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Abstract
Data aggregation and dissemination in cloud-based internet of things (IoT) are main issues because of interoperability problems
in communication. In an IoT environment, data handling and offloading are constant processes that avoid communication failure
and increase service utilization levels. This paper introduces a machine learning (ML)-assisted data aggregation and offloading
(ML-DAO) system to improve the reliability of cloud–IoT communication. The method introduced helps reduce the response
time and routing cost errors in data aggregation and improve the data service rate. The data handling rate is also enhanced using
the IoT assisted by fog elements that maximize edge-level communication. Cloud–IoT communication quality is measured on the
basis of time and service attributes; ML techniques are designed to enhance the level’s precision while aggregating the data. To
achieve optimum communication quality, the proposed ML-DAO operates on certain measurable functional metrics. The
performance of the system is assessed using the following metrics: route cost error, processing time, aggregation delay, service
utilization rate, failure probability, and response time. Experimental results prove the consistency of the proposed scheme, as the
metrics are optimized with lesser unallocated data chunks.

Keywords Data aggregation . Data offloading . IoT . Fog computing .Machine learning

1 Introduction

The internet of things (IoT) is a recent development in com-
munication technology that facilitates smart communication
between users and devices/machines. The IoT encompasses
real-world devices and communication technologies with a
virtual representation to meet end users’ application needs.
The devices, called things, act in a smart manner through
human–machine interactions. In IoT network user equipment
is the building block, as it possesses sensing, communicating,
and processing abilities [1, 2]. The IoT handles heterogeneous
information by adopting a wide range of applications and
services from different platforms to provide effective user-
level communication. The virtual representation feature of
the network improves flexibility and scalability in application

and resource sharing. Information from multiple sources is
accumulated, stored, and processed as digital information to
enable machine–machine and machine–human interactions.
Because of the smart communication and decision-making
features of things or devices, the IoT is used in environment,
habitat monitoring, and transport-assisting services, social net-
works, the healthcare industry, and commercial and residential
applications [3, 4]. The IoT connects multiple heterogeneous
sources and storage in a distributed manner with the support of
internet technology. The network handles volumes of infor-
mation through distributed access for which multi-level opti-
mization is necessary in order to provide reliable end user
communication. Flexibility and ease of access features are
achieved by integrating distributed cloud services to improve
IoT reliability and cope with increasing user demands.
Storage, connectivity, information access, and retrieval oper-
ations are shared between the IoT and cloud architectures. The
advantages of the IoT and cloud are harmonized to aid a wide
range of the above-mentioned applications [5, 6].

With the growing demand for user applications, communi-
cation technologies play a vital role in computing services.
Fog computing is a communication-supporting paradigm that
extends cloud applications and services to the edge of the
network. Users beneath the network edge utilize the
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applications, services, and platform of cloud services in an
interoperable manner [7, 8]. A fog layer is commonly placed
between the cloud and the user plane to ease computing, ac-
cess, and service sharing prospects [9, 10]. Fog is a
decentralized computing paradigm designed to avoid latency
issues in cloud resource allocation and sharing. Similar to the
cloud layer, the fog layer consists of dedicated servers and
gateways to accept user requests and process them. Devices
such as routers, switches, servers, and access points with smart
computing ability are the elements of the fog layer. Fog ele-
ments perform the same tasks as the cloud from the network
edge [11, 12]. The integration of multi-level computing and
service paradigms improves the reliability of the communica-
tion system. Nevertheless, processing information and ad-
dressing complex problems remain key challenges in achiev-
ing relevant optimization. Processing and decision-making
algorithms and techniques are necessary to improve the rate
of optimization [13].

Machine learning (ML) is an efficient approach to analyze
and extract information from complex processing systems.
ML is applied in the IoT to process sensor data accumulated
from the deployed environment [14, 15]. The learning process
is incorporated into the IoT–fog–cloud architecture because of
its multi-layer perspective in solving complex problems [16].
The operational constraints of fog elements require some ex-
ternal processing support, such as optimization algorithms,
learning, and decision-making systems, to achieve high reli-
ability. Latency reduction, traffic classification, and raw data
processing are some advantages of incorporating ML into the
IoT architecture. The smart computing ability of IoT devices
is improved through external optimization and decision-
making systems. ML is applied in the medical, industrial,
automation, and environment assessment fields [17, 18]. The
aim of integrating heterogeneous communication technolo-
gies is to provide seamless communication and achieve im-
proved user satisfactory levels. The process of data handling
and distribution in heterogeneous networks is a complex task.
More specifically, data aggregation and offloading computed
tasks for the equivalent amount of data in the network are
complex. The volume of data circulated in the communication
network cannot be predicted because of varying devices and
resource densities [19, 20]. Improper data handling minimizes
the quality of communication by increasing congestion
and pending tasks, thus increasing service response lags.
Therefore, the methods designed to optimize the data
handling process must ensure congruency with
offloading and the processing capacity of heterogeneous
network integration. The main contributions of this pa-
per are as follows:

(i) Designing a learning-based aggregation scheme to
achieve the optimal route cost in order to meet the in-
creasing user demands in the fog layer. Addressing the

optimal route cost constraint improves the reliability of
the communication system by achieving errorless service
utilization. Based on the output of the learning process,
the aggregation scheme minimizes the error in the route
cost to achieve a high rate of service utility.

(ii) Designing a learning-assisted data offloading scheme to
minimize the response time to IoT user requests. This
scheme provides two benefits: minimizing route cost er-
rors and minimizing failure in service requests.

(iii) Conducting a comparative analysis of the proposedML-
DAO method with existing research approaches to ver-
ify the introduced method consistency using different
evaluation metrics.

The rest of the paper is organized as follows. Section 2
discusses different studies on the data aggregation process.
Section 3 analyzes the ML-assisted data aggregation and
offloading (ML-DAO) scheme. Section 4 examines the effi-
ciency of the system and concludes the paper.

2 Related works

Kayes et al. [21] presented a formal context-aware role-based
access for IoT users to handle functionalities in critical situa-
tions. The functions for users are derived from the contextual
roles of the IoT. The dynamicity in handling IoT roles is
modeled through an ontology approach to gain control over
access policies. Control policies and user roles are induced to
handle information and control the offloading process in the
IoT. This method is more feasible in handling heterogeneous
data and models of its own to adapt to derived user-level
operations. Kim et al. [22] designed an IoT broker architecture
to facilitate different protocols’ interoperability. The authors
extended their contribution by designing an interoperable ser-
vice platform to support IoT applications and services without
constraints. The designed architecture prototype supports
multiple intelligent services with basic IoT operations.
However, security requirements cannot be met by the pro-
posed architecture.

Ullah et al. [23] proposed a student interaction model for a
smart city environment. The interaction model is supported by
software-defined networking (SDN)–IoT to achieve better in-
teroperability and scalability features. A latent semantic anal-
ysis model is incorporated into the SDN to identify the simi-
larity of the interaction text between teachers and students.
The model improves the rate of information analysis and re-
trieval. Puschmann et al. [24] introduced a clustering scheme
to balance IoT information dissemination. This scheme pro-
tects against bandwidth exploitation by minimizing transmis-
sion loss for unplanned user traffic with real-time traffic cor-
relation. Resources, service providers, and IoT controllers are
synchronized to achieve better traffic handling. Because of
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allocation and resource awareness problems, however, this
integration becomes complex.

Xiao et al. [25] proposed an optimization technique to min-
imize management cost and delays in data center communi-
cation. In this optimization technique, bandwidth exploitation,
storage utilization, and service migration are accounted for to
improve communication reliability. The controlled cloud,
which interacts with the data center, uses scheduling and ad-
mission control policies to support service migration. Lu et al.
[26] proposed an IoT–cloud architecture with the support of
edge computing to resolve the issues in big data analysis. In
this process, the IoT with data-oriented map (IoT DeM) re-
duction is used in the managed clouds. This architecture mod-
el is designed to predict the performance of edge clouds dis-
tributed across the environment. The performance of these
clouds is assessed by evaluating the job execution rate of the
nodes. The locally weighted linear regression technique used
predicts the job execution time of each edge node to analyze
big data. This model achieves lesser relative errors with con-
trolled time delay.

The fuzzy c-means approach has been introduced by Bu
[27] to handle and analyze big data in the IoT environment.
The data are classified into clusters using the canonical de-
composition method, in which limited attributes of the data are
evaluated to improve the efficiency of analysis. The attributes
of the data are compressed using a bijection function to meet
the computing requirements of IoT devices. The method in-
troduced maximizes clustering efficiency and minimizes exe-
cution time. Cheng et al. [28] proposed a fogflow framework
to improve the openness and interoperability of fog in a smart
city environment. The programming model of fogflow allows
a flexible design of services that are easily available in cloud
and edge architectures. Function and data reusability are the
other advantages of fogflow, minimizing storage and compu-
tational complexity in a smart city environment.

Yacchirema et al. [29] extended the concept of big data
analytics in the IoT to treat obstructive sleep apnea (OSA)
disorder in the field of medicine. A novel smart city
application-oriented system is designed to treat OSA by mon-
itoring and reporting patient information. In this IoT system,
fog-assisted notification and behavior-based predictive analy-
sis are incorporated to detect and report the emergency condi-
tions of the end user. This system operates in a technical,
syntactic, and semantic manner to provide interoperability.
Edge node-assisted data transmission in a cloud-centric IoT
architecture has been designed by Zhao et al. [30] to address
cloud bandwidth exploitation. Initially, the architecture
gains knowledge of the bandwidth requirement of the
edge nodes and then assigns IoT data. IoT data are
replicated for the optimal number of bandwidths, in
which the maximum number of requests is processed.
Excess user requests are met by the central cloud by
extending the support of edge nodes.

He et al. [31] proposed a big data analytics model based on
fog for smart city environments. Data analytics is facilitated
through a multi-tier model comprising on-demand and dedi-
cated fogs (D-fog). Both fog models are opportunistic; D-fog
differs from on-demand fog by mitigating delayed cloud re-
sponse. It supports a wide range of computing engines with a
distributed cloud–fog environment where a large scale of IoT
users is available. The introduced method improves overall
performance, maximizes service utilities and data analytics
services, and enhances the quality of services.

From the above survey, the process of data handling in the
IoT is retarded when some quality metrics are compromised,
such as service utilization [26], response time [27], and com-
munication errors [26, 31]. Some conventional drawbacks in
[23, 25, 29], such as request density and rate of handling, have
been optimized in [27, 31]. The notified features lag because
of complex processing and centralized decisionmaking which
leads to creating the communication errors across the net-
works. Integrating heterogeneous networks in such cases re-
sults in congestion at the service level. To address these issues,
this paper proposed a data aggregation and offloading scheme
based on learning.

3Machine learning-assisted data aggregation
and offloading scheme

3.1 IoT sensor–fog–cloud data processing architecture

Figure 1 illustrates the architecture of the IoT sensor–cloud.
The data processing architecture operates between the sensor
fog and fog end user layers.

The architecture and its components are briefly discussed
as follows. The architecture consists of three layers: the con-
sumer layer, the fog layer, and the cloud layer.

Consumer layer The consumer layer comprises IoT sensors
and end user applications distributed across the globe. IoT
sensors are deployed in the agricultural, environmental, resi-
dential, and healthcare industries. These sensors are equipped
with radio and sensing units to relay sensed informa-
tion. The sensed information includes temperature, hu-
midity, location, alerts, and health information that are
depending on the application sensors. A region
aggregator (RA) is responsible for integrating the infor-
mation received from the sensor. The RA interacts with
the fog layer to access cloud layers’ storage and pro-
cessing. The RA present here is different from a border
routing device. This device is responsible for handling
data traffic to reduce congestion alongside route discov-
ery. It does not solve the routing problems between the
devices; rather, it takes the dual responsibilities of low-
cost route discovery and congestion prevention.
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End user applications are either commercial or non-com-
mercial, requiring sensed information. Sensed information is
provided to the end user for further processing, on request.
Generally, end user applications raise a request to the
cloud to access and retrieve stored information. With
the introduction of the fog layer, delayed data retrieval
and access are minimized.

Fog layer The fog layer comprises nodes, temporal storage,
and gateways. This layer holds a set of instances and service
categories for the request received. The fog nodes process the
requests of the end user application to offload data from the
cloud. The storage pre-fetches information from the cloud to
improve the rate of service.

Cloud layer The architecture is modeled with conventional
cloud components. These components include a dedicated
server, storage, third-party applications, and cloud service.
The cloud interconnects multiple networks with a wide A
The roles and responsibilities of the elements in the architec-
ture were designed based on existing network models. The
above architecture integrates different heterogeneous net-
works to improve the flexibility of user communication.

User communication adopts different technologies for infor-
mation exchange; the presence of different scales of networks
provides ease of information exchange depending on the re-
gion of communication.

3.2 ML-DAO methodology

This method performs two types of operations: data aggrega-
tion and offloading. Data aggregation improves reliability in
communication between the IoT and the fog layer at the time
of sensor information accumulation. The RA binds the col-
lected information as a single entity and forwards it to the fog
layer. The independent fog elements are responsible for
offloading the received information to the end users.

3.2.1 Data aggregation

Data aggregation in the IoT layer is facilitated by the RA. The
sensors are distributed in a random manner. Data aggregation
is the process of accumulating information from multiple
sources at the same time or based on time slots. The accumu-
lated information is stored and transmitted for the users de-
manding them through requests. The information is collected

Fig. 1 IoT sensor–fog–cloud architecture
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from heterogeneous devices from different environments,
such as sensors and cloud resources. The intermediate com-
municating devices are responsible for handling the accumu-
lated information. Depending on the position of the IoT sen-
sors, RAs accumulate information in either a single hop or
multi-hop. Constructing an aggregation tree increases the cost
of operation, as it cannot be changed frequently for mobile IoT
sensors. Similarly, the number of sensing devices that contrib-
ute to the aggregation process varies at different time intervals.

The data aggregation routes between IoT sensors and the
fog layer are not permanent. The number of routes for relaying
sensed information must be low to achieve lesser route costs.
The aggregation process also covers the maximum number of
achieved sensors in this interval. Let ρsi represent the proba-
bility of the ith sensor to transmit sensed information in the
aggregation time interval ta; the route cost rcð Þ is estimated as

rc ¼ 1−∏ ta
i∈s 1−ρsið Þ; ð1Þ

where s represents the set of IoT sensors participating in ta.
The possibility ofmin rcf g achieving profitable aggregation

is low because of different levels of aggregation ðalÞ . The
aggregation level relies on indirect sensors communicating
with the RA.

In Fig. 2, represented that the aggregation level which has
several levels and sensor nodes. j is the total number of levels
in ta for sa active sensor nodes’ optimal route cost, which is
estimated using Eq. (2),

r*c ¼
Nr

R
*α; ð2Þ

where Nr is the network radius, and R is the communication
range of RA. � is a variable computed as sa

si
,si 2 al:

The route cost metric is defined using connectivity and the
RA range. The minimum route cost is achieved by selecting

neighbors with the maximum connectivity, and it ensures cov-
ering a reliable number of neighbors. The optimal route cost is
made to vary with the number of sa in eachta. With the help of
an adaptive neural network, the optimality of the route cost is
assessed for the available sa. Let X be the set of inputs for the
neural learning process; here, r*c is the output estimated for the
si participating in aggregation. The hidden layer output deter-
mines the number of sa for which r*c is estimated. Unlike
conventional neural learning, this process is evaluated as an
iterative procedure. The process of neural learning is repre-
sented in Fig. 3.

The hidden layer output {h1, h2 ... ... hn} 2 H generates the
number of sa from si . Therefore, the error e in each layer is
estimated as the difference in route cost (i.e., the route cost
estimated for si during ta ), and the actual route cost for sa is
considered to identify the error. The partial derivation of neu-
ral learning is represented as

h1 ¼ r*c1
� �h0x0 þ r*c1

� �h02h0 al−1ð Þ þ e1
h i

h2 ¼ r*c2
� �h1x1 þ r*c2

� �h12h1 al−2ð Þ þ e2
h i

⋮
hn ¼ r*cn

� �hn−1xn−1 þ r*cn
� �hn−12hn−1 aj

� �þ en
h i

9>>>>>=
>>>>>;
; ð3Þ

where {e1, e2... .. en} and

e ¼ rc∼r*c : ð4Þ

The process of the hidden layer is induced to find the errors
in processingr*c for each iterate. The error is regarded as the
difference between the computed and the observed route costs
in order to find the actual error that occurs after communica-
tion. Based on this error, the next set of hidden layer process-
ing is optimized.

There are two possibilities for the hidden layer output
based on Eq. (4).

Fig. 2 Aggregation level
representation
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Possibility 1 e is positive.

Analysis 1 If rc > r*c, then the error is positive. Therefore, in the
next iterate, the aggregation routes are constructed to satisfy.
This ensures maximum sensor coverage and data collection in
single and multi-hop. From (4), as the same r*c is maintained,

h2 ¼
h
r*c1
� �h1x1 þ r*c1

� �h12
:h1

�
al−2ð Þ þ e2

i
⋮

)
: ð5Þ

Equation (5) is the hidden layer output until rc < r*c .

Possibility 2 e is negative.

Analysis 2 e is negative if rc < r*c . In this case, the estimated
route for increases the actual route cost. This is due to sensor
unavailability or route failure, as the IoT sensor is mobile.
Therefore, the number of observed in the first iterate is mini-
mized in the next iterate until rc > r*c or rc ¼ r*c .

The route cost function operates in a cooperative manner
with conventional routing protocols to improve route selec-
tion. The conventional routing protocols rely on the distance
metric for path selection. The outputs of the learning process

are utilized by the routing protocols to select better neighbors
for routing.

3.2.2 Offloading process

In the offloading process, the relevant information is delivered
to the requested users. Similarly, the processes exceed-
ing the capacity of the devices are shared across the
neighbors for parallel computations. This minimizes
overloading of the device by reducing data and task
congestion rate with less delay. The advantage of ML
is further extended to the interactions between the fog
layer and end users in the consumer layer. For the ob-
served sa accumulated data, timely offloading is essen-
tial to prevent data unallocation and minimize retrieval
time. A congested data request increases the probability
of failure because of the varying densities of end users
and timed-out service replies.

Fog elements have a limit of accepting and processing end
user requests. Fog elements assign the sensed information to
the requests from the consumer layer. The sensed information
is fetched from the cloud by the fog elements to minimize the
request waiting time. Let Pij be the probability for an end user

device’s request being mapped to the jth fog element such that

Fig. 3 Learning process
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Pij ¼ 1 if request i is mapped j
Pij ¼ 0 otherwise

�
ð6Þ

As the request space of the fog element is limited, the
optimality of ensuring Pij ¼ 1 is verified with the request
arrival rate rarð Þ . The request arrival rate is computed using
Eq. (7),

rar ¼ rn* tr ð7Þ
where rn is the number of requests transmitted at time tr.

Let cj represent the capacity of the jth fog element; then, if
rar > cj, the fog element offloads requests to its neighbor. The
offloading of user requests increases the waiting time
rather than dropping. The rate of aggregation is irre-
spective of the number of end users and requests. To
improve the consistency of response and the service
utility rate, downloading or data access success is esti-
mated. Let dp denote the download probability of the
end user, which is estimated using Eq. (8):

dp ¼ 1 − ∏i∈ta e
−rari ð8Þ

The ratio of download drat is then computed using

drat ¼ rn
da=ta

; ð9Þ

where da is the data accumulated at ta interval, and rn is the
number of requests from the consumer layer. Now, the ML
process instigated in the previous interaction is modeled to
work in a recursive manner. The drat achieved in the previous
iterate is ensured at each iterate with a minimum route cost.
Figure 4 illustrates the process of recursive learning with re-
spect to the consideration of drat . The learning process is
designed to achieve a higher drat for da and ta by collecting
data fromsa out ofsi sensors.More precisely, for sa sensors, the
route cost is r*c with lesser errors.

This process of learning is different from conventional neu-
ral learning, as it is designed to derive the specific r*c by
consideringdrat as the learning constraint. Similarly, the learn-
ing constraints are used for training the inputs at each

Fig. 4 Learning refined by considering drat

Fig. 5 Communication error analysis

Fig. 6 Processing time analysis

Table 1 Configuration parameters and values

Parameter Value

IoT Node Fog Node Server/ Storage

Number of Devices 520 100 4/1

RA 30 - -

Clock Speed 666 MHz 1,300 MHz 2.4 GHz

Physical Memory 512 Mb 2 Gb 4 Gb

Request/Sec 5 300 1500

Capacity 2 Gb 8 Gb 1 TB

Bandwidth 1 Mbps 10 Mbps 100 Mbps
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transition; in this case, the hidden layer is optimized based on
the learning constraint. The response time tres for offloading
da for requests rn is computed using Eq. (10).

tres ¼ 2 * ta þ tw þ tdratð Þ; ð10Þ
where tw is the wait time of the request, and tdrat is the time for
downloading.

From probability cases 1 and 2, the time delay and dp for a
particular ta are explained as follows:

Case 1 e is positive (i.e., rc > r*c ).

Solution 1 As discussed earlier, the data aggregated in this
case are high with the optimal route cost. If ðdrat � rnÞ � cj ,
then the request wait time is zero. Therefore, tres ¼ 2 � ðtdratÞ
here, ta ¼ 0as the data are already accumulated, and they need
to be assigned to IoT requests.

Case 2 If e is negative, rc < r*c .

Solution 2 In this case, the rate for aggregation is deficient
because of a higher rn or sa lesser. Therefore, the aggregation
is still processed at the time of request mapping.

tres ¼ 2 tdrat þ ta1 þ tw1ð Þ þ ta2 þ tw2ð Þþ… :þ taj þ twj
� �� �

;

ð11Þ
tres ¼ 2 tdrat þ ∑ j

j¼1 tai þ twið Þð �:
h

ð12Þ

In case 1, drat � rnð Þ is confined to the capacity of the fog
element with no offloading requirement.

In case 2, the capacity of the fog element is exceeded, and
ðcj � rnÞ is offloaded via its neighbor to the end user. In this

case, propagation time tp is considered between the two

neighboring fog elements, so tres ¼ tres þ tp is the actual re-
sponse time for a request rn from the consumer layer.

4 Experimental analysis

The performance of the proposed ML-DAO is assessed
through iFogSim simulations [32]. The configurations for set-
ting up the architecture as in Fig. 1 are described in
Table 1, which shows the configuration considered in
the evaluation model with the minimum requirements
of the devices. The configuration parameters are
discussed for low-configuration and low-cost systems
with appreciable processing limits. The following met-
rics are considered for a comparative performance anal-
ysis of the proposed ML-DAO with the existing IoT
DeM, D-Fog, and Fuzzy C-Means, as discussed in the
Related works section: error ratio, processing and response
time, failure probability, data service utility, aggregation time,
and unallocated data chunks.

4.1 Error analysis

Figure 5 illustrates the comparison of errors between the
existing methods and the proposed method. The route cost
error is low, as the next iterate of the learning process con-
structs routes based on the previous e value. Based on proba-
bilities 1 and 2, the rc for the next aggregation interval is
designed. The offloading process recommends a more precise
aggregation path construction. This minimizes the route cost
error for increasing rn.

Fig. 8 Failure probability analysisFig. 7 Response time analysis
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In some cases, rc ¼ r*c or rc > r*c; the previous route cost is
maintained for da in two successive ta intervals. Therefore, the
error is the same at some iterates (iterates 4–5, 7–9, 11–12, and
22–24 in Fig. 5). If rc < r*c is true, the route cost error in-
creases (iterates 10, 18, 26, 44, and 46 in the Fig. 5). The
proposed ML-DAO minimizes the communication error by
17.87%, 16.67%, and 11.36% compared with the existing
IoT DeM, D-Fog, and Fuzzy c-Means, respectively.

4.2 Processing time analysis

The comparison of the existing and proposed methods’ pro-
cessing time is illustrated in Fig. 6. The processing time is
estimated in the fog layer for allPij ¼ 1. The time interval
betweenda and rn response is estimated as the processing time.
After eachta , if rar < cj , then tw 6¼ 0; the processing time
therefore increases. This demands more promising route cost

error minimization in the next learning process and scrutinizes
the aggregation route in the successiveta intervals. This also
reduces the processing time in the fog layer despite varyingrn.
The proposed ML-DAO requires 17.97%, 18.51%, and
16.56% less processing time compared with IoT DeM, D-
Fog, and Fuzzy c-Means, respectively.

4.3 Response time analysis

An increase in rn increases the data response time from the fog
layer (Fig. 7). In the proposedML-DAO, the response time tres
is analyzed for two probabilities of the route cost error. From
Fig. 5, as the route cost error is less, the response time is
estimated using Eq. (10) for each iterate of case 1. As the
session of ta is completed and drat*rnð Þ � cj; the requests

are instantly mapped with the availableda. If rc < r*c , the data
allocation process exceeds its ta, so rn observes a tw. Similarly,
if drat*rnð Þ > cj, the remaining rn is offloaded to the next fog
neighbor. In this scenario, tp is considered. In the subsequent

learning process, rc > r*c or rc ¼ r*c , which is ensured to
minimize the response time of da in the ðta þ 1Þ interval.
The results prove that the proposedML-DAO service requests
have controlled response times that are 14.71%, 12.41%, and
8.03% less than those of IoT DeM, D-Fog, and Fuzzy c-
Means, respectively.

4.4 Failure probability

Figure 8 shows the comparisons between the existingmethods
and the proposed ML-DAO for failure probability. The num-
ber rn that is left unserviced or lost because of a longer tw is less
in the proposed ML-DAO. ML-DAO achives a lower failure
probability by retaining a lesser e for each ta . The learning

Fig. 10 Aggregation time analysis Fig. 11 Unallocated data chunks analysis

Fig. 9 Service utility analysis
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process minimizes the tw by ensuring that the maximum rn
services exceed the capacity of the fog node, and tw increases.
This condition is refined by selecting the appropriatesa among
si to achieve a lesser e and the maximum coverage. The failure
probability of the proposed ML-DAO is 15.59%, 5.49%, and
2.78% less than that of IoT DeM, D-Fog, and Fuzzy c-Means,
respectively.

4.5 Service utility comparison

The rate of service utility increases with an increase in rn
satisfaction. The failure probability of the proposed ML-
DAO is low, improving the data dissemination rate. The da
in time ta is estimated for drat to improve the rate of data
assignment. Different from dp; drat varies with user interest
and resource availability for which the maximum service gain
is achieved. The experienceddrat from the output layer is fed to
the hidden layer to improve the rate of da as per user interest.
The interest in each response session is considered to gatherda
from the IoT sensors. The wait time because of data deficiency
is minimized, which, in turn, improves service utility (Fig. 9).
ML-DAO achieves 12.25%, 10.83%, and 8.17% higher ser-
vice utility than IoT DeM, D-Fog, and Fuzzy c-Means,
respectively.

4.6 Aggregation time analysis

Figure 10 illustrates the comparison in aggregation time be-
tween the existing and proposed ML-DAO methods. In a par-
ticular ta, the aggregation time is decided based on the routes
constructed. The routes are constructed as per the recommen-
dations of the previous learning iterate. The optimality inrc;
drat leads to the routes are dynamically adjusted for every new
ta interval. Therefore, the aggregation time relies on the num-
ber of sa and the amount of data accumulated at each ta. In the
proposed ML-DAO, routes are formed to meet drat, achieving
a lower failure probability. The optimal aggregation route for-
mation with lesser e and maximum rc achieves lesser time in
data collection. The proposed ML-DAO requires 14.63%,
8.53%, and 6.28% less aggregation time compared with IoT
DeM, D-Fog, and Fuzzy c-Means, respectively.

4.7 Unallocated data chunks

The number of unserviced rn in the proposedML-DAO is less
because of lesser failures. The rate of data service utilized is
also high. The optimality in aggregation and recommenda-
tions of the learning process achieves the maximumrn service.
Therefore, the rate of unallocated da of each ta is less in the
proposedML-DAO. Pre-estimation ofdp anddrat improves the

data assignment rate, leaving out a few chunks are unallocat-
ed. The response time and tw ¼ 0 (most cases) are the ex-
tended reasons for the lesser unallocation ofda (Fig. 11). From
the results, ML-DAO minimizes unallocation by 11.62%,
9.18%, and 7.87% compared with IoT DeM, D-Fog, and
Fuzzy c-Means, respectively.

5 Conclusion

This paper proposes an ML-assisted data aggregation and
offloading scheme to improve cloud-assisted IoT communi-
cation. The data aggregation phase is designed to minimize
delay in data gathering, whereas the offloading process im-
proves the rate of service utilization by minimizing failure
probability. Both distinct phases are monitored by an ML
process that controls aggregation route cost errors through
recommendations. Minimizing route cost errors reduces the
processing time of fog layer elements and improves the re-
quest processing rate. The extended ML process in the
offloading phase minimizes the request response time, failure
probability, and unallocated aggregated data. Interoperability
between cloud and the IoT is improved by introducing fog
elements. Experimental results verify the reliability of the pro-
posed scheme, as it is shown to improve service utilization and
minimize failure, cost errors, and unallocated data chunks. In
the future, optimization techniques are included with ML
techniques to improve data aggregation efficiency.
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