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Abstract
Fifth generation (5G) mobile communication networks have the ability to deal with the growing need for increased data rates,
decreased network latencies, low power consumption, seamless coverage, and massive connectivity while sustaining the high
Quality of Service (QoS) at the subscriber’s end. The key drivers of beyond 5G (B5G) are anticipated to be the convergence of all
the features of 5G and B5G becomes more heterogeneous with the different small cell access points and massive multiple-input
multiple-output (massive MIMO). In this work, the macro base station enabled with massive MIMO technology and the small
cell access points possessing the full-duplex communication ability in a heterogeneous network (HetNet) is investigated. The
prime objective is to optimize the power utilization by employing scaled beamforming and power allocation techniques with
reduced complexity while sustaining the QoS in a full-duplex massive MIMO enabled HetNet with small cells. The joint power
optimization and scaled beamforming algorithm is used to maximize the sum rates with reduced power consumption when
compared to multi-flow zero-forcing (MZF) beamforming. The complexity analysis is also carried out by optimizing the number
of transmission antennas and users.
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1 Introduction

The emergence of new wireless devices and the ever-
escalating demand for voice and data traffic indicates the need
to evolve and meet the high capacity and coverage require-
ments of the wireless network. Cisco Visual Networking
Index (VNI) estimates a sevenfold growth in the worldwide
data traffic from 2017 to 2020 [1]. This necessitates the 5G
wireless communication networks to introduce new technolo-
gies to address the high data rate, seamless coverage, high
capacity demand with low power consumption, and maintain-
ing QoS. The massive MIMO technology and dense hetero-
geneous networks (HetNet) have been identified as an inevi-
table solution to address the unprecedented capacity demand

with better energy efficiency [2]. Massive MIMO is a tech-
nology where the macro base station is furnished withmassive
antennas to serve the clients concurrently at the same time and
frequency resource. These massive antennas make sure to
provide better signal energy focus on the anticipated users
which results in high spectral efficiency (SE) and energy effi-
ciency (EE) under realistic scenarios [3–5]. Further, the mas-
sive MIMO utilizes degrees of freedom and offers services to
its clients at the same time and frequency band thus enhancing
throughput of the system. The propagation channels corre-
sponding to various users in the massive MIMO network
decorrelate when the number of the antenna array is increased
[6]. MassiveMIMO can smartly utilize the 5G spectrum and it
is capable of extending the coverage through high gain
beamforming strategy and higher order spatial multiplexing
[7]. Massive MIMO operates in time division duplex (TDD)
mode to acquire channel state information for the utilization of
channel reciprocity [8]. Time division duplex (TDD) mode of
operation enables the users to utilize the same time and fre-
quency resource thereby minimizing the feedback overhead
and channel training in the downlink [9]. In a dense HetNet
with small cell access points (SCAs), are cost-effective low
power base stations that can provide capacity and coverage

This article is part of the Topical Collection: Special Issue on P2P
Computing for Beyond 5G Network and Internet-of-Everything
Guest Editors: Prakasam P, Ajayan John, Shohel Sayeed

* Noor Mohammed Vali Mohamad
noorb4u@gmail.com

1 School of Electronics Engineering, Vellore Institute of Technology,
Vellore, India

https://doi.org/10.1007/s12083-020-00998-z

/ Published online: 6 October 2020

Peer-to-Peer Networking and Applications (2021) 14:333–348

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-020-00998-z&domain=pdf
mailto:noorb4u@gmail.com


enhancements ensuring QoS. Along with the typical macro
base station, enormous small cell access points (SCAs) are
deployed to relieve the traffic from the macro base station.
Moreover, it could lead to the problem of routing the traffic
that arises from SCAs to the backhaul network. Enabling
wired backhauling to enormous SCAs is the main drawback
to practice in reality [10, 11]. The advancement in massive
MIMO technology can bridge the gap in wireless backhauling
of SCAs and it is considered as a viable and cost-effective
solution [12]. Small cell access points (SCAs) can localize
the data traffic thereby minimizing the distance between the
clients and transmitters resulting in less propagation loss and
enhanced energy efficiency. Besides providing the enhance-
ment in the SE and EE, massive MIMO and network densifi-
cation are envisioned as prominent technologies of the 5G
network and B5G [13].With the recent trends such as massive
MIMO and the network densification in B5G creates a natural
concern to reduce the power consumption to attain thousand-
fold energy efficiency [14]. Additionally, full-duplex (FD)
communication paved its way with the recent developments
in self interference cancellation capability via beamforming
strategies and shared antenna methodology [15–19]. In
Inband FD communication, the nodes are enabled to perform
concurrent transmission and reception of information in the
same frequency resources. Thus, FD communication attains
remarkable enhancement in the SE of the system. Henceforth,
the FD technology at the SCA and enablingmassiveMIMO at
the macro base station (MBS) imparts an eminent architecture
combining the benefits of aforesaid technologies.

1.1 Related work

The above-mentioned works highlight the effectiveness of
massive MIMO systems, HetNet, and FD technology.
Therefore, the work improvement achieved by utilizing the
aforementioned technologies is discussed. The combination
of Massive MIMO and small cell have grabbed significant
research interest. In [20], distributed power allocation strategy
in HetNet is analyzed and EE assuring a reduced transmission
rate is validated. In [21], rate maximization and transmit pow-
er minimization subjected to power constraints are jointly ad-
dressed in HetNet. It is proved that the EE is improved.
However, the above works focused on power optimization
in HetNets with small cells but it did not consider the impact
of massiveMIMO technology onHetNet. In [22], spectral and
energy efficiency is maximized by utilizing power allocation
and antenna selection strategy in massive MIMO systems. In
[23], a scalable power control strategy is analyzed in massive
MIMO systems to maximize the SE and to provide maximum
fairness among users in the network. In [24], Power optimi-
zation in massive MIMO systems with the zero-forcing (ZF)
beamforming strategy is validated. The zero-forcing (ZF)
beamforming strategy reduces the self interference thereby

enhancing the downlink (DL) rate. In [25], the power alloca-
tion method considering QoS constraints for massive MIMO
systems and the impact of the number of clients and the an-
tennas on EE is also discussed. The above-mentioned works
concentrated on power optimization in massive MIMO sys-
tems and not on HetNet with small cells. In [26, 27], concep-
tualize massive MIMO based HetNet scenario is discussed.
Here, the massive MIMO utilizes degrees of freedom and
offers services to its clients at the same time and frequency
band thus enhancing throughput of the system. Further in [28],
the network power consumption is greatly enhanced by
employing massive MIMO enabled HetNet with small cells.
This analysis is done by considering dynamic and static power
consumption. Here, MZF beamforming is utilized by the
transmitters to serve the users. The downlink (DL) transmit
power minimization subjected to QoS constraints at the users
is achieved utilizing the MZF beamforming in [28]. In [29],
the authors have discussed the eigen beamforming strategy for
computing the channel capacity under specific power con-
straint considering all the antennas. The water filling algo-
rithm is utilized to allocate power in various eigenmodes. It
lacks accuracy due to the output restraint of the power ampli-
fier. In [30], the analysis related to complexity has been ana-
lyzed and it is observed that the optimal system design can
achieve energy and spectral efficiency with reduced complex-
ity. Authors in [8, 19] examined the gain of massive MIMO
and small cells together. Here, the power allocation and
backhaul problem is not addressed. The FD technology re-
mains as a backhaul solution in massive MIMO enabled
HetNet with small cells as stated in [31, 32]. Authors in [18]
have developed a self-backhaul strategy where SCAs are en-
abled with FD technology. As a consequence, SCAs permits
the reception of information from theMBSwhile concurrently
communicates the information to its clients in the DL.
Similarly, SCAs permit the reception of information from its
clients in the uplink (UL) while simultaneously communicates
the information to theMBS. It has alsomanifested the efficacy
of the FD self backhaul strategy without considering the in-
terference issue in HetNet. Authors in [33, 34], discussed sum
rate maximization and transmit power minimization
guaranteeing QoS by incorporating power allocation strate-
gies in FD enabled massive MIMO systems. Here, the
backhaul transmit power is not considered in the power allo-
cation strategy. The summary of the related works is presented
in Table 1. From the literature, it is observed that extensive
research is focused on power optimization in massive MIMO
technology and HetNet with small cells individually. Very
few of the research work focused on power optimization in
massive MIMO enabled HetNet with small cells. Parameters
such as sum rates, EE, SE, and fairness are maximized by
utilizing a power allocation strategy in the network.
Backhauling the massive MIMO enabled HetNet with small
cells is an important research issue. Even though a massive
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MIMO enabled HetNet with small cells could furnish a high
data rate between the clients and MBS, the transmissions oc-
curring between the MBS and SCAs results as the bottleneck
of the network. Therefore, a reliable backhaul solution is re-
quired to enhance the data rate of clients in the network. Thus,
enabling FD technology at the SCA is considered as a
backhaul solution. FD backhauling allows the transmission
and reception of information using the same spectrum.
However, power allocation becomes challenging when jointly
considering massive MIMO enabled HetNet with FD small
cells.

1.2 Contribution of the paper

We propose a HetNet architecture comprising of MBS en-
abled with massive MIMO overlaying multiple SCAs with
FD capability serving macro user equipments (MUEs) and
small cell user equipments (SUEs). Here, simultaneous trans-
missions occur from the MBS to its user (access link) and
from the MBS to SCAs (backhaul link) at the same frequency
band. The power allocation problem of the MBS and SCAs
with FD capability is formulated as a non-convex optimiza-
tion problem. Then it is reformulated as a convex problem
utilizing semi-definite relaxation. Scaled beamforming design
and power optimization algorithm is coherently addressed to
maximize the system sum rate with reduced power consump-
tion guaranteeing QoS at the clients. The complexity analysis
has been performed to compute the optimal system
performance.

1.3 Organization of the paper

The remaining sections of the article are organized as follows:
Section 2 discusses the system model. Section 3 discusses the
joint power optimization and scaled beamforming algorithm.

Section 4 illustrates the simulation result analysis and finally,
the conclusion is discussed in section 5.

2 System model

The massiveMIMO enabled HetNet with a small cell network
comprising of one macro base station (MBS) equipped with a
number of M antennas and randomly deployed N number of
SCAs with a single antenna as depicted in Fig. 1. It is consid-
ered that the MBS is capable of providing information to K
single-antenna MUEs and every SCA serves one single-
antenna SUEs. Here K + N « M, which denotes massive
MIMO is used and M can be a large value ranging from 8 to
100 or even more [28]. We assume that all the base stations
and user terminals are synchronized and operated on TDD
protocol. The variables or representation utilized for deriving
the equations are presented as in Table 2.

2.1 Channel model

In channel modeling, the fading channel matrix is represented

as D ¼ dk;0d
H
k;0; :…; dk;ndHk;n

h i
.Rayleigh flat fading random

variable is represented as dHk;0∈C
M�1 and dHk;n∈C

N�1

In addition, MBS employsMZF beamforming technique to
perfectly eradicate the multiuser interference. The xmk;0 and x

s
k;n

denotes the data signals at the MBS and the nth SCA serving k
user equipments (UE). It is obtained from the Gaussian code-
book and it is represented as xsk;n∼CN 0; 1ð Þ for n = 0,……, N.

Then, nk is a complex guassian noise variable and variance is

σ2
k . The beamforming vectors zmk;0∈ℂ

M�1, zsk;n∈ℂ
N�1 are

multiplied with the data signals to acquire the transmitted
signals.

Table 1 Summary of the related works

Reference Methodology Parameter System design Beamforming Design is
considered

Backhaul power allocation
is considered

[20] Power allocation Maximize EE HetNet with small cells No No

[21] Power allocation Rate
maximization

HetNet with small cells No No

[22] Power allocation And
antenna selection

Maximize SE
and EE

Massive MIMO No No

[23] Power allocation Maximize
fairness & SE

Massive MIMO No No

[24] Power optimisation Rate
maximisation

Massive MIMO Yes No

[25] Power allocation Improve EE Massive MIMO No No

[28] Power Optimisation Improve EE Massive MIMO enabled HetNet
with small cells

Yes No

[30] Power optimisation Improve EE Massive MIMO enabled HetNet
with small cells

Yes No
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xn ¼ ∑
K

k¼1
zsk;nx

s
k;n; n ¼ 0; :…;N ð1Þ

Here zsk;n≠0; and this optimization variable is used to find

the solution for ‘n’ transmitters that can provide services to the
kth UE. The received signal at the kth MUE which experience
the inter-tier interference from SCAs is written as

ymk ¼
ffiffiffiffiffiffi
Pmk

p
dm

H

k zmk x
m
k þ ∑

N

n¼1

ffiffiffiffiffi
Psn

p
ds

H

nkx
s
n þ nmk ð2Þ

The first term in Eq. (2) represents the intended signal
received by MUEs from the MBS and the subsequent term
indicates the cross-tier interference from SCAs. The received
signal-to-interference-plus-noise ratio (SINR) of kth MUE is
derived using the Eq. (2) and it is as follows:

SINRm
k ¼

Pmk dm
H

k zmk

��� ���2
∑N

n¼1P
s
nd

sH
nk

2 þ σ2
k

ð3Þ

SCAs acquire information from the MBS and concurrently
transmit the information to SUEs utilizing the same frequency
resource. Self-interference from itself and co-tier interference
from other SCAs are the commonly occurring interference at
the SCAs. Thus, the received signal at the nth SCA is written as

ybn ¼
ffiffiffiffiffi
Pbn

q
db

H

n zbnx
b
n þ ∑

N

n0 ¼1;≠n

ffiffiffiffiffiffi
Ps
n0

q
db

H

n0nx
s
n0 þ

ffiffiffiffiffiffiffiffi
γPsn

p
xsn

þ nbn ð4Þ
The first term in Eq. (4) represents the intended signal, the

subsequent term indicates the co-tier interference and the third
term indicates the self-interference and self-interference can-
cellation methods are utilized to evaluate the value of γ. The
investigation carried out in this work is a common case.
Hence, the received SINR at the nth SCA is represented as

SINRb
n ¼

Pbn db
H

n zbn

��� ���2
∑N

n0 ¼1;≠nP
s
n0d

bH

n0n

2 þ γPsn þ σ2
k

ð5Þ

The SUEs suffer from co-tier interference due to MBS and
cross-tier interference due to SCAs. Thus, the received signal
at the nth SCA user can be written as

ysn ¼
ffiffiffiffiffi
Psn

p
ds

H

n xsn þ ∑
N

n0¼1;≠n

ffiffiffiffiffiffi
Ps
n0

q
ds

H

n0nx
s
n0 þ ∑

K

k¼1

ffiffiffiffiffiffi
Pmk

p
dm

H

n zmk x
m
k ;

þ ∑
N

n0¼1

ffiffiffiffiffiffi
Pb
n0

q
dm

H

n zbn0x
b
n0 þ nsn

ð6Þ

Fig. 1 Massive MIMO enabled
HetNet with FD small cells

Table 2 Variable/Representation used in the system model

Variable / Representation Interpretation

M Number of antennas in MBS

N Number of SCAs

K Number of MUEs and SUEs

P Transmission power

d Small scale fading

z Precoding matrix

x Data symbol

k Index associated to kth MUE

n nth SCA & its user index

()m Represents MBS

()s Represents SCAs

()b Represents backhaul
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The first term in the above Eq. (6) denotes the intended
signal, the subsequent term indicates the co-tier interference
from SCAs, the third and fourth terms indicates the cross-tier
interference from the MBS. Therefore, the received SINR at
the nth SCA user is expressed as

SINRs
n ¼

Psnd
sH

n

2

∑
K

k¼1
Pmk dm

H

n zmk
�� ��2 þ ∑

N

n0 ¼1

Pb
n0 dm

H

n zb
n0

��� ���2 þ ∑N
n0¼1;≠nP

s
n0d

sH

n0 n
2 þ σ2

k

ð7Þ

3 Joint power optimization and scaled
beamforming algorithm

In this section, problem realization is done and the
beamforming algorithm with less complexity is discussed.
The main objective is to attain power optimization while sus-
taining QoS. The QoS constraints denote the data rate [bits/s/
Hz] that every UE must attain in parallel. It is denoted as
log2(1 + SINRk) ≥ γk, where γk is known as the fixed QoS tar-
get. The aggregate SINR of the kth UE assuming the perfect
channel estimation can be represented as

SINRk ¼
dHk;0zk;0
��� ���2 þ ∑N

n¼1 dHk;nzk;n
��� ���2

∑
K

i¼1;i≠k
dHk;0zi;0
��� ���2 þ ∑N

n¼1 dHk;nzi;n
��� ���2� �

þ σ2
k

ð8Þ

The total power consumed per subcarrier is denoted as
Pd + Ps where Pd, Ps are dynamic and static power [28].

Pd ¼ ρo∑K
k¼1 zk;0
�� ��2 þ ∑N

n¼1ρn∑
K
k¼1 zk;n
�� ��2 ð9Þ

Ps ¼ ηo
C
Mþ ∑N

n¼1

ηn
C
N ð10Þ

Here, C denotes the number of subcarriers, ρo, ρn signifies
the efficiency of power amplifiers at the MBS and SCA, while
ηo, ηn denotes the circuit power per antenna at the MBS and
SCA. Therefore, the power optimization while sustaining QoS
is obtained by

minimize
zk;n∀k;n Pd þ Ps

subject to log2 1þ SINRkð Þ≥γk∀k

∑K
k¼1z

H
k;n zk;n≤qn∀n

ð11Þ

The QoS constraints in the above-mentioned Eq. (11) make
it a non-convex problem and it can be reformulated as a con-
vex problem utilizing semi-definite relaxation. To achieve a
convex semi-definite problem formulation from Eq. (11), the
matrix is expected to be positive semi-definite and it is repre-
sented as ℤk;n ¼ zHk;nzk;n∀n and the matrix rank is less than or

equal to 1 i.e., rank Zk;n

� �
≤1. Rank could be zero which

implicates Zk;n ¼ 0. Hence, by including MBS and SCAs,
the expression is given as

minimize
zk;n ≥0∀k;n

∑
N

n¼0
ρn ∑

K

k¼1
tr ℤk;n

� �þ Ps

subject to rank ℤk;n

� �
≤1∀k; n

∑
N

n¼0
dHk;n

	 

1þ 1eγk

 !
ℤk;n− ∑

K

k¼1
ℤ i;n

 !
dk;n≥σ2

k∀k;

∑K
k¼1tr ℤk;n

� �
≤qn∀n

ð12Þ

Here, qn and σ2
k denotes per-antenna constraints at the

transmission node and variance. Then, the QoS target is trans-
formed into SINR targets which are as follows.

The QoS target is given as log2(1 + SINRk) ≥ γk ∀ k ,
After applying ant i log on both sides , we get

SINRk≥2γk−1∀k.
Substituting the SINRk value from Eq. (8) in the above-

mentioned equation as

dHk;0zk;0
��� ���2 þ ∑N

n¼1 dHk;nzk;n
��� ���2

∑
K

i¼1;i≠k
dHk;0zi;0
��� ���2 þ ∑N

n¼1 dHk;nzi;n
��� ���2� �

þ σ2
k

≥2γk−1 ð13aÞ

The above equation can be rewritten considering MBS and
SCAs

∑N
n¼0 dHk;nzk;n
��� ���2

∑
K

i¼1;i≠k
dHk;0zi;0
��� ���2 þ ∑N

n¼1 dHk;nzi;n
��� ���2� �

þ σ2
k

≥2γk−1 ð13bÞ

∑N
n¼0 dHk;nzk;n
��� ���2
2γk−1

≥ ∑
K

i¼1;i≠k
dHk;0zi;0
��� ���2 þ ∑N

n¼1 dHk;nzi;n
��� ���2� �

þ σ2
k ð13cÞ

∑N
n¼0 dHk;nzk;n
��� ���2
2γk−1

≥∑N
n¼0 dHk;nzk;n

��� ���2� �
þ ∑K

i¼1 ∑N
n¼0 dHk;nzi;n
��� ���2� �

þ σ2
k ð13dÞ

∑N
n¼0 dHk;nzk;n
��� ���2
2γk−1

−∑N
n¼0 dHk;nzk;n

��� ���2� �
−∑K

i¼1 ∑N
n¼0 dHk;nzi;n
��� ���2� �

≥σ2
k ð13eÞ

∑N
n¼0d

H
k;n 1þ 1

2γk−1

� �
ℤk;n− ∑

K

i¼1
ℤ i;n

� �
dk;n≥σ2

k ð13f Þ

where QoS target is transformed to SINR target which is given
by,eγk ¼ 2γk−1∀k.

Equation (13a) to (13f) illustrate the procedure to convert
non-convex optimization problem to convex optimization
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problem (i.e) to convert Eqs. (11) to (12). Now, Eq. (12)
indicates the convex problem excluding the rank constraints.
Yet optimality could be attained by relaxing the constraints.

As in [28], ℤ*
k;n∀k; n

n o
is considered to be the optimal solu-

tion to Eq. (12) and every UE has three choices to attain

optimality: ℤ*
k;n ¼ 0; 1≤n≤N ; (when the MBS only serves

the UE), ℤ*
k;0 ¼ 0 and ℤ*

k;n ¼ 0 for i≠n (when the UE is

served only by the nth SCA point), ∑K
k¼1tr ℤ*

k;n

	 

¼ qn

(When the UE is served by a combination of MBS and
SCAs). The convex optimization problem could provide an
optimal solution in polynomial time using standard algo-
rithms. To obtain optimal results, every UE is assigned only
one transmitter even thoughUEs could be aided bymulti-flow
transmission. UEs which are very near to SCAs are merely
served by it and the remaining UEs are served by the MBS.
The transition areas surrounding SCA could not able to satisfy
the QoS targets, so it leads to a change in the transition areas
which has a multi-flow transmission. Thus, it minimizes trans-
mission complexity.

3.1 Scaled beamforming approach

The optimal beamforming related to spatial soft-cell has mod-
erate complexity but this becomes impracticable during the
real time implementation with a large number of M and N.
The centralized algorithm can be acquired utilizing primal or
dual decomposition methods. It becomes non-viable to prac-
tice in reality since it requires iterative signaling of the param-
eters. Multi-flow ZF beamforming is less complex and non-
iterative. When n = 0…N at the transmitter, the following
equation is calculated.

uk;n ¼
∑K

i¼1
1
σ2
i
di;nd

H
i;n þ Keγkqn

I

 !−1

dk;n

∑K
i¼1

1
σ2
i
di;nd

H
i;n þ Keγkqn

I

 !−1

; dk;n

������
������
∀k; ð14Þ

Here the MBS resolves the convex optimization problem.

minimize
Pk;n≥0∀k; n

∑N
n¼0ρn∑

K
k¼1 Pk;n
� �þ Ps

subject to ∑
K

k¼1
Pk;n≤qk;n∀n;

∑
N

n¼0
Pk;n 1þ 1eγk

 !
− ∑

K

i¼1
Pk;n≥σ2

k∀k

ð15Þ

The allotment of power (Pk, n)
∗ ∀ k provides a solution for

Eq. (15) at the nth SCA and the calculation is as follows

zk;n ¼
ffiffiffiffiffiffiffiffi
Pk;n

p� �*
uk;n∀k ð16Þ

When ZF beamforming is applied in the above algorithm,
the problem could be formulated as a power allocation issue
which is represented in Eq. (15). It is less complex regardless
of the massive antennas present in the base station. Since this
algorithm does not work iteratively, only a few scalar param-
eters are varied among MBS and SCA to sustain the coordi-
nation. The UEs who are in the proximity of SCA are affected.

The conventional ZF technique nullifies the cross-tier
interference of the users who are present in the cell edges.
The system complexity is increased to nullify the cross-tier
interference. Even though the cross-tier interference disap-
pears, thermal noise is present. Therefore, it is limited and
comparable in some aspects with that of thermal noise.
Thus the complexity level is reduced by relaxing the inter-
ference constraints, and the number of antennas can be
increased for providing a larger rate when compared to
the ZF method.

A less complex optimal beamforming algorithm is
achieved through scaling the noise by a factor of ψi, n while
sustaining the desired signal power. The non-iterative and
less complex ZF beamforming serves as a source for the
scaled beamforming algorithm. Here power optimization is
accomplished with less complexity by scaling the interference
noise power which is in the unit norm as in Eq. (17) and it is
written as

u
∼
k;n ¼

∑K
i¼1

1
σ2
i
di;nd

H
i;n þ ψi;n

� �
K

γ∼kqn
I

	 
−1
dk;n

‖ ∑K
i¼1

1
σ2
i
di;nd

H
i;n þ ψi;n

� �
K

γ∼kqn
I

	 
−1
dk;n‖∀k;

ð17Þ

W h e r e
ψi;n ¼ M−1ð Þ þ i−nð Þ; i ¼ 1; :…;K and n ¼ 1; :…;N

The allotment of power (Pk, n)
∗ ∀ k provides a solution for

Eq. (15) at the nth SCA and the calculation is as follows

zk;n ¼
ffiffiffiffiffiffiffiffi
Pk;n

p� �*euk;n∀k ð18Þ

3.2 Power optimization algorithm

InmassiveMIMO enabled HetNet with FD small cell network
interference between the network access and backhaul links is
considered to be limiting factor which can hinder the system
performance. Initially, beamforming is designed at the base
stations to optimize the power consumption under QoS con-
straints. Then the power optimization is carried out through
the power allocation algorithm. The power allocation (PA)
algorithm is formulated for the access and backhaul part of
the network to maximize the sum rates of users. Furthermore,
we have considered the backhaul capacity to ensure the effi-
cient allocation of power resources. The main aim is to
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calculate the power required for transmission by MBS and
SCAs assuring peak power constraints.

In the DL, SCAs permits the reception of information
from the MBS while concurrently communicates the in-
formation to its clients at the same time and frequency
band. Similarly, SCAs permit the reception of information
from its clients in the UL while simultaneously commu-
nicates the information to the MBS. Here, in this study,
SCAs are considered as special MUEs. In the DL, the
MBS transmits information to MUEs and SCAs, and
SCAs transfer the information to their clients concurrently
in the same frequency band. In the UL, the SCAs receive
information from their clients and transmit them to the
MBS, and the MBS receives information from MUEs
and SCAs simultaneously in the same frequency band.
In massive MIMO enabled HetNet with FD small cells,
the transmission or reception of the access and backhaul
of SCAs is possible in the same frequency and time sim-
ilar to the transmission or reception of information to the
SUEs and MUEs.The main aim is to maximize the data
rate of access part of the network while considering the
backhaul capacity limits. The power optimisation problem
is formulated as the maximization of the sum of user data
rates.

Data Rate of MBS : Rm
k ¼ Blog2 1þ SINRm

k

� � ð19Þ

Date Rate of Backhaul : Rb
n ¼ Blog2 1þ SINRb

n

� �ð20Þ
Data rate of SCAs : Rs

n ¼ Blog2 1þ SINRs
n

� � ð21Þ

The total data rate R is derived from SCAs, MUEs, SUEs

represented by Rb
n;R

m
k ;R

s
n is formulated as

R Pð Þ ¼ ∑
K

k¼1
Rm
k þ ∑

N

n¼1
Rs
n þ ∑

N

n¼1
Rb
n ð22Þ

The power allocation strategy of the MBS and SCAs is

written as P ¼ Pm1 ; :…; PmK ; P
b
1; :…; PbN; P

s
1; :…; PsN

� �
: The

Power allocation (PA) strategy adopted by the MBS and
SCA to enhance the sum rate can be achieved by using

max
P

R Pð Þ
s:t: S1 : R

s
n≤R

b
n;∀n

S2 : ∑K
k¼1P

m
k ≤P

m
max

S3 : P
s
n≤P

s
max;∀n

S4 : P
b
n≤P

b
max;∀n

S5 : R
m
k ≥Rmin;∀k

S6 : R
s
n≥Rmin;∀n

ð23Þ

Where S1 denotes that the SCAs backhaul downlink
rate should not be less than SCAs access downlink rate
to assure QoS. Here, S2, S3 and S4 specifies the transmit
power constraint of the MBS, SCA, and backhaul link.
The Pmmax and Psmax represents the maximum transmit pow-
er of the MBS and the SCAs respectively. S5 and S6
denotes the minimum data rate requirement or QoS req-
uisite of MUEs and SUEs.

The Eq. (23) denotes non-linear coupling among the
optimization parameters. It is computationally intractable
to find the optimal solution. So, a low complexity algo-
rithm can be developed to compute the optimal solution.
The coupled problem is solved by dividing it into small
subproblems utilising eigenvalue decomposition method.
In this power allocation algorithm, maximum transmit
power is assigned in the MBS and the backhaul station
i.e., SCA. The transmit power is reduced until the data
rate difference becomes minimal. Pkis computed for all
users in the network using the Eq. (24). The optimal
power allocation according to the water filling algorithm
is utilized to enhance the data rates in the access links
by assuming the interference that occurs at backhaul as
noise.

Pk ¼ νkB−
K

Ak N−Kð Þ ; if Ak >
1

νk
0 ; otherwise

8<: ð24Þ

Where B represents bandwidth, νk denotes the thresh-
old for power allocation according to user priority.
νk ∈ [0, 1] denotes each user’s priority. In case of equal
priority, νk ¼ 1



K

for all k. This corresponds to water

filling distribution with variable threshold levels that can

be varied by the user priorities. Then, Ak ¼ σ2
kþPbkdnk
γk

is the

kth MUEs link condition. Here σ2
k denotes the self-

interference variance, Pb
k denotes the backhaul power,

dnk denotes the channel gain, and γk represents the inter-
fering channel gain with respect to backhaul. The channel
gains dnk and γk follows a uniform distribution.

After determining the access power, both access and
backhaul rates can be determined. If the backhaul rate

Rb
k is greater than the access rate Rm

k , the backhaul power

Pb
k is minimized by a factor of δmin. If Rb

k is lesser than Rm
k

; the MBS should minimize its transmission power Pm
k by

a factor of δmin. In this algorithm, the MBS and the SCA
transmission powers are optimized along with the
backhaul transmission power by considering backhaul ca-
pacity limits.

Power Allocation (PA) Algorithm:
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4 Simulation results and analysis

This section evaluates the performance of the joint power
optimization and scaled beamforming algorithm in the mas-
sive MIMO enabled HetNet with FD small cell networks. The
convex optimization problem has been efficiently carried out
utilizing algorithmic toolbox SeDuMi which is accessible in

the modeling language CVX [35]. Table 3 list the parameters
utilized for simulation.

The total power consumption versus QoS target per user is
illustrated in Fig. 2 with M = 50 and N = 2. The PA and scaled
Beamforming scheme are compared with PA and ZF
Beamforming, MZF beamforming, and MBS schemes. It is
observed that total power per subcarrier of PA and scaled

4
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beamforming scheme, PA and ZF beamforming scheme,
MZF beamforming, and MBS scheme increases with an in-
crease in QoS target per user.

Table 4 shows comparisons of total power consump-
tion and QoS target per user between MBS, MZF

beamforming, PA, and ZF beamforming and PA and
scaled beamforming. From Table 4, it observed that total
power per subcarrier is reduced marginally in PA and ZF
beamforming when compared to the MZF beamforming
technique. This is due to the suitable power allocation
method is employed in the network. Further, the total
power per subcarrier is reduced in PA and scaled
beamforming method when compared to MZF
beamforming, because appropriate joint power allocation
scheme with scaled beamforming method is implemented
in the network. So, PA and scaled beamforming method
outperformed when compared to MZF beamforming, PA
and ZF beamforming and MBS schemes.

Figures 3 and 4 shows the DL sum rate and UL sum-rate
against σ2in dB. DL and UL sum rate is assessed for FDmode
without PA and beamforming, MZF beamforming, FD with
PA and ZF beamforming, FD with PA, and scaled
beamforming. When the value σ2is large, the sum rates ob-
tained during UL and DL transmissions are decreased. It is
because the larger the value of σ2, it indicates the significant
interference resulting in the increased backhaul power con-
sumption. Therefore, the available power for MUEs is low
and on the other hand, MBS assigns a smaller amount of
power to SCAs backhaul link which can affect the achievable
sum rate of MUEs and SUEs during the DL and UL
transmissions.

Tables 5 and 6 show the comparisons of the DL sum
rate and UL sum-rate respectively. From Tables 5 and 6,
it is noticed that the sum-rate is marginally increased in
FD with PA and ZF beamforming when compared to
MZF beamforming. This is due to the appropriate power

Table 3 Simulation parameters

Parameters Values

The radius of the cell 500 m

Number of MBS antenna 100

Number of SCA 2

Number of users 10

Bandwidth 10 MHz

MBS transmit power (max) 46 dBm

SCAs transmit power (max) 20 dBm

Number of channel realizations 10

Least distance between the
MBS and its user

35 m

Carrier frequency 2 GHz

Number of Subcarriers 600

Subcarrier Bandwidth 30 kHz

Penetration loss 20 dB

Noise Figure 5 dB

Power amplifier efficiency ρo = = 2.577, ρn = 19.23 ∀ n

Circuit power per antenna ηo = 189mW, ηn = 5.6mW ∀ n

Per antenna constraints q0 = 66, qn = 0.08mW ∀ n

δmin 0.05 W

Noise power spectral density −174 dBm/Hz

QoS constraint per user 2 bits/s/Hz

Fig. 2 Total power consumption
versus QoS constraints
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allocation method is employed in the network. Further,
the sum rate is increased in FD with PA and scaled
beamforming when compared to MZF beamforming.
Conclusively, the FD with PA and scaled beamforming
outperforms when compared with other approaches be-
cause the PA algorithm assigns the power to the MUEs,
SUEs and the scaled beamforming algorithm reduces the
interference that occurs during transmissions.

4.1 Complexity analysis

The complexity analysis has been carried out by varying the
number of transmission antennas at the MBS, SCAs, and the
number of UEs. Figure 5 clearly shows the total power con-
sumption of the network based on the different number of
UEs. It is inferred that when the UEs in the network increases,

eventually it increases the power consumption. Figure 6
shows the total power consumption of the network based on
the different number of antennas at the MBS. If the number of
transmission antennas at the MBS increases, it creates addi-
tional complexity resulting in increased power consumption.
Tables 7 and 8 illustrate the comparison of total power per
subcarrier and the number of UEs, and total power per
subcarrier and the number of MBS respectively. It is evident
from Tables 7 and 8, is that the FD with PA with scaled
beamforming algorithm provides better results when com-
pared to other approaches. Complexity analysis carried out
relying on the different number of UEs is computed utilizing
the relation

Complexity ¼ Number of UEs log10 PAverage
� � ð25Þ

Complexity ¼ Antennas at the MBS log10 PAverage
� � ð26Þ

Fig. 3 Downlink (DL) sum rate

Table 4 Comparison of Total power consumption and QoS target per user

QoS Target
per users

Total power per subcarrier (dBm) % of Total power per subcarrier reduced

MBS MZF
beamforming

PA and ZF
beamforming

PA and scaled
beamforming

MZF beamforming (vs) PA and
ZF beamforming

MZF beamforming (vs) PA and
scaled beamforming

1 13.5 13 12.5 12.2 3.84% 6.15%

1.5 14.5 13.5 13 12.8 3.84% 5.18%

2 15.5 14.5 13.7 13.5 5.51% 6.89%

2.5 16.5 15 14.5 14.3 3.33% 4.66%

3 18.0 16 15.5 15 3.12% 6.25%

3.5 19.6 17.2 16.5 15.5 4.06% 9.88%

4 21.5 18.5 17.7 17.2 4.32% 7.02%
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Fig. 4 Uplink (UL) sum rate

Table 5 Comparison of Downlink sum rate

σ2

dB
Sum rate (bits/s /Hz) % of improvement in Sum rate

FD MZF
beamforming

FD with PA and ZF
beamforming

FD with PA and scaled
beamforming

MZF beamforming (vs) FDwith PA
and ZF beamforming

MZF beamforming (vs) FD with PA
and scaled beamforming

- 40 18.1 18.2 18.4 18.9 1. 09% 3.84%
- 35 18.1 18.2 18.4 18.8 1. 09% 3.30%
−30 18.0 18.1 18.4 18.6 1. 65% 2. 76%
−25 17.8 17.9 18.2 18.4 1. 67% 2. 79%
−20 17.4 17.6 17.9 18.2 2. 27% 3. 40%
−15 17.1 17.2 17.6 17.9 2. 33% 4. 06%
−10 16.6 16.9 17.2 17.6 2. 38% 4. 14%
−5 15.8 16.2 16.8 17.2 3. 70% 6. 17%
0 15.2 15.3 15.8 16.3 3. 26% 6.53%

Table 6 Comparison of Uplink sum rate

σ2

dB
Sum rate (bits/s /Hz) % of improvement in Sum rate

FD MZF
beamforming

FD with PA and ZF
beamforming

FD with PA and scaled
beamforming

MZF beamforming (vs) FD with PA
and ZF beamforming

MZF beamforming (vs) FD with PA
and scaled beamforming

- 40 7.8 7.7 7.8 7.9 1. 29% 2. 59%
- 35 7.6 7.7 7.8 7.9 1. 29% 2. 59%
−30 7.1 7.2 7.4 7.6 2. 77% 5. 55%
−25 6.6 6.8 7.1 7.3 4. 41% 7. 35%
−20 6.2 6.4 6.7 6.9 4. 68% 7. 81%
−15 5.8 6.0 6.3 6.6 5 .0% 10 .0%
−10 5.4 5.6 5.9 6.3 5. 34% 12. 50%
−5 5.1 5.3 5.6 6.0 5. 66% 13. 27%
0 4.8 5.0 5.4 5.7 8 .0% 14. 00%
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Table 7 Comparison of Total power per subcarrier and Number of UEs

Number
of UEs

Total power per subcarrier (dBm) % of Total power per subcarrier reduced

FD MZF
beamforming

FD with PA and ZF
beamforming

FD with PA and
scaled beamforming

MZF beamforming (vs) FD with
PA and ZF beamforming

MZF beamforming (vs) FD with
PA and scaled beamforming

6 15.44 14.6 13.80 13.0 5. 47% 10. 95%

8 16.42 14.8 14.0 13.4 5. 40% 9. 45%

10 17.26 15.4 14.8 13.8 3. 89% 10. 38%

12 18.34 16.2 15.5 14.2 4. 32% 12. 34%

14 19.26 17.4 16.6 15.3 4. 59% 12. 06%

16 20.96 18.7 17.9 16.6 4. 27% 11. 22%

18 22.3 20.8 19.7 18.5 5. 22% 11.05%

20 23.67 22.8 22.4 21.2 1. 75% 7. 01%

Table 8 Comparison of Total power per subcarrier and antennas at MBS

Antenna at
the MBS

Total power per subcarrier (dBm) % of Total power per subcarrier reduced

FD MZF
beamforming

FDwith PA and ZF
beamforming

FD with PA and
scaled beamforming

MZF beamforming (vs) FD with
PA and ZF beamforming

MZF beamforming (vs) FD with
PA and scaled beamforming

20 25.7 19.0 18.0 16.2 5. 26% 14. 73%

30 19.2 17.0 16.3 15.6 4. 11% 8. 23%

40 18.5 16.5 16.2 15.9 1. 81% 3 .63%

50 17.2 15.3 14.7 14.4 3. 92% 5. 88%

60 16.8 15.1 14.3 14.1 5. 29% 6. 66%

70 16.7 15.3 14.8 14.7 3. 26% 3. 92%

80 16.3 15.4 15.0 15.0 2. 59% 2. 59%

90 16.2 15.5 14.9 14.8 3. 8 7% 4. 51%

100 16.0 14.8 14.6 14.5 1. 35% 2. 02%

Fig. 5 Total power per subcarrier
versus Number of UEs with M =
50, N = 2
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Where (PAverage) denotes the average of the total power
consumed while differing the number of transmission anten-
nas at the MBS and UEs.

From Figs. 7 and 8, it is observed that the system
becomes more complicated with the inclusion of the total
number of UEs and the number of antennas at the MBS
with the increased total power consumption. Thus, it can

be concluded that the complexity possesses a direct rela-
tion with the increment in the different numbers of UEs
and antennas at the MBS, which have a great impact on
the average total power consumption. Shannon channel
capacity theorem is directly proportional to the band-
width. The Eqs. (25) and (26) are assessed with the
existing Shannon channel capacity theorem. Thus, the

 

Fig. 6 Total power per subcarrier
versus Antennas at the MBS

Fig. 7 Complexity analysis on
differing the number of UEswhen
M= 50, N = 2
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FD with PA and scaled beamforming algorithm optimizes
the power with reduced complexity and provides better
performance when compared to FD with PA and ZF
beamforming, MZF beamforming, and FD methods.

4.2 Computational complexity analysis

The number of additions and multiplications required to com-
pute the total power per subcarrier, downlink, and uplink sum-
rate of the proposed algorithm is illustrated in Table 9. The
number of SCA’s are represented as N and number of user’s
are represented as K.

5 Conclusion

This paper has evaluated the performance of the joint
power optimization and scaled beamforming algorithm
in a massive MIMO enabled HetNet with small cells.
The FD transmission mode enables to utilize the access
and backhaul links concurrently in the same frequency
band. Moreover, we express the power allocation problem
as an optimization problem considering co-tier and cross
tier interference. Utilizing the concepts of convex optimi-
zation, tractable, and computable analytical modeling is
done to enhance the sum rates and minimize the power
consumption while operating in FD mode. Furthermore,

Fig. 8 Complexity analysis on
differing the number of antennas

Table 9 Computational complexity of the proposed algorithm

Transmit power per subcarrier

Description Number of additions Number of Multiplications

PA and ZF beamforming 4N2(1 +K2) +NK(8N + 1) + 6N + 2(K + 1) 4N2(K + 1)2 + 4N(3K + 5) +K + 7

PA and scaled beamforming 4N2(1 +K2) +NK(8N + 1) + 6N + 2(K + 1) 4N2(K + 1)2 + 2N(6K + 11) +K + 11

Downlink Sum-rate

Description Number of additions Number of Multiplications

FD with PA and ZF beamforming 4N2(1 +K2) +NK(8N + 1) + 6N + 3K + 2 4N2(K + 1)2 + 4N(3K + 5) + 2K + 7

FD with PA and scaled beamforming 4N2(1 +K2) +NK(8N + 1) + 6N + 3K + 2 4N2(K + 1)2 + 2N(6K + 11) + 2K + 11

Uplink Sum-rate

Description Number of additions Number of Multiplications

FD with PA and ZF beanforming 4N2(1 +K2) +NK(8N + 1) + 7N +K + 2 4N2(K + 1)2 + 3N(4K + 7) +K + 7

FD with PA and scaled beamforming 4N2(1 +K2) +NK(8N + 1) + 7N +K + 2 4N2(K + 1)2 +K(12N + 1) + 23N + 1
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a long wi th the power opt imizat ion , the scaled
beamforming technique is used to sustain the low com-
plexity and it is compared with the conventional ZF
beamforming and the optimal beamforming technique
considering only MBS. The PA algorithm assigns the
power to the MUEs and SUEs to enhance the sum rates
and the scaled beamforming technique reduces the inter-
ference issue. From the numerical results, it is evident that
the joint power optimization and scaled beamforming
technique escalates the network capacity and outperforms
the PA along with conventional ZF beamforming and the
optimal case without considering PA and beamforming
technique. Conclusively, the complexity analysis has been
done and the results clearly show that optimizing the
number of transmission antennas as well as users remains
a crucial design parameter to obtain the optimal system
performance.
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