certificateless property.
For different applications, many researchers have proposed
encryption schemes [[29–31] and signature schemes [32–
35] based on CL-PKC. However, to date, almost all
proposed linearly homomorphic signature (LHS) schemes

Fig. 2 The principle of homomorphic signature against pollution attack in network coding

853Peer-to-Peer Netw. Appl. (2021) 14:852–872

have been based on either public key infrastructure [17–23]
or identity cryptography [24–27], no construction has been
proposed to support both a homomorphic network coding
signature and certificateless characteristic. Therefore, to
fill this gap in the literature, in this paper we design a
certificateless LHS (CL-LHS) scheme for network coding.
We prove that our homomorphic signature scheme is
unforgettable even in the presence of type I and type II
adversaries.

1.1 Our contributions

We summarize our main contributions as follows:

– We introduce the concept of a CL-LHS scheme for net-
work coding, which addresses the issues of certificate
management and key escrow while defending against
pollution attacks.

– We present a security model for CL-LHS to guarantee
the functionality and security of the proposed CL-LHS
scheme, which considers two types of adversaries (Type
I adversary and Type II adversary) that are capable of
forging two types of signatures (Type 1 forgery and
Type 2 forgery).

– We construct a concrete CL-LHS scheme and prove that
the proposed scheme is secure against an adaptively
chosen dataset attack in a random oracle model under
the two types of adversaries.

– Compared with related LHS schemes, our CL-LHS
scheme has a smaller key size and a shorter signature
length and has comparable computation costs. By
making the LHS scheme certificateless, our CL-LHS
scheme can be deployed and implemented in an IoT
environment with limited computing power and storage
space.

1.2 Related works

In network coding, intermediate nodes (or routers) are
allowed to combine and retransmit received data packets,
and the recipient can still obtain the original data. This
technology can maximize network throughput and increase
robustness. Aiming at addressing the problem that linear
network coding is vulnerable to malicious node pollution
attacks, a solution based on computational assumptions
and cryptographic technology is considered. The main idea
here is to provide a method to verify valid vectors by
using the network coding signature scheme. These schemes
can be constructed from homomorphic hash functions or
homomorphic signatures (HSs). Krohn et al. introduced a
homomorphic hash function [36] to construct a network
coding signature scheme. The main disadvantage of this
method is that the authentication information and public key

that must be sent with the package are very large, which
is not conducive to improving throughput. Using LHS to
perform network coding authentication is a more effective
method. The work of Boneh et al. [8] is a milestone in
LHS. In fact, it is considered the first to provide a practical
framework for such a scheme. Attrapadung and Libert [37]
showed that the first LHS scheme was secure under the
standard model. The earliest RSA-based HS scheme was
proposed by Gennaro et al. in 2010 [38], and it is proven
that the scheme is unforgeable against a weak adversary in
the random oracle model. Boneh and Freeman [39] presents
the first scheme that can resist quantum attack, and the
hardness assumption exploited is k-SIS. The above schemes
are certificate-based cryptosystems. For fine-grained access
control, identity-based HS schemes were proposed [24–27],
which were proven to be secure in a random oracle model.
Previous schemes allowed linear functions to be computed
over signed data, while the scheme in [40] can evaluate
multivariate polynomials, and [41, 42] proposed fully HS
schemes supporting arbitrary functions.

To further extend the utility of HS, multiple-key HS
has recently received attention [20–22, 48]. Multiple-key
support is necessary for datasets that involve inputs authen-
ticated by different clients, for example, in a distributed
network of sensors. Prior to [48], the concept of homo-
morphic authentication studied only supported executions
of computations over data authenticated by a single user. In
2019, Schabhüser et al. proposed the first perfectly context-
hiding multiple-key linearly homomorphic authenticator
scheme [22]. Lai et al. proposed a generic construction of
multiple-key HS with unforgeability under corruption [21].

HS with additional functions applied to specific scenar-
ios is also a popular topic in current research. Quantum-
based protocols are being used in homomorphic sig-
nature schemes to address quantum network environ-
ments. Shang et al. in 2015 treated entanglement swap-
ping as a homomorphic operation and creatively pro-
posed the first quantum HS scheme [43]. However, this
scheme only allows one verifier to verify a signature
once. To support repeatable verification for general sce-
narios, Shang et al. proposed a new quantum HS scheme
with repeatable verification by using a serial verifica-
tion model and parallel verification model [44]. Li et al.,
in 2019, proposed two quantum homomorphic message
authentication schemes based on quantum circuits, which
can resist pollution attacks initiated by untrusted inside
nodes over a general quantum network [45]. In addition, the
verifiably encrypted HS scheme proposed by Seo et al. [46]
and homomorphic signcryption scheme proposed by Fan
et al. [47] have been successfully applied to accumulable
optimistic fair exchange and electronic voting, respectively
(Table 1).

854 Peer-to-Peer Netw. Appl. (2021) 14:852–872

Table 1 Symbol description

Symbol Definition

[N] the set {1, 2, · · · , N}
Fp finite field determined by prime number p

Ii the ith unit vector of dimension m

1k the security parameter

Vi the ith vector space

n the dimension of each vector to be transmitted

m the dimension of the unit vector attached to the
original vector

N = n + m the upper bound of the size of the signed vectors

c
$← Fp the process of uniformly randomly choosing

an element c from Fp

1.3 Organization

The rest of this paper is organized as follows: In Section 2,
we present preliminaries, including basic concepts of
network coding and complex assumptions. In Section 3, we
introduce the notion of the CL-LHS scheme for network
coding and give its security model. We construct a concrete
CL-LHS scheme and prove its security in Sections 4
and 5 respectively. We present the efficiency comparison in
Section 6. Finally, we conclude the paper in Section 7.

2 Preliminaries

2.1 Linear network coding

In the network coding model, three stages are executed to
complete the file transmission:

– The file to be transferred is treated as a set of n-
dimensional vectors v̄1, · · · , v̄m ∈ F

n
p, where p is a

prime number. Before transmission, the source node
augments each of them as

vi = (v̄i ,

m
︷ ︸︸ ︷

0, · · · , 0, 1
︸ ︷︷ ︸

i

, 0, · · · , 0) ∈ F
n+m
p ,

In this way, the vectors v1, · · · , vm form the basis
of a subspace V ⊂ F

n+m
p , which is called a properly

augmented basis.
– Upon receiving the packets (i.e., vectors) w1, · · · , wl ∈

F
n+m
p on its incoming edges, an intermediate node

computes a linear combination, namely, the vector w =
∑l

i=1 ciwi , for ci
$← Fp. Then vector w is transmitted

on its outgoing edges.
– To recover the original file, a destination node (i.e.,

receiver) must receive m linearly independent vectors

w1, · · · , wm of the form wi = (wL
i , wR

i), where
wL

i (wR
i) denotes the left-most n (right-most m)

positions of the vector. The receiver then computes an
m × m matrix G such that

G =
⎛

⎜

⎝

wR
1
...

wR
m

⎞

⎟

⎠

−1

Finally, the original file can be recovered by
computing
⎛

⎜

⎝

v̄1
...

v̄m

⎞

⎟

⎠ = G ·
⎛

⎜

⎝

wL
1
...

wL
m

⎞

⎟

⎠ .

2.2 Bilinear pairing

Let (G1,G2) be two cyclic groups with the same order p

and let e : G1 × G1 → G2 be a map; e is a bilinear pairing
if it has the following three properties:

(1) Bilinearity: For any a, b ∈ Z
∗
p and g, h ∈ G1,

e(ga, hb) = e(g, h)ab.
(2) Non-degeneracy: There exist g, h ∈ G1, such that

e(g, h) �= 1.
(3) Computability: For any g, h ∈G1, there is an efficient

algorithm to compute e(g, h).

2.3 Computational Bilinear Diffie-Hellman problem

Definition 1 (CDH Problem) Let e : G1 × G1 → G2 be
a bilinear pairing. Given (g, ga, gb), where a, b ∈ Z

∗
p are

unknown numbers, compute the value of gab.

3 Definitions and security model

3.1 Certificateless linearly homomorphic signature

Definition 2 (Certificateless Linearly Homomorphic Sig-
nature Scheme) A certificateless linearly homomorphic
signature scheme consists of a tuple of (probabilis-
tic) polynomial-time algorithms (Setup, Extract-Partial-
Private-Key, Set-Secret-Value, Set-Private-Key, Set-
Public-Key, CL-HSign, CL-Combine, CL-Verify) with
the following functionality:

– Setup (1k, N, m): When a security parameter 1k and
two integers N, m ≥ 1 are input, this algorithm outputs
the system parameters params and a master key msk .

– Extract-Partial-Private-Key (params, ID,msk): This
algorithm takes as input msk and a user’s identity ID

and outputs the user’s partial private key DID .

855Peer-to-Peer Netw. Appl. (2021) 14:852–872

– Set-Secret-Value (params, ID): This algorithm takes
as input params and a user’s identity ID and outputs the
user’s secret value xID .

– Set-Private-Key (params, DID , xID): This algorithm
takes as input params, the partial private key DID and
the secret value xID , it generates a user’s full private
key, referred to as SKID .

– Set-Public-Key (params, xID): This algorithm takes
as input params and a secret value xID , and it generates
the public key PKID of the identity ID.

– CL-HSign (params, ID, SKID , τ , v): For the input
params, a user’s identity ID, a full private key SKID ,
a file identifier τ ∈ {0, 1}k and a vector v ∈ F

N
p , this

algorithm outputs a signature σ .
– CL-Combine (params, ID, PKID , τ , {(ci, σi)}li=1):

For the input params, a user’s identity ID, a public
key PKID , a file identifier τ , and a set of tuples
{(ci, σi)}li=1 with ci ∈ Fp, where σi is a signature on
the vector vi , this algorithm outputs a signature σ on
the vector v = ∑

i∈[l]
civi .

– CL-Verify (params, ID, PKID , τ , y, σ): For the input
params, a user’s identity ID, a public key PKID , a file
identifier τ , a vector y ∈ F

N
p and a signature σ , this

algorithm returns either 1 (accept) or 0 (reject).

Setup and Extract-Partial-Private-Key are assumed to
be run by the KGC. Once a partial private key generated by
the KGC is given to a user via a secure channel, the user
performs the Set-Secret-Value algorithm.

Correctness. We require that for each key pair

(SKID, PKID) output by Setup, Set-Private-Key, Set-
Public-Key, the following hold:

(1) For all τ ∈ {0, 1}k and v ∈ F
N
p , if σ ←

CI-HSign (ID, SKID, τ, v), then CL-Verify
(ID, PKID, τ, v, σ)=1.

(2) For all τ and all sets of triples {(ci, σi, vi)}li=1, if CL-
Verify(ID, PKID, τ, vi , σi)=1 for each i ∈ [l], then
CL-Verify (ID, PKID, τ,

∑l
i=1 civi , CL-Combine

{ID, τ, (ci, σi)}li=1)=1.

3.2 Systemmodels

Figure 3 shows the system model of the certificateless lin-
early homomorphic signature scheme for network coding-
enabled IoT environments, which consists of three parts: a
key generation center (KGC), an IoT device and receivers.
The KGC is responsible for the system setup and the calcu-
lation of partial private keys for each IoT device. The KGC
generates system parameters and sends them to all entities,
and partial private keys are sent to each entity through a
secure channel. IoT devices with limited computing power
and storage space are able to collect data from the phys-
ical world. To ensure data integrity and authenticity, each
IoT device processes the collected raw data before signing
it and then outputs the data, signature, and public key. In
the process of file transmission, the certificateless linearly
homomorphic signature scheme resists pollution attacks on
the network coding-enabled network. Finally, the receivers
recover the initial file.

Fig. 3 System model of the CL-LHS for network coding-enabled IoT environments

856 Peer-to-Peer Netw. Appl. (2021) 14:852–872

3.3 Security models

In the security model of certificateless linearly homomor-
phic signatures, two types of adversaries with different
capabilities are considered.

Type I adversary (AI): This type of adversary cannot
access the master key of the system but is allowed to
replace the public key of any entity with a value of his
choice because of the uncertified nature of the user’s
public key.

Type II adversary (AII): This type of adversary can
access the system’s master key but cannot initiate public
key replacement attacks.

The unforgeability of the certificateless linearly homomor-
phic signature scheme against adaptively chosen dataset
attacks can be characterized by the following two games
between challengers and adversaries (AI and AII).

For adversaries in Game 1, we make the following
restrictions:

(1) The adversary cannot extract the full private key for
the challenge identity ID∗.

(2) The challenge identity ID∗ cannot be one that has
been replaced with a public key and had a partial
private key extracted.

Game 1 In this game, AI interacts with the challenger C.

– Setup: The challenger C runs Setup (1k, N, m) to
generate the system parameters params and master key
msk . It then gives params to AI while keeping msk

secret.
– Queries: Adversary AI performs the following oracle

queries but is subject to the above restrictions.
– Partial P rivate Key Extraction: Given an

identity ID, the challenger computes the partial private
key DID and returns it to AI .

– Secret V alue Extraction : Given a user’s
identity ID, the challenger returns the user’s secret
value xID to AI .

– Public Key Queries : On receiving such a query
with an ID, the challenger computes the corresponding
public key PKID and returns it to AI .

– Replace Public Key : AI may replace a public
key with a value chosen by him.

– Signing Queries : AI issues a sequence of
queries adaptively for the vector subspaces Vi ⊂ F

N
p .

For each i, the challenger chooses an identifier τi

uniformly from {0, 1}k and returns τi and σi ← CL-
HSign(ID, SKID, τi, Vi) to AI .

– Output:AI outputs an identifier τ ∗, a nonzero vector
v∗ ∈ F

N
p , and a signature σ ∗ corresponding to a

challenge identity ID∗ and a public key PKID∗ .

The adversary wins if CL-Verify (ID∗, PKID∗ ,
τ ∗, v∗, σ ∗) = 1 and one of the following conditions is
met:

(1) τ ∗ �= τi for all τi that appear in the signing queries
(Type 1 forgery).

(2) τ ∗ = τi for some i but v∗ /∈ Vi (Type 2 forgery).

The advantage of AI winning Game 1 is denoted as
AdvCL−LHS

AI
(k).

Game 2 We set the semi-trusted KGC as the adversary in
this game.

– Setup: The challenger generates the system parameter
params and master key msk , then returns params and
msk to AII .

– Queries: Adversary AII initiates a sequence of
queries adaptively for polynomial-many times, includ-
ing Secret V alue Extraction, Public Key Queries

and Signing Queries. The queries /response method
is the same as that in Game 1, except that the adversary
is AII .

– Output:AII outputs an identifier τ ∗, a nonzero vector
v∗ ∈ F

N
p , and a signature σ ∗ corresponding to a

challenge identity ID∗.
The adversary wins if CL-Verify (ID∗, PKID∗ ,

τ ∗, v∗ , σ ∗) = 1, ID∗ has not been issued as a secret
value extraction, and one of the following conditions is
met:

(1) τ ∗ �= τi for all τi that appear in the signing queries
(Type 1 forgery).

(2) τ ∗ = τi for some i, but v∗ /∈ Vi (Type 2 forgery).

The advantage of AII winning Game 2 is denoted
as AdvCL−LHS

AII
(k).

Definition 3 (Unforgeability) We say that a certificateless
linearly homomorphic signature scheme is unforgeable
against adaptively chosen dataset attacks for polynomial-
time adversaries Ai if AdvCL−LHS

Ai
(i = I, II) in the above

games is negligible

4 Proposed CL-LHS scheme

In this section, we describe the proposed certificateless lin-
early homomorphic signature scheme, which is composed
of eight polynomial time algorithms.

– Setup: Taking as input a security parameter 1k and
two positive integers N, m, the algorithm performs the
following steps:

857Peer-to-Peer Netw. Appl. (2021) 14:852–872

(1) Select two cyclic groups G1, G2 of the same prime
order p, and choose a bilinear pairing e : G1 ×
G1 → G2.

(2) Choose a generator g ∈ G1, select a random
number s ∈ F

∗
p as the master key msk , and set

Ppub = gs .
(3) Choose four different cryptographic hash functions

H, H1, H2 and H3, each of which maps {0, 1}∗ to
G1. Then, publish the system parameters params =
(k,G1,G2, e, p, g, H, H1, H2, H3), and keep msk

secret.

– Extract-Partial-Private-Key: Taking as inputs
params, the master key s, and a user’s identity
ID ∈ {0, 1}∗, the KGC executes the following steps:

(1) Compute QID = H(ID).
(2) Output the partial private key DID = (QID)s .

– Set-Secret-Value: Taking as input an identity ID, this
algorithm chooses xID ∈ F

∗
p at random and sets xID as

the user’s secret value.
– Set-Private-key: Taking as input params and a user’s

identity ID, this algorithm outputs the user’s full
private key SKID = (DID, xID).

– Set-Public-Key: Taking as input params and a user’s
secret value xID , this algorithm generates the user’s
public key PKID = gxID .

– CL-Hsign: Assume that an initially empty list L has
stored all previously returned identifiers τ with the
related information (r, U) defined below. Taking as
input a signer’s private key SKID = (DID, xID) and
identity ID, an identifier τ ∈ {0, 1}k , and a vector
v = (v1, · · · , vN) ∈ F

N
p , the algorithm responds as

follows:

(1) If τ appears in L, the algorithm recovers the
associated (r, U) from L.

(2) Otherwise, it selects r ∈ F
∗
p randomly, sets U = gr

and stores (r, U) into L.

Then, the algorithm computes

Ti = H1(ID, Ppub, τ, U, i),

T ′
i = H2(ID, PKID, τ, i),

T = H3(ID, PKID),

W = (DID)

∑

i∈[N]
vi

⎛

⎝

∏

i∈[N]
T

vi

i

⎞

⎠

r ⎛

⎝

∏

i∈[N]
T ′

i
vi · T

∑

i∈[N]
vi

⎞

⎠

xID

and outputs the signature σ = (U, W).
– CL-Combine:Given an identity ID and corresponding

public key PKID = gxID , an identifier τ , and
{(ci, σi)}li=1 with ci ∈ Fp, where σi = (U, Wi), this
algorithm computes W = ∏

i∈[l]
W

ci

i and outputs (U, W).

– CL-Verify: Given an identity ID and corresponding
public key PKID = gxID , an identifier τ , a signature
σ = (U, W), and a vector v = (v1, · · · , vN) ∈ F

N
p ,

the algorithm accepts the signature if the following
equation holds:

e(W, g) = e(Q

∑

i∈[N]
vi

ID , Ppub) · e
⎛

⎝

∏

i∈[N]
T

vi

i , U) · e(
∏

i∈[N]
T ′

i
vi · T

∑

i∈[N]
vi

, PKID

⎞

⎠

Correctness Given an identity ID and public key PKID ,
an identifier τ , a vector v = (v1, · · · , vN) ∈ F

N
p , and

a signature σ , if σ ←CL-HSign (ID, SKID, τ, v), the
correctness of the scheme can be obtained by the following
equation:

e(W, g) = e(D

∑

i∈[N]
vi

ID , g) · e

⎛

⎝

⎛

⎝

∏

i∈[N]
T

vi

i

⎞

⎠

r

, g

⎞

⎠ · e

⎛

⎝

⎛

⎝

∏

i∈[N]
T ′

i
vi · T

∑

i∈[N]
vi

⎞

⎠

xID

, g

⎞

⎠

= e(Q

∑

i∈[N]
vi

ID , Ppub) · e

⎛

⎝

∏

i∈[N]
T

vi

i , U

⎞

⎠ · e

⎛

⎝

∏

i∈[N]
T ′

i
vi · T

∑

i∈[N]
vi

, PKID

⎞

⎠

Thus, the verification algorithm on the original signature
σ is correct.

Furthermore, given an identity ID and public key PKID ,
an identifier τ and a set of triples {(ci, σi, vi)}li=1, where
σi = (U, Wi) and vi = (vi1, · · · , viN), if σi ← CL-
HSign(ID, SKID, τ, vi), we need to prove that σ =
(U, W = ∏

i∈[l]
W

ci

i) is a signature on y = (y1, · · · , yN) =
∑

i∈[l]
civi . By the correctness of each signature, we have

e(Wi , g) = e

(

Q

∑

j∈[N]
vij

ID , Ppub

)

·e
⎛

⎝

∏

j∈[N]
T

vij

j , U

⎞

⎠·e
⎛

⎝

∏

j∈[N]
T ′

j
vij · T

∑

j∈[N]
vij

, PKID

⎞

⎠

Thus, by the bilinear property, we have

e(W, g) =
∏

i∈[l]
e(Wi , g)ci

= e

(

Q

∑

i∈[l]
∑

j∈[N]
ci vij

ID , Ppub

)

· e

⎛

⎝

∏

j∈[N]
T

∑

i∈[l]
ci vij

j , U

⎞

⎠

·e
⎛

⎝

∏

j∈[N]
T ′

j

∑

i∈[l]
ci vij · T

∑

i∈[l]
∑

j∈[N]
ci vij

, PKID

⎞

⎠

= e(QID, Ppub)

∑

j∈[N]
yj · e

⎛

⎝

∏

j∈[N]
T

yj

j , U

⎞

⎠ · e

⎛

⎝

∏

j∈[N]
T ′

j
yj · T

∑

j∈[N]
yj

, PKID

⎞

⎠ .

Therefore, the verification algorithm on a combined
signature σ is correct.

5 Security analysis

In this subsection, we analyze the security of the proposed
scheme.

858 Peer-to-Peer Netw. Appl. (2021) 14:852–872

Theorem 1 Our certificateless linearly homomorphic
signature scheme is unforgeable in the random oracle model
assuming that the CDH problem in G1 is infeasible.

This Theorem 1 is derived from the following two
lemmas, with Definition 3.

Lemma 1 For any polynomial-time adversary AI , our
certificateless linearly homomorphic signature scheme is
unforgeable in the random oracle model assuming that the
CDH problem in G1 is infeasible.

Proof Idea: during the adversary’s query process, the
challenger assigns ga and gb in the random challenge
of the CDH problem to some items, so the signature
contains the term gab. In order to ensure that the unknown
quantity gab does not affect the challenger’s response
to the signing queries, the challenger carefully sets the
hash values Ti(i ∈ [N]) and U value in the signing
queries, so that the item that bring in the special Ti and U

values can eliminate the one containing gab, while in the
output phase, e(gab, g) can be retained. If an adversary
outputs a valid forgery, the value gab can be solved from
the verification algorithm equation by using the non-
degeneracy of bilinear pairs. Moreover, it is proved that
the probability of aborting simulation is negligible and
the simulation process is complete.

Proof Assume that AI represents a third-party attack
against the unforgeability of our CL-LHS scheme. We
construct a simulator C that usesAI as a subroutine to solve
the CDH problem. According to the definition of Game 1,
adversary AI eventually outputs either a Type 1 forgery or
a Type 2 forgery. C guesses the type of forgery that will
be output by AI based on the result of flipping a coin
randomly. Clearly, C guesses correctly with a probability of
1
2 .

Case 1 (Type 1 forgery:) In this case, C has guessed that
AI will output a Type 1 forgery. Given a random
challenge (G1,G2, e, p, g, ga, gb) of the CDH problem,
the goal of C is to compute the value of gab. C interacts
with AI as follows:

• Setup: C runs Setup and sets Ppub = ga and params=
(G1,G2, e, p, g, Ppub = ga). It invokes AI on the
input params.

• Queries: AI can issue queries to the following oracles
simulated by C.

– H Queries : Suppose that AI makes at
most qH H queries. A list is maintained by
C, referred to as LH . C randomly chooses
k ∈ {1, 2, · · · , qH } and guesses that the k-th

identity IDk of the queries initiated by AI is
the challenge identity. When AI sends an H

query on identity ID, C responds as follows:

(1) If this is the k-th query, e.g., ID = IDk , output
Q(ID) = H(ID) = gb and add < ID, gb, ⊥>

to LH .
(2) Otherwise, choose a random number wID ∈ F

∗
p,

output Q(ID) = H(ID) = gwID and add <

ID, H(ID), wID > to LH .

– Partial P rivate Key Extraction : C main-
tains a list Lpart that is initially empty. When
AI asks for the partial private key of iden-
tity ID, if ID = IDk , C aborts. Otherwise,
it recovers the tuple < ID, H(ID), wID >

from LH and returns the partial private key
DID = (ga)wID to AI . Then, it stores <

ID, DID > in the list Lpart .
– Public Key Queries : C maintains a list LPK

that is initially empty. Given an identity ID,
C randomly chooses xID ∈ F

∗
p as the secret

value. Then, C returns the public key PKID =
gxID to AI and saves < ID, PKID, xID > in
LPK .

– Private Key Extraction : C maintains a list
LSK that is initially empty. Given an identity
ID, C performs the following actions:

(1) If ID �= IDk , it recovers the tuple
< ID, H(ID), wID > from LH and
< ID, PKID, xID > from LPK . Then, C returns
the secret key SKID = ((ga)wID , xID) to AI and
adds < ID, SKID > to LSK .

(2) Otherwise, C aborts.

– Replace Public Key: Suppose AI sends a
query with the input (ID, PK ′

ID). If the list
LPK contains a tuple < ID, PKID, xID >, C
sets PKID = PK ′

ID and xID =⊥.
– H1 Queries: Suppose (ID, Ppub, τ, U, i) is

submitted to oracle H1(·). C first scans for
< (ID, Ppub, τ, U, i), Ti, ti > in the list LH1

to check whether Ti has already been defined.
If so, it returns the previously defined value.
Otherwise, C randomly chooses a number ti ∈
F

∗
p, returns Ti = gti toAI as the hash value of

H1(ID, Ppub, τ, U, i), and stores the value in
the list LH1 .

– H2 Queries : Suppose (ID, PKID, τ, i) is
submitted to oracle H2(·). C first scans for
< (ID, PKID, τ, i), T ′

i , t
′
i > in the list LH2

to check whether T ′
i has already been defined.

If so, it returns the previously defined value.
Otherwise, C randomly chooses a number

859Peer-to-Peer Netw. Appl. (2021) 14:852–872

t ′i ∈ F
∗
p, returns T ′

i = gt ′i to AI as the hash
value of H2(ID, PKID, τ, i), and stores the
value into the list LH2 .

– H3 Queries : C maintains a list LH3 con-
taining tuples < (ID, PKID), T , t >. Upon
receiving AI ’s query on (ID, PKID), if it
already exists in LH3 , C returns T . Other-
wise, C chooses at random a number t ∈ F

∗
p,

returns T = gt to AI as the hash value of
H3(ID, PKID), and stores the value into the
list LH3 .

– Signing Queries : Given an identity ID,
a vector space V ⊂ F

N
p is described by

augmented basis vectors v1, · · · , vm ∈ F
N
p ,

where vi = (vi1, · · · , vin, 0, · · · , 1
︸ ︷︷ ︸

i

, · · · , 0).

If ID is the challenge identity, i.e., ID = IDk , C
performs the following steps:

(1) Randomly choose an identifier τ ← {0, 1}k and
numbers r, ui ∈ F

∗
p(i ∈ [N]), and set U =

P r
pub = (ga)r .

(2) Define the hash values of H1(ID, Ppub, τ, U, i)

as Ti = (
gui

QID
)r

−1 ∈ G1. C aborts if
H1(ID, Ppub, τ, U, i) has already been queried
for some i ∈ [N].

(3) Recover T ′
i (i ∈ [N]) and T from LH2 and LH3 ,

respectively; if there are no such items, C makes
queries to oracles H2(·) and H3(·).

(4) Finally, C computes

Wi = (Ppub)

∑

j∈[N]
uj vij · (PKID)

∑

j∈[N]
t ′j vij +t

∑

j∈[N]
vij

Now σi = (U, Wi)(i ∈ [m]) are returned to AI ; σi

is a valid signature, since

e(QID, Ppub)

∑

j∈[N]
vij

1
· e

⎛

⎝

∏

j∈[N]
T

vij

j , U

⎞

⎠

2

· e

⎛

⎝

∏

j∈[N]
T ′

j
vij · T

∑

j∈[N]
vij

, PKID

⎞

⎠ (1)

= e(QID, Ppub)

∑

j∈[N]
vij

1
· e

⎛

⎝

∏

j∈[N]
(

guj

QID

)r
−1vij , P r

pub

⎞

⎠

2′

· e

(

g

∑

j∈[N]
t ′j vij+t

∑

j∈[N]
vij

, PKID

)

(2)

= e(QID, Ppub)

∑

j∈[N]
vij

1
· e(QID, Ppub)

− ∑

j∈[N]
vij

2′
(1)

· e(g

∑

j∈[N]
uj vij

, Ppub)
2′
(2)

·e
(

g

∑

j∈[N]
t ′j vij+ ∑

j∈[N]
tvij

, PKID

)

(3)

= e

(

(Ppub)

∑

j∈[N]
uj vij · (PKID)

∑

j∈[N]
t ′j vij+ ∑

j∈[N]
tvij

, g

)

(4)

= e(Wi , g) (5)

The derivation process of the core part of the above
series of equations is shown in note.1

1Since we embed the hard problem in the term 1 of Eq. 1, that is,
QID = gb, Ppub = ga . In order to successfully answer the signing
query, our idea is to eliminate item 1 by carefully setting the values of
Ti(i ∈ [N = n+m]) and U while ensuring that the values of Ti and U

Otherwise,2 C randomly chooses an identifier τ ←
{0, 1}k and a number r ∈ F

∗
p, sets U = gr , and

computes

Wi = (ga)
wID

∑

j∈[N]
vij ·U

∑

j∈[N]
tj vij · (PKID)

∑

j∈[N]
t ′j vij+ ∑

j∈[N]
tvij

Now, σi = (U, Wi)(i ∈ [m]) are returned to AI ; σi is a
valid signature, since

e(Wi , g)

= e(QID, Ppub)

∑

j∈[N]
vij · e

⎛

⎝

∏

j∈[N]
T

vij

j , U

⎞

⎠ · e

⎛

⎝

∏

j∈[N]
T ′

j
vij · T

∑

j∈[N]
vij

, PKID

⎞

⎠

= e(gwID , ga)

∑

j∈[N]
vij · e(U

∑

j∈[N]
tj vij

, g) · e

(

(PKID)

∑

j∈[N]
t ′j vij+t

∑

j∈[N]
vij

, g

)

= e

(

(ga)
wID

∑

j∈[N]
vij · U

∑

j∈[N]
tj vij · (PKID)

∑

j∈[N]
t ′j vij+ ∑

j∈[N]
tvij

, g

)

• Output: Eventually, AI outputs a tuple (ID∗, PKID∗ ,
v∗, τ ∗, σ ∗), where v∗ = (v∗

1 , · · · , v∗
N) and σ ∗ =

(U∗, W ∗). If ID∗ �= IDk , then C aborts. Otherwise,
for each i ∈ [N], it retrieves the items T ∗

i from LH1 ,
the items T ′∗

i from LH2 , and the item T ∗ from LH3 ;
if there are no such items, C makes queries to the
corresponding oracle. If AI successfully outputs Type
1 forgery signatures, the file identifier τ ∗ �= τi for all τi

that appear in signing queries, and note that T ∗
i = gt∗i ,3

T ′∗
i = gt ′∗i , T ∗ = gt∗ , then the following equation

holds:

e(W ∗, g)

= e(QID∗ , Ppub)

∑

i∈[N]
v∗
i · e

⎛

⎝

∏

i∈[N]
(T ∗

i)v
∗
i , U∗

⎞

⎠ · e

⎛

⎝

∏

i∈[N]
(T ′∗

i)v
∗
i · (T ∗)

∑

i∈[N]
v∗
i

, PKID∗

⎞

⎠

= e(QID∗ , Ppub)

∑

i∈[N]
v∗
i · e

(

(U∗)
∑

i∈[N]
t∗i v∗

i

, g) · e((PKID∗)

∑

i∈[N]
t ′∗i v∗

i +t∗
∑

i∈[N]
v∗
i

, g

)

.

are random (Ti = (
gui

QID
)r

−1
, U = P r

pub = (ga)r). The item 2′ in (2)
is further arranged to obtain items 2′

1 and 2
′
2 in (3). It is not difficult to

find that item 2′
1 can eliminate item 1, because item 2′

1 and item 1 are
inverses of each other in group G2.
2In this case, ID �= IDk , then QID = gwID , where wID is a known
random number, so the required values generated in the process of
various queries can be directly brought into the signature algorithm of
the proposed scheme to obtain the signature.
3Here, the expression of hash value T ∗

i is different from that of hash
value Ti in signing queries. This is because if an adversary outputs a
type 1 forgery, the identifier τ ∗ never appears in the signing query, so
the hash value T ∗

i corresponding to the identifier τ ∗ come from H1
queries.

860 Peer-to-Peer Netw. Appl. (2021) 14:852–872

Therefore, we have the following equation:

e

⎛

⎝

W ∗

(U∗)
∑

i∈[N]
t∗i v∗

i · (PKID∗)

∑

i∈[N]
t ′∗i v∗

i +t∗
∑

i∈[N]
v∗
i

, g

⎞

⎠

= e(QID∗ , Ppub)

∑

i∈[N]
v∗
i

= e(gb, ga)

∑

i∈[N]
v∗
i

= e(g, g)
ab· ∑

i∈[N]
v∗
i

Thus, by the nondegenerate property, the value of gab is
the following expression:

⎛

⎝

W ∗

(U∗)
∑

i∈[N]
t∗i v∗

i ·(PKID∗)

∑

i∈[N]
t ′∗i v∗

i + ∑

i∈[N]
t∗v∗

i

⎞

⎠

1
∑

i∈[N]
v∗
i

.

Now, we evaluate C’s probability of success.
We first analyze the probability of aborts in handling

a signing query. The probability of the event that C
responds to two distinct signature queries by choosing

the same identifier τ is at most q2s
2k , while the probability

of the event that AI has already requested the value of
H1(ID, Ppub, τ, U, i) for some i is at most

qH1 ·qs

2k .
Then, we can readily check that the probability of not

aborting in key extraction queries and in the output stage is
(1 − 1

qH
)qpart and 1

qH
, respectively, where qs, qH , qpart are

the numbers of signing queries, H hash queries and partial
private key extractions performed by AI .

Therefore, if AI has an advantage AdvCL−LHS
AI

(k) in
forging a signature in Game 1, then C solves the CDH
problem with probability
(

1

2
AdvCL−LHS

AI
(k) − q2

s + qH1 · qs

2k

)

·
(

1 − 1

qH

)qpart

· 1

qH

.

Case 2 (type 2 forgery:) In this case, C has guessed that
AI will output a type 2 forgery. Given a CDH instance,
(G1,G2, e, p, g, ga, gb), the goal of C is to compute the
value of gab by usingAI as a subroutine. C interacts with
AI as follows:

• Setup: C chooses a random number s ∈ F
∗
p as

the master key and sets Ppub = gs and params=
(G1,G2, e, p, g, Ppub = gs). It invokes AI on input
params.

• Queries: C simulates the oracle queries of AI as
follows:

– H Queries : C maintains a list LH that
is initially empty. Given an identity ID,
C chooses a random number wID ∈ F

∗
p,

computes QID = gwID as the value of
H(ID), returns it to AI , and adds <

ID, H(ID), wID > to LH .

– H1(H2, H3) Queries : Same as in Case 1.
– Partial P rivate Key Extraction : Given

an identity ID, C retrieves the tuple <

ID, H(ID), wID > from LH and returns the
partial private key DID = H(ID)s to AI .
Then, it stores < ID, DID > in a list Lpart

which is initially empty.
– Private Key Extraction : C maintains a

list LSK of tuples < ID, SKID >. Given
an identity ID, C recovers the tuple <

ID, DID > from Lpart and chooses a random
number xID ∈ F

∗
p as the secret value. Then, it

returns the secret key SKID = (DID, xID) to
AI and adds < ID, SKID > to LSK .

– Public Key Queries : C maintains a list LPK

of tuples < ID, PKID >. Given an identity
ID, C recovers the tuple < ID, SKID > from
LSK , returns the public key PKID = gxID to
AI and saves < ID, PKID > in LPK .

– Replace Public Key: Suppose AI sends a
query with the input (ID, PK ′

ID). If the list
LPK contains the tuple < ID, PKID >, C
sets PKID = PK ′

ID .
– Signing Queries: Given an identity ID and a

vector space V ⊂ F
N
p described by augmented

basis vectors v1, · · · , vm ∈ F
N
p , where vi =

(vi1, · · · , vin,

0, · · · , 1
︸ ︷︷ ︸

i

, · · · , 0), C preforms the following

steps:

(1) Randomly choose an identifier τ ← {0, 1}k and
numbers r, α1, · · · , αn ∈ F

∗
p, and set U = (gb)r .

(2) Set n = N − m, and for each i ∈ [n], compute

Ti = H1(ID, Ppub, τ, U, i) = (ga)αi

for each i ∈ [m], compute

βi = −
∑

j∈[n]
αjvij ,

Tn+i = H1(ID, Ppub, τ, U, n + i) = (ga)βi ,

and set α = (α1, · · · , αn, β1, · · · , βm). Now
observe that we constructed α so that α ∈ V ⊥ (i.e.,
α · v = 0, for all v ∈ V = Span{v1, · · · , vm}).4

4In detail, α · vi = (α1, · · · , αn, β1, · · · , βm) ·
(vi1, · · · , vin, 0, · · · , 1

︸ ︷︷ ︸

i

, · · · , 0) = α1vi1 + · · · + αnvin +

βi = α1vi1 + · · · + αnvin +
(

−
n
∑

j=1
αj vij

)

= 0. In

particular, since we set (T1, · · · , Tn, Tn+1, · · · , Tn+m) =
((ga)α1 , (ga)αn , (ga)β1 , · · · , (ga)βm), we have

∏

j∈[N]
T

vij

j =
∏

j∈[n]
(ga)αj vij · ∏

j∈[m]
(ga)βj vi,(n+j) = (ga)α·vi = 1

861Peer-to-Peer Netw. Appl. (2021) 14:852–872

C aborts if H1(ID, Ppub, τ, U, i) has already been
queried for some i ∈ [N].

(3) Recover T ′
i , T and SKID fromLH2 ,LH3 andLSK ,

respectively; if there are no such items, C makes
queries on the corresponding oracle.

(4) Finally, compute

Wi = (DID)

∑

j∈[N]
vij · (PKID)

∑

j∈[N]
t ′j vij +t

∑

j∈[N]
vij

Now, σi = (U, Wi)(i ∈ [m]) are returned to AI ; we
show that σi is a valid signature, since

The core part of the derivation process of the above
series of equations is is shown in note.5 The first
equation above comes from U = (gb)r and the
definition of the signature of the proposed scheme, the
second equation comes from the introduction of specific
expressions of Tj , T

′
j and T . After rearrangement, the

third equation is obtained. The last equation holds since
we constructed α such that α · v = 0 for all v ∈ V .
Hence, the signatures output by C in step (4) are valid
signatures.

• Output: Eventually, AI outputs ID∗, PKID∗ , an
identifier τ ∗, a nonzero vector y = (y1, · · · , yN) and
signatures σ ∗

i = (U∗, W ∗
i), i ∈ [m].

If AI successfully outputs Type 2 forgery sig-
natures, then τ ∗ has been used to respond to a
vector subspace V in a signature query, but y /∈
V , so it is known that U∗ = (gb)r , T ∗

i =

5 Since we embed the hard problem in the term of Eq. 6. In order
to successfully answer the signing query, our idea is to carefully set
the value of Ti(i ∈ [N = n + m]) such that (

∏

j∈[N]
T

vij

j)br = 1,

while ensuring that the values of Ti are random. As we know from the
previous, the vector α formed by the exponents of Ti(i ∈ [N = n+m])
satisfies α ∈ V ⊥, so term in Eq. 6 is equal to 1, that
is, (gab)(α·vi)r = 1.

H1(ID∗, Ppub, τ
∗, U∗, i) = (ga)αi (i ∈ [n]), T ∗

n+i =
H1(ID∗, Ppub, τ

∗, U∗, n + i) = (ga)βi(i ∈ [m]), and
Verify (ID∗, PKID∗ , τ ∗, y, σ ∗) = 1. C recovers T ′∗

i

from the list LH2 , T
∗ from the list LH3 and DID∗ from

the list Lpart , note that T ′∗
i = gt ′∗i , T ∗ = gt∗ ; then, the

following equation holds:

e

⎛

⎝

∏

i∈[m]
(W ∗

i)
yn+i , g

⎞

⎠

= e

(

Q

∑

i∈[N]
yi

ID∗ , Ppub

)

· e

⎛

⎝

∏

i∈[N]
(T ∗

i)
yi , U∗

⎞

⎠ · e

⎛

⎝

∏

i∈[N]
(T ′∗

i)
yi · (T ∗)

∑

i∈[N]
yi

, PKID∗

⎞

⎠

= e

(

(DID∗)

∑

i∈[N]
yi

, g

)

· e
(

(gab)(α·y)r , g
)

· e

(

(PKID∗)

∑

i∈[N]
t ′∗i yi +t∗

∑

i∈[N]
yi

, g

)

The first equation above comes from the verification
algorithm of the proposed scheme, and the second
equation comes from the concrete expression brought
into T ∗

i , T ′∗
i , T ∗ and U∗.

Therefore, by the nondegenerate property, we have

∏

i∈[m]
(W ∗

i)
yn+i = (DID∗)

∑

i∈[N]
yi ·(gab)(α·y)r ·(PKID∗)

∑

i∈[N]
t ′∗i yi+t∗

∑

i∈[N]
yi

If α · y �= 0, then C can compute the value of gab as
follows:

⎛

⎜

⎝

∏

i∈[m]
(W ∗

i)yn+i

(DID∗)

∑

i∈[N]
yi · (PKID∗)

∑

i∈[N]
t ′∗i yi+ ∑

i∈[N]
t∗yi

⎞

⎟

⎠

1
(α·y)r

Now, we evaluate C’s probability of success.
As in the case of AI forging a Type 1 signature, the

probability of C aborting the signing query is at most
q2s +qH1 ·qs

2k .
Since AI outputs a Type 2 forgery, y /∈ V . Note that

αi(i ∈ [n]) are independently and uniformly selected in F∗
p;

then, α = (α1, · · · , αn, β1, · · · , βm) is uniformly random
in V ⊥. Therefore, for any y /∈ V , α ·y is uniform in F∗

p, and

we find that α · y = 0 with probability 1
p
.

Therefore, if AI has an advantage AdvCL−LHS
AI

(k) in
forging a signature in Game 1, then C can solve the CDH
problem with probability
(

1

2
AdvCL−LHS

AI
(k) − q2

s + qH1 · qs

2k

)

·
(

1 − 1

p

)

.

Lemma 2 For any polynomial-time adversary AII , our
certificateless linearly homomorphic signature scheme is
unforgeable in the random oracle model assuming that the
CDH problem in G1 is infeasible.

862 Peer-to-Peer Netw. Appl. (2021) 14:852–872

The proof of Lemma 2 is similar with that of Lemma 1.
The difference between the proof of Lemmas 2 and 1 is that
the positions of embedding hard problem are different. We
omit the proof here for simplicity and show the proof of
Lemma 2 in Appendix.

6 Application in IoT environments
and performance comparison

6.1 Systemmodel of authentication computing
using CL-LHS in an IoT environment

In the IoT environment, homomorphic signatures can be
used not only to protect applications based on network
coding but also to perform the authentication calculation
of the linear function of signed data. Although the IoT
provides great convenience for production and life, the
storage and calculation of massive data is still a major
challenge due to limited computing power and storage
resources. In recent years, cloud computing technology
has developed rapidly, and some common cloud service
products have been released and received wide attention.
Because of its convenience and rapidity, an increasing
number of users choose to upload their data to the
cloud server and compute their own data. Of course, the
correctness of server computing is a major issue. As the
most natural application of homomorphic signatures, server
computing can ensure that “correct data” is “correctly
operated on” and that “correct results” are obtained in

the system assuming that there are some untrusted parties
(such as cloud data processors). Suppose the user wants to
perform a large computation, but she does not have such
a powerful resource. Then, she can use her secret key to
sign a large data set and then distribute the signed data to
an untrusted cloud server to calculate the data. The cloud
server then derives the signature on the calculated results
homomorphically. This signature can prove that the data
processor outputs the correct calculation result. As shown in
Fig. 4, the system model of authentication computing using
certificateless linearly homomorphic signatures in the IoT
environment consists of three components: a key generation
center (KGC), data cloud server and IoT device.

– KGC: The KGC is responsible for generating system
parameters and calculating partial private keys for each
IoT device. Then, these partial private keys are sent
to each entity through a secure channel, and system
parameters are sent to all entities through a public
channel.

– IoT device: The KGC generates a unique partial private
key for each registered IoT device equipped with
sensors. To ensure the integrity and authenticity of the
data, each IoT device uses the system parameters and
private key to sign the collected original data separately.
Then, the IoT device sends the message, corresponding
signature and public key to the cloud server.

– Cloud server: The cloud server has powerful comput-
ing power and storage space to verify the validity of
all received signatures. If they are valid, homomorphic

Fig. 4 System model of authentication computing using CL-LHS in an IoT environment

863Peer-to-Peer Netw. Appl. (2021) 14:852–872

Table 2 A comparison of performance and security

Scheme SkSize SigSize Verify Type I,II CL-PKC ID-PKC Model Hardness

Scheme [24] |G1|+|p| |G1| 2E – No Yes ROM co-CDH

Scheme [26]1 2|G1| 3|G1|+|p| 5E – No Yes ROM CDH

Scheme [26]2 2|G1| 3|G1|+|G2|+|p| 5E – No Yes ROM CDH

Scheme [23] |G1|+|p| |G1| 3E – No No ROM CDH

Scheme [19]1 2|p| 2|G1|+|p| 4E – No No ROM CDH

Scheme [27]1 2|G1| 3|G1|+|p| 5E – No Yes ROM CDH

Scheme [27]2 2|G1| 3|G1|+|G2|+|p| 5E – No Yes ROM CDH

Our scheme |G1|+|p| 2|G1| 4E Yes Yes No ROM CDH

signatures are used for various calculations on the data,
which can be completed through minimal interaction
and communication, including the calculation results
and corresponding short signatures sent from the server
to the IoT devices.

6.2 Performance analysis

In this subsection, we mainly carry out the performance
analysis. Table 2 compares the performance of our CL-
LHS scheme with related schemes in the literature, e.g.,
[19, 23, 24, 26, 27] under random oracles in terms of
private key size, signature length, verification cost, and
security. Since references [26, 27] both used identity-based
signature as module to design identity-based linearly homo-
morphic signature schemes. Therefore, in the efficiency
analysis, we instantiate the module with the identity-
based signature schemes proposed by reference [49, 50].
For convenience, the resulting schemes are denoted as
schemes [26]1, [27]1 and schemes [26]2, [27]2, respec-
tively. In addition, literature [19] used a general signature
scheme as a module to design a linearly homomorphic
signature scheme, so we use the BLS short signature to
instantiate the module, and record the obtained scheme
as [19]1. The SkSize and SigSize columns show the size
of the private key and signature, respectively. The verify

column presents the computational costs of the algo-
rithms Verify. Column Type I, II lists whether the scheme
can resist public key replacement attacks and malicious-
but-passive KGC attacks. The CL-PKC (ID-PKC)
columns denote whether a scheme is based on a certifi-
cateless cryptosystem (identity-based cryptosystem). The
Hardness columns denote the hardness assumption on
which the security of the scheme depends. Let |p|, |G1| and
|G2| represent the lengths of elements in Fp, G1 and G2,
respectively.

Note that the length of the private key affects the storage
capacity of IoT devices, and the signature length affects
the storage capacity and the communication capability of
the IoT device. In addition, the computational cost of the
algorithm Verify affects the computing power of both IoT
devices and cloud servers. According to Table 2, the size
of the private key of our scheme is shorter than that of
the instantiated schemes [26]1, [26]2, [27]1, [27]2, and
is the same as those of the schemes in [23] and [24].
The size of the signature of our scheme is shorter than
those of the instantiated schemes of [19, 26, 27] and
slightly larger than those of the schemes in [23, 24]. The
verification algorithm of our scheme needs four bilinear
pairs, which is roughly the same as is needed for the
schemes in [23] and the instantiated schemes of [19, 26, 27].
However, our scheme addresses the issues of certificate

Fig. 5 A comparison of the
private key size

864 Peer-to-Peer Netw. Appl. (2021) 14:852–872

management and key escrow and thus provides higher
security.

In order to provide numerical results, we implement
the proposed CL-LHS scheme and four related schemes,
namely [19]1, [23] and [26]1, [27]1, where [19]1 and
[23] are certificate-based schemes, while [26, 27] are
certificateless schemes. Our implementation was run on a
laptop with a 3.10-GHz Intel i5 CPU, 64 GB memory, and
the Ubuntu Linux operating system. We chose the Type A
curve in the PBC library [51]. The pairing operation is based
on the curve y2 = x3 + x over the field Fp. The security
levels are chosen to be |p| = 512 bits.

Because IoT devices must secretly store their private
keys, a small-sized private key is applicable in IoT devices
with limited storage capacity. According to Fig. 5, the size
of the private key in our CL-LHS scheme is 148 bits, which
is the same as that in [23] and [24], and is 57.8% of that in
[26]1 and [27]1 .

Due to the limited battery power and communication
bandwidth of IoT devices, signature size is the key factor
affecting communication costs, so one of the tasks of our
CL-LHS scheme is to reduce the communication overhead
of devices in the IoT. As shown in Fig. 6, the signature size
of our CL-LHS scheme is 256 bits, compared with [19]1,
[26]1 and [27]1, the signature size of our proposed scheme
is reduced by 33.35%, 36.63% and 51.87%, respectively.
Although the signature size of our CL-LHS scheme is larger
than that of the schemes in [24] and [23], the literature [24]
lacks the security proof for the identity-based homomorphic
signature scheme proposed, and [23] is faced with a thorny
certificate management issue. Hence, the proposed CL-LHS
scheme has a lower communication overhead.

We compare the private key extraction cost of our
scheme with the only three ID-LHS schemes based on
bilinear pairing. As shown in Fig. 7, our extraction
algorithm is faster than that of schemes [26]1 and [27]1
and slower than that of [24], but the scheme [24] lacks
security proof. Figures 8 and 9 show the running time
of signature generation and verification algorithms of the
schemes. The x-axis is the dimension of the vector to
be signed, and the y-axis is the time required by the
corresponding algorithm. Overall, our CL-LHS scheme is
less computationally efficient than but still comparable with
the four related schemes, but it eliminates the problems of
certificate management and key escrow, provides stronger
security guarantees and better protects the privacy of users.

7 Conclusions

We constructed the first CL-LHS for network coding, which
not only supports the authentication calculation of the linear
function of the signed data to effectively mitigate pollution

attacks in network coding but also solves the problems of
certificate management and key escrow. To summarize, the
scheme combines the properties of LHS and a certificateless
signature. We proved that the scheme is secure against an
adaptively chosen dataset attack under the random oracle
model, even in the presence of type 1 and type 2 adversaries.
Furthermore, compared to related schemes, our CL-LHS
scheme has a smaller key size and a shorter signature length,
and has comparable computation cost.

This work presents some interesting possibilities for
future study. Since our scheme is unforgeable against
adaptively chosen dataset attacks, it would be interesting
to construct a CL-LHS scheme that is secure in a stronger
security model that allows fully adaptive queries at the
message level. As the CL-LHS scheme provides the
credentials of the results calculated by a given function on
a dataset, which are calculated by untrusted parties (e.g.,
the cloud), CL-LHS is very suitable for application in the
cloud computing environment, such as in a smart grid, an e-
voting system, or electronic health records. Proposing such
applications is also the goal of our future work.

Acknowledgements The authors thank for the help of reviewers and
editors. This work was supported by the Characteristic innovation
project of general colleges and universities in Guangdong Province,
Department of education of Guangdong Province (2020KTSCX126).

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

Appendix: Proof of Lemma 2

Proof Assume that AII represents a malicious key
generation center against the unforgeability of our CL-LHS
scheme. We construct a simulator C that uses AII as a
subroutine to solve the CDH problem. According to the
definition of Game 2, adversary AII eventually outputs
either a Type 1 forgery or a Type 2 forgery. C guesses the
type of forgery to be output by AII based on the result of
flipping a coin randomly. Clearly, C guesses correctly with
a probability of 1

2 .

Case 1 (Type 1 forgery:) In this case, C has guessed that
AII will output a Type 1 forgery. Given a random
instance (G1,G2, e, p, g, ga, gb) of the CDH problem, C
interacts with AII as follows:

• Setup: C runs the setup, randomly chooses s ∈ F
∗
p as

the master key, and then initializesAII with the master
key s and params= (G1,G2, e, p, g, Ppub = gs).

• Queries: AII can issue queries to the following
oracles, and C responds to AII as follows:

865Peer-to-Peer Netw. Appl. (2021) 14:852–872

Fig. 6 A comparison of the
communication cost

– H Queries : C maintains a list referred
to as LH . Suppose that AII makes at
most qH queries. C randomly chooses k ∈
{1, 2, · · · , qH } and guesses that the k-th iden-
tity IDk submitted by AII is the challenge
identity. When AII makes an H query on
identity ID, C picks a random number wID ∈
F

∗
p, outputs Q(ID) = H(ID) = gwID , and

adds < ID, H(ID), wID > to LH .
– Public Key Queries : C maintains a list LPK

that is initially empty. When an identity ID is
submitted for this query, C responds as follows:

(1) If ID = IDk , C outputs the public key PKID =
ga and adds < IDk, g

a, ⊥> to LPK .
(2) Otherwise, C randomly chooses xID ∈ F

∗
p

as the secret value. Then, C returns the public
key PKID = gxID to AI and saves <

ID, PKID, xID > in LPK .

– Private Key Extraction : C maintains a list
LSK that is initially empty. Given an identity
ID, C performs the following actions:

(1) If ID �= IDk , it recovers the tuple
< ID, H(ID), wID > from LH and
< ID, PKID, xID > from LPK . Then, C returns
the secret key SKID = ((gwID)s, xID) to AII
and adds < ID, SKID > to LSK .

(2) Otherwise, C aborts.

– H1 Queries: Suppose (ID, Ppub, τ, U, i) is
submitted to oracle H1(·). C first scans <

(ID, Ppub, τ, U, i), Ti, ti > from the list
LH1 to check whether Ti has already been
defined. If so, C returns it. Otherwise, C
randomly chooses a number ti ∈ F

∗
p, returns

Ti = gti to AII as the hash value of

Fig. 7 A comparison of the
Extract cost

866 Peer-to-Peer Netw. Appl. (2021) 14:852–872

Fig. 8 A comparison of the
signature generation cost

H1(ID, Ppub, τ, U, i), and stores the value in
the list LH1 .

– H2 Queries : Suppose (ID, PKID, τ, i) is
submitted to oracle H2(·). C first scans <

(ID, PKID, τ, i), T ′
i , t

′
i > from the list LH2

to check whether T ′
i has already been defined.

If so, C returns it. Otherwise, C chooses a
random number t ′i ∈ F

∗
p, returns T ′

i = gt ′i to
AII as the hash value ofH2(ID, PKID, τ, i),
and stores the value in the list LH2 .

– H3 Queries : C maintains a list LH3

containing tuples < (ID, PKID), T , t >.
Upon receiving AII ’s query on (ID, PKID),
if it already exists in LH3 , C returns
T . Otherwise, C chooses a random num-
ber t ∈ F

∗
p, returns T = (gb)t to

AII as the hash value of H3(ID, PKID),
and saves the value in the list LH3 .

– Signing Queries: Given an identity ID and a

vector space V ⊂ F
N
p described by augmented

basis vectors v1, · · · , vm ∈ F
N
p , where vi =

(vi1, · · · ,

vin, 0, · · · , 1
︸ ︷︷ ︸

i

, · · · , 0), if ID is the challenge

identity (e.g., ID = IDk), C preforms the
following steps:

(1) Randomly choose an identifier τ ← {0, 1}k and
numbers r, ui ∈ F

∗
p(i ∈ [N]), and set U =

PKID
r .

(2) Define the hash values of H1(ID, Ppub, τ, U, i)

as Ti = (
gui

T
)r

−1 ∈ G1, where
T = H3(ID, PKID) = (gb)t . Abort if
H1(ID, Ppub, τ, U, i) has already been queried
for some i ∈ [N].

(3) Recover T ′
i (i ∈ [N]) and QID from LH2 and LH ,

respectively. If there are no such items, C makes
queries on oracles H2(·) and H(·).

Fig. 9 A comparison of the
signature verification cost

867Peer-to-Peer Netw. Appl. (2021) 14:852–872

(4) Finally, compute

Wi = (QID)
s

∑

j∈[N]
vij · (PKID)

∑

j∈[N]
uj vij+ ∑

j∈[N]
t ′j vij

Now, σi = (U, Wi)(i ∈ [m]) are returned to AII .
Each σi is a valid signature, since

e(QID, Ppub)

∑

j∈[N]
vij

1
· e

⎛

⎝

∏

j∈[N]
T

vij

j , U

⎞

⎠

2

· e

⎛

⎝

∏

j∈[N]
T ′

j
vij · T

∑

j∈[N]
vij

, PKID

⎞

⎠ (6)

= e(QID, Ppub)

∑

j∈[N]
vij

1
· e

⎛

⎝

∏

j∈[N]
(

guj

QID

)r
−1vij , P r

pub

⎞

⎠

2′

· e

(

g

∑

j∈[N]
t ′j vij+t

∑

j∈[N]
vij

, PKID

)

= e(QID, Ppub)

∑

j∈[N]
vij

1
· e(QID, Ppub)

− ∑

j∈[N]
vij

2′
(1)

· e

(

g

∑

j∈[N]
uj vij

, Ppub

)

2′
(2)

(7)

·e
(

g

∑

j∈[N]
t ′j vij+ ∑

j∈[N]
tvij

, PKID

)

(8)

= e

(

(Ppub)

∑

j∈[N]
uj vij · (PKID)

∑

j∈[N]
t ′j vij+ ∑

j∈[N]
tvij

, g

)

(9)

= e(Wi , g) (10)

The derivation process of the core part of the above
series of equations is shown as follows.6

Otherwise,7 C randomly chooses an identifier τ ←
{0, 1}k and a number r ∈ F

∗
p, sets U = gr , and

computes

Wi = (QID)
s

∑

j∈[N]
vij ·U

∑

j∈[N]
tj vij ·(PKID)

∑

j∈[N]
t ′j vij ·(gb)

txID

∑

j∈[N]
tvij

The verification of the validity of the above signature
is straightforward and is omitted here.

• Output: Eventually,AII outputs a tuple (ID∗, PKID∗
, y, τ ∗, σ ∗), where v = (v∗

1 , · · · , v∗
N), σ ∗ = (U∗, W ∗).

If ID∗ �= IDk , then C aborts. Otherwise, for each
i ∈ [N], it retrieves the items T ∗

i from LH1 , the items
T ′∗

i from LH2 , and the item T ∗ from LH3 . Note that

T ∗
i = gt∗i , T ′∗

i = gt ′∗i , T ∗ = (gb)t
∗
. If AI successfully

outputs Type 1 forgery signatures, the file identifier
τ ∗ �= τi for all τi appears in signing queries, and the
following equation holds:

e
(

W ∗, g
) = e(QID∗ , Ppub)

∑

i∈[N]
v∗
i · e(

∏

i∈[N]
(T ∗

i)v
∗
i , U∗) · e(

∏

i∈[N]
(T ′∗

i)v
∗
i · T

∑

i∈[N]
v∗
i

, PKID∗)

= e((QID∗)
s

∑

i∈[N]
v∗
i · (U∗)

∑

i∈[N]
t∗i v∗

i · (PKID∗)

∑

i∈[N]
t ′∗i v∗

i · (gab)
t∗

∑

i∈[N]
v∗
i

, g)

6Since we embed the hard problem in the term 1 of Eq. 6, that is,
T = (gb)t , PKID = ga . In order to successfully answer the signing
queries, our idea is to eliminate item 1 by carefully setting the values
of Tj (j ∈ [N = n + m]) and U while ensuring that the values of Tj

and U are random (Tj = (
gui

T
)r

−1
, U = PKr

ID = (ga)r). The item
2′ in (11) is further arranged to obtain items 2′

1 and 2
′
2 in (12). It is not

difficult to find that item 2′
2 can eliminate item 1, because item 2′

2 and
item 1 are inverses of each other in group G2.
7In this case, ID �= IDk , then PKID = gxID , where xID is a known
random number, so the required values generated in the process of
various queries can be directly brought into the signature algorithm of
the proposed scheme to obtain the signature.

Therefore, by the nondegenerate property, we have
the solution of the CDH problem as follows:
⎛

⎝

W ∗

(QID∗)
s

∑

i∈[N]
v∗
i · (U∗)

∑

i∈[N]
t∗i v∗

i · (PKID∗)

∑

i∈[N]
t ′∗i v∗

i

⎞

⎠

1
t∗ ∑

i∈[N]
v∗
i

.

Now, we evaluate C’s probability of success.
We first analyze the probability of aborting in performing

a signing query. The probability of the event that C
responds to two distinct signature queries by choosing the

same identifier τ is at most q2s
2k , while the probability of

the event that AII has already requested the value of
H1(ID, Ppub, τ, U, i) for some i is at most

qH1 ·qs

2k .
It is not hard to see that the probability of not aborting

in key extraction queries is (1 − 1
qH

)qsk , and the probability

of not aborting in the output stage is 1
qH

, where qs, qH , qsk

are the number of signing queries, H is the number of hash
queries and private key extraction is performed by AII .

Thus, if AII has an advantage AdvCL−LHS
AII

(k) in
forging a signature in Game 2, then C can solve the CDH
problem with probability
(

1

2
AdvCL−LHS

AII
(k) − q2

s + qH1 · qs

2k

)

·
(

1 − 1

qH

)qsk

· 1

qH

Case 2 (Type 2 forgery:) In this case, C has guessed that
AII will output a Type 2 forgery. Given a CDH instance
(G1,G2, e, p, g, ga, gb), the goal of C is to compute the
value of gab by using AII as a subroutine. C interacts
with AII as follows:

• Setup: C chooses a random number s ∈ F
∗
p as

the master key and sets Ppub = gs and params=
(G1,G2, e, p, g, Ppub = gs). It invokes AII on the
input params and master key s.

• Queries: C simulates the oracle queries of AII as
follows:

– H Queries : C maintains a list LH that is
initially empty. Suppose that AII makes at
most qH queries. C randomly chooses k ∈
{1, 2, · · · , qH } and guesses that the k-th iden-
tity IDk submitted by AII is the challenge
identity. When AII makes an H query on
identity ID, C picks a random number wID ∈
F

∗
p, outputs Q(ID) = H(ID) = gwID , and

adds < ID, H(ID), wID > to LH .
– Public Key Queries : C maintains a list

referred to as LPK . Given an identity ID, C
responds as follows:

(1) If ID = IDk , C outputs the public key PKID =
ga and adds < IDk, g

a, ⊥> to LPK .
(2) Otherwise, C randomly chooses xID ∈ F

∗
p

as the secret value. Then, C returns the public

868 Peer-to-Peer Netw. Appl. (2021) 14:852–872

key PKID = gxID to AII and saves <

ID, PKID, xID > in LPK .

– Private Key Extraction : C maintains a list
LSK containing tuples < ID, SKID >. Given
an identity ID, C performs the following
actions:

(1) If ID �= IDk , it recovers the tuple
< ID, H(ID), wID > from LH and
< ID, PKID, xID > from LPK . Then, C returns
the secret key SKID = ((gwID)s, xID) to AII
and adds < ID, SKID > to LSK .

(2) Otherwise, C aborts.

– H1 Queries: Suppose (ID, Ppub, τ, U, i) is
submitted to oracle H1(·). C first scans for <

(ID, Ppub, τ, U, i), Ti, ti > in the list LH1 to
check whether Ti has already been defined. If
so, C returns it. Otherwise, C chooses a random
number ti ∈ F

∗
p, returns Ti = gti to AI as

the hash value of H1(ID, Ppub, τ, U, i), and
stores the value in the list LH1 .

– H2 Queries : Suppose (ID, PKID, τ, i) is
submitted to oracle H2(·). C first scans for
< (ID, PKID, τ, i), T ′

i , t
′
i > in the list LH2

to check whether T ′
i has already been defined.

If so, C returns it. Otherwise, C selects t ′i ∈ F
∗
p

at random, returns T ′
i = gt ′i to AI as the hash

value of H2(ID, PKID, τ, i), and stores the
value in the list LH2 .

– H3 Queries : C maintains a list LH3 con-
taining tuples < (ID, PKID), T , t >. Tak-
ing (ID, PKID) as input, if it already exists
in LH3 , C returns T . Otherwise, C randomly
chooses t ∈ F

∗
p, returns H3(ID, PKID) = gt

to AI , and saves < (ID, PKID), T , t > in
LH3 .

– Signing Queries: Given an identity ID

and a vector space V ⊂ F
N
p described by

augmented basis vectors v1, · · · , vm ∈ F
N
p ,

where vi = (vi1, · · · , vin, 0, · · · , 1
︸ ︷︷ ︸

i

, · · · , 0), C

preforms the following steps:

(1) Randomly choose an identifier τ ← {0, 1}k and
numbers r, α1, · · · , αn ∈ F

∗
p, and set U = gr .

(2) Set n = N − m, and for each i ∈ [n], compute

T ′
i = H2(ID, PKID, τ, i) = (gb)αi

For each i ∈ [m], compute

βi = −
∑

j∈[n]
αjvij

T ′
n+i = H2(ID, PKID, τ, n + i) = (gb)βi

and set α = (α1, · · · , αn, β1, · · · , βm). Now
observe that we constructed α so that α ∈ V ⊥ (i.e.,
α · v = 0, for all v ∈ V = Span{v1, · · · , vm}).8
C aborts if H2(ID, PKID, τ, i) has already been
queried for some i ∈ [N].

(3) Recover Ti , T and SKID fromLH1 ,LH3 andLSK ,
respectively. If there are no such items, C makes
queries on the corresponding oracle.

(4) Compute

Wi = (QID)
s

∑

j∈[N]
vij · U

∑

j∈[N]
tj vij · (PKID)

t
∑

j∈[N]
vij

(5) Return τ and σ = (σ1, · · · , σm); here, σi =
(U, Wi).

Now, we show that the signatures σi are valid
signatures, since

Wi = (DID)

∑

j∈[N]
vij ·

⎛

⎝

∏

j∈[N]
T

vij

j

⎞

⎠

r

·
⎛

⎝

∏

j∈[N]
T ′

j
vij · T

∑

j∈[N]
vij

⎞

⎠

xID

= (QID)
s

∑

j∈[N]
vij ·

(

g

∑

j∈[N]
tj vij

)r

·
⎛

⎝

∏

j∈[n]
(gb)αj vij ·

∏

j∈[m]
(gb)βj vi,(n+j)

⎞

⎠

a

·
(

g
t

∑

j∈[N]
vij

)a

= (QID)
s

∑

j∈[N]
vij · U

∑

j∈[N]
tj vij · (gab)α·vi · (PKID)

∑

j∈[N]
tvij

= (QID)
s

∑

j∈[N]
vij · U

∑

j∈[N]
tj vij · (PKID)

∑

j∈[N]
tvij

Since we constructed α such that α · v = 0 for all
v ∈ V , the signatures output by C in step (5) of signing
queries are valid signatures.

• Output: Eventually, AII outputs ID∗, PKID∗ , an
identifier τ ∗, a nonzero vector y = (y1, · · · , yN) and
signatures σ ∗

i = (U∗, W ∗
i), i ∈ [m]. If ID∗ �= IDk ,

then C aborts.
IfAI successfully outputs Type 2 forgery signatures

σ ∗, then τ ∗ has been used to answer a vector subspace
V under a signature query, but y /∈ V ; it is known that
T ′∗

i = (gb)ai (i ∈ [n]) and T ′∗
n+i = (gb)βi(i ∈ [m]). C

recovers T ∗
i from list LH1 , T

∗ from list LH3 and DID∗
from list LSK ; then, the following equation holds:

e

⎛

⎝

∏

i∈[m]
(W ∗

i)
yn+i , g

⎞

⎠

= e

(

Q

∑

i∈[N]
yi

ID∗ , Ppub

)

· e

⎛

⎝

∏

i∈[N]
(T ∗

i)
yi , U∗

⎞

⎠ · e

⎛

⎝

∏

i∈[N]
(T ′∗

i)
yi · (T ∗)

∑

i∈[N]
yi

, PKID∗

⎞

⎠

= e

(

(QID)
s

∑

i∈[N]
yi

, g

)

· e

(

(U∗)

∑

i∈[N]
t∗i yi

, g

)

· e
(

(gab)(α·y), g
)

· e

(

(PKID∗)
t∗

∑

i∈[N]
yi

, g

)

8In detail, α · vi = (α1, · · · , αn, β1, · · · , βm) ·
(vi1, · · · , vin, 0, · · · , 1

︸ ︷︷ ︸

i

, · · · , 0) = α1vi1 + · · · + αnvin +

βi = α1vi1 + · · · + αnvin + (−
n
∑

j=1
αj vij) = 0. In

particular, since we set (T ′
1, · · · , T ′

n, T
′
n+1, · · · , T ′

n+m) =
((gb)α1 , (gb)αn , (gb)β1 , · · · , (gb)βm), we have

∏

j∈[N]
(T ′

j)
vij =

∏

j∈[n]
(gb)αj vij · ∏

j∈[m]
(gb)βj vi,(n+j) = (gb)α·vi = 1

869Peer-to-Peer Netw. Appl. (2021) 14:852–872

If α·y �= 0, by the nondegenerate property, we obtain
the value of gab as follows:

⎛

⎜

⎝

∏

i∈[m]
(W ∗

i)yn+i

(QID)

∑

i∈[N]
syi · (U∗)

∑

i∈[N]
t∗i yi · (PKID∗)

∑

i∈[N]
t∗yi

⎞

⎟

⎠

1
(α·y)

Now, we evaluate C’s probability of success.
As before, obviously, the probability of C aborting in

the signing query is at most
q2s +qH2 ·qs

2k , the probability of

not aborting in the output stage is 1
qH

and α · y = 0 with

probability 1
p
, where qs, qH , qH2 are the numbers of signing

queries and H and H2 are the numbers of hash queries made
by AII .

Therefore, if AII has an advantage AdvCL−LHS
AII

(k) in
forging a signature in Game 2, then C can solve the CDH
problem with probability

(

1

2
AdvCL−LHS

AII
(k) − q2

s + qH1 · qs

2k

)

·
(

1 − 1

p

)

· 1

qH

References

1. Atzori L, Iera A, Morabito G. (2010) The internet of things: A
survey. Comput Netw 54:2787–2805

2. Alaybeyi SB (2016) Pragmatic strategies to improve industrial IoT
Security. tech rep Gartner

3. Ren H, Li H, Dai Y, Yang K, Lin X. (2018) Querying in
internet of things with privacy preserving: Challenges, solutions
and opportunities. IEEE Netw 32(6):144–151

4. Krohn M, Freedman M, Mazieres D (2004) On the-fly verification
of rateless erasure codes for efficient content distribution.
In: Proceedings of IEEE symposium on security and privacy
Berkeley, CA, USA, pp 226–240

5. Li S-YR, Yeung R, Cai N. (2003) Linear network coding. IEEE
Trans Inform Theory 49:371–381

6. Jin J-Q, Ho T, Viswanathan H (2006) Comparision of network
coding and 1198: non-network coding schemes for multi-hop
wireless networks. In: Proceedings of 2006 IEEE international
symposium on information theory (ISIT 2006), Seattle, WA, USA,
pp 197–201

7. Lun D, Medard M, Koetter R, Effros M (2005) Further results
on coding for reliable communication over packet networks. In:
Proceedings of international symposium on information theory
(ISIT 2005), Adelaide, SA, Australia, pp 1848–1852

8. Boneh D, Freeman D, Katz J, Waters J (2009) Signing a linear
subspace: Signature schemes for network coding. In: Proceedings
of international workshop on public key cryptography (PKC
2009), vol 5443. Springer, Berlin, pp 68–87

9. Liu X, Huang J, Wu Y, Zong G. (2019) A privacy-preserving
signature scheme for network coding. IEEE Access 7:109739–
109750

10. Li T, Chen W, Tang Y, Yan H. (2018) A homomorphic network
coding signature scheme for multiple sources and its application
in IoT. Secur Commun Netw 2018:1–6

11. Agrawal S, MACs BonehD. (2009) Homomorphic MAC-based
integrity for network coding. In: Proceedings of international
conference on applied cryptography and network security (ACNS
2009), vol 5536. Springer, Berlin, pp 292–305

12. Chang J, Ji Y, Xu M, Xue R. (2019) General transformations from
single-generation to multi-generation for homomorphic message
authentication schemes in network coding. Future Gener Comp Sy
91:426–425

13. Esfahani A, Mantas G, Rodriguez J (2016) An efficient null space-
based homomorphic MAC scheme against tag pollution attacks in
RLNC. IEEE Commun Lett 20(5):918–921

14. Esfahani A, Yang D, Mantas G, Nascimento A, Rodriguez J.
(2015) Dual-homomorphic message authentication code scheme
for network codingenable wireless sensor networks. Int J Distrib
Sensor Netw 11(7):1–10

15. Cheng C, Lee J, Jiang T, Takagi T. (2016) Security analysis
and improvements on two homomorphic authentication schemes
for network coding. IEEE Trans Inf Forensics Secur 15(5):993–
1002

16. Shamir A (1984) Identity-based cryptosystems and signature
schemes. In: Proceedings of the CRYPTO 1984, Santa Barbara,
CA, USA, pp 47–53

17. Hu X, Zheng S, Gong J et al (2019) Enabling linearly
homomorphic signatures in network coding-based named data
networking. In: Proceedings of the 14th international conference
on future internet technologies (CFI 2019). ACM, New York,
pp 1–4

18. Liu X, Huang J, Zong G (2018) Public auditing for network coding
based secure cloud storage. In: 2018 17th IEEE international
conference on trust, security and privacy in computing and
communications/ 12th ieee international conference on big data
science and engineering (TrustCom/BigDataSE 2018) New York,
NY, USA, pp 713–720

19. Schabhuser L, Buchmann J, Struck P (2017) A linearly
homomorphic signature scheme fromweaker assumption. In: IMA
international conference on cryptography and coding (IMACC
2017), vol 10655. Springer, Cham, pp 261–279

20. Fiore D, Matrioska PE (2018) A compiler for multi-key homo-
morphic signatures. In: Proceedings of international conference on
security and cryptography for networks (SCN 2018), vol 11035.
Springer, Cham, pp 43–62

21. Lai RWF, Tai RKH, Wong HWH et al (2018) Multi-key
homomorphic signatures unforgeable under insider corruption.
In: Proceedings of international conference on the theory and
application of cryptology and information security (ASIACRYPT
2018), Lecture notes in computer science, vol 11273. Springer,
Cham, pp 465–492

22. Schabhüser L, Butin D, Buchmann J (2019) Context hiding
multi-key linearly homomorphic authenticators. In: Proceedings
of cryptographers’ track at the RSA conference (CT-RSA 2019),
vol 11405. Springer, Cham, pp 493–513

23. Lin Q, Li J, Huang Z, Chen W, Shen J. (2018) A short linearly
homomorphic proxy signature scheme. IEEE Access 6:12966–
12972

24. Zhang Y, Jiang Y, Li B, Zhang M (2017) An efficient
identity-based homomorphic signature scheme for network
coding. In: Proceedings of international conference on emerging
internetworking, data and web technologies (EIDWT 2017), vol 6.
Springer, Cham, pp 524–531

25. Sadrhaghighi S, Khorsandi S (2016) An identity-based digital
signature scheme to detect pollution attacks in intra-session
network coding. In: Proceedings of 13th international iranian
society of cryptology conference on information security and
cryptology (ISCISC 2016) Tehran, Iran, pp 7–12

26. Lin Q, Yan H, Huang Z, Chen W, Shen J, Tang Y. (2018) An ID-
based linearly homomorphic signature scheme and its application
in blockchain. IEEE Access 6:20632–20640

27. Chang J, Ma H, Zhang A, Xu M, Xue R. (2019) RKA security
of identity-based homomorphic signature scheme. IEEE Access
7:50858–50868

870 Peer-to-Peer Netw. Appl. (2021) 14:852–872

28. Al-Riyami SS, Paterso KG (2003) Certificateless public key
cryptography. In: Proceedings of 13th international Iranian society
of cryptology conference on information security and international
conference on the theory and application of cryptology and
information security (ASIACRYPT 2003), vol 2894. Springer,
Berlin, pp 452–473

29. Islam SH, Biswas G. (2014) Certificateless short sequential and
broadcast multisignature schemes using elliptic curve bilinear
pairings. J King Saud Univ Comp Info Sci 26(1):89–97

30. Wu L, Zhang Y, Ma MM et al (2019) Certificateless searchable
public key authenticated encryption with designated tester for
cloud-assisted medical Internet of Things. Ann Telecommun
74:423–434

31. Wu T, Chen C, Wang K. (2019) Security analysis and
enhancement of a certificateless searchable public key encryption
scheme for IIot environments. IEEE Access 7:49232–49239

32. Yang XD, Pei XZ, Chen GL, Li T, Wang MD, Wang C. F. (2019)
A strongly unforgeable certificateless signature scheme and its
application in IOT environments. Sensors 19(12):1–27

33. Zhang Y, Deng H, Zheng D. et al (2019) Efficient and robust
certificateless signature for data crowdsensing in cloud-assisted
industrial IoT. IEEE T Ind Inform 15(9):5099–5108

34. Karati A, Islam SH, Karuppiah M. et al (2019) Provably
secure and lightweight certificateless signature scheme for IIoT
environments. IEEE T Ind Inform 14(9):3701–3711

35. Yeh K-H, Su C, Choo KR, Chiu W. (2017) A novel certificateless
signature scheme for smart objects in the internet-of-things.
Sensors 17(5):1–17

36. Krohn MN, Freedman MJ, Mazi‘eres D (2004) On-the fly
verification of rateless erasure codes for efficient content
distribution. In: Proceedings of IEEE symposium on security and
privacy (SECPRI 2004), Berkeley, CA, USA, USA, pp 226–239

37. Attrapadung N, Libert B (2011) Homomorphic network coding
signatures in the standard model. In: Proceedings of international
workshop on public key cryptography (PKC 2011), vol 6571.
Springer, Berlin, pp 17–34

38. Gennaro R, Katz J, Krawczyk H, Rabin T (2010) Secure
network coding over the integers. In: Proceedings of international
workshop on public key cryptography (PKC 2010), vol 6056.
Springer, Berlin, pp 142–160

39. Boneh D, Freeman D (2011) Linearly homomorphic signatures
over binary fields and new tools for lattice-based signatures. In:
Proceedings of international workshop on public key cryptography
(PKC 2011), vol 6571. Springer, Berlin, pp 1–16

40. Boneh D, Freeman D (2011) Homomorphic signatures for
polynomial functions. In: Proceedings of annual international
conference on the theory and applications of cryptographic
techniques (EUROCRYPT 2011), vol 6632. Springer, Berlin,
pp 149–168

41. Gorbunov S, Vaikuntanathan V, Wichs D (2015). In: Proceedings
of the forty-seventh annual ACM symposium on theory of
computing (STOC New York, NY, USA, pp 469–477

42. Luo F, Wang F, Wang K, Chen K. (2019) A more efficient leveled
strongly-unforgeable fully homomorphic signature scheme. Inf
Sci 480:70–89

43. Shang F, Zhao X, Wang C, Liu J. (2015) Quantum homomorphic
signature. Quantum Inf Process 14:393–410

44. Shang T, Pei Z, Chen R, Liu G. (2019) Quantum homomorphic
signature with repeatable verification. CMC-Comput Mater Con
159(1):149–165

45. Li Z, Xu G, Chen L, Yang Y. (2019) Secure quantum network
coding based on quantum homomorphicmessage authentication.
Quantum Inf Process 18:1–21

46. Seo J, Emura K, Xagawa K, Yoneyama K. (2018) Accumulable
optimistic fair exchange from verifiably encrypted homomorphic
signatures. Int J Inf Secur 17:193–220

47. Fan X, Wu T, Zheng Q. (2019) HSE-Voting: A secure
high-efficiency electronic voting scheme based on homo-
morphic signcryption. Future Gener Comp Sy 1–31.
https://doi.org/10.1016/j.future.2019.10.016

48. Fiore JD, Mitrokotsa A, Nizzardo L et al (2016) Multi-key
homomorphic authenticators. In: Proceedings of international
conference on the theory and application of cryptology and
information security (ASIACRYPT 2016), vol 10032. Springer,
Berlin, pp 1–41

49. Choon JC, Cheon JH (2003) An identity-based signature from gap
Diffie-Hellman groups. In: Proceedings of international workshop
on public key cryptography (PKC 2003), vol 2567. Springer,
Berlin, pp 18–30

50. Hess F (2002) Efficient identity based signature schemes based on
pairings. In: Proceedings of International Workshop on Selected
Areas in Cryptography (SAC 2002), vol 2595. Springer, Berlin,
pp 1–15

51. Lynn B et al (2013) Pairing-based crytography library. https://
crypto.stanford.edu/pbc/

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Bin Wu was born in Baiyin
City, Gansu Province. She
received a B.E. degree in
mathematics and applied
mathematics in 2008 from
Northwest Normal University,
China and an M.S. degree
in Homology Algebra in
2018 from Northwest Normal
University. She is currently
a PhD student at Northwest
Normal University. The focus
of her research has been on
cryptography and information
security.

Caifen Wang received her
Ph.D. degree in cryptog-
raphy from the School of
Communication Engineering,
Xidian University in 2003.
She is a professor at Shenzhen
Technology University. She has
been selected as the director of
the China Cryptography
Society and a member of the
Special Committee of Cryptog-
raphy Algorithms. Her main
research interests include cryp-
tography and information
security, in particular, applied
cryptography and security in
cloud computing.

871Peer-to-Peer Netw. Appl. (2021) 14:852–872

https://doi.org/10.1016/j.future.2019.10.016
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/

Hailong Yao received an M.S.
degree in communication and
information systems from the
School of Electronic & Infor-
mation Engineering, Lanzhou
Jiaotong University in 2013.
He is currently a PhD student
at Northwest Normal Uni-
versity. His research interests
include cryptography and pri-
vacy security in distributed
systems.

872 Peer-to-Peer Netw. Appl. (2021) 14:852–872

	A certificateless linearly homomorphic signature scheme for network coding and its application in the IoT
	Abstract
	Introduction
	Our contributions
	Related works
	Organization

	Preliminaries
	 Linear network coding
	Bilinear pairing
	 Computational Bilinear Diffie-Hellman problem

	Definitions and security model
	Certificateless linearly homomorphic signature
	System models
	Security models
	Game 1
	Game 2

	Proposed CL-LHS scheme
	Security analysis
	Application in IoT environments and performance comparison
	System model of authentication computing using CL-LHS in an IoT environment
	Performance analysis

	Conclusions
	Appendix I Proof of Lemma 2
	References

