
https://doi.org/10.1007/s12083-020-00928-z

Structuring communities for sharing human digital memories
in a social P2P network

Haseeb Ur Rahman1 ·Madjid Merabti2 ·David Llewellyn-Jones3 · Sud Sudirman4 · Anwar Ghani5

Received: 8 November 2019 / Accepted: 8 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
A community is sub-network inside P2P networks that partition the network into groups of similar peers to improve
performance by reducing network traffic and high search query success rate. Large communities are common in online social
networks than traditional file-sharing P2P networks because many people capture huge amounts of data through their lives.
This increases the number of hosts bearing similar data in the network and hence increases the size of communities. This
article presents a Memory Thread-based Communities for our Entity-based social P2P network that partition the network
into groups of peers sharing data belonging to an entity–person, place, object or interest, having its own digital memory or be
a part another memory. These connected peers having further similarities by organizing the network using linear orderings.
A Memory-Thread is the collection of digital memories having a common reference key and organized according to some
form of correlation. The simulation results show an increase in network performance for the proposed scheme along with a
decrease in network overhead and higher query success rate compared to other similar schemes. The network maintains its
performance even while the network traffic and size increase.

Keywords Peer-to-peer (P2P) networks · Memory for life systems · Online social networks · Social P2P networks ·
Community-based P2P networks · Human digital memories

1 Introduction

Human mind stores information in an encoded form [16,
27]. This is a biological event, and the encoding process
is carried out through various signals generated in the
brain. The signals are generated as a result of human
perceptions and experiences of its surroundings, through
their senses, in the form of objects, places, people, events,
emotions and so on. These stimuli such as people, places,
etc. are the cues to store and recall human memories.
The cues are also interconnected, such that one cue can
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lead to the storage or recall of a different memory. For
example, while people can generally intentionally recall
specific memories about friends, family, places, events,
and so on, seeing a related scene will often result in
the (involuntary) recollection of other memories [11]. An
example might be the revisiting of a location a second time
reminding us of the friends with whom together we visited
the place before. The relationships between memories can,
therefore, be important for their recollection, and we use
this fact to organize human life digital memories in the
form of Memory Threads (MTs). This leads on to the
organization of our digital memories into Memory Thread-
based Communities (MTC).

The decrease in the cost of personal devices such as
mobile phones, digital cameras and so on has allowed
people to capture and store their life memories in a digital
form far more easily than ever before. Each digital memory
is collected by someone at a time, place or an event and
involving different people, objects and so on. We consider
these real-world objects, interests, places, and people and
refer to them as Entities. An entity also represents a co-
relation between these digital memories. For example, a
person would represent a connection between all the digital
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memories in the form of pictures, audio captures, videos,
and so on, which are captured, collected or stored by that
person or for them throughout their life at different times,
places, events and so on. We believe that the correlations
of these digital memories can allow them to be organized
in a meaningful way. Organized digital memories help in
presenting the purpose of the data for which the memories
were captured and recalling them in future in an intended
way.

In order to take advantage of the connections between
digital memories, this article proposes the use of memory
threads to organize sets of digital memories. A memory
thread is formed for an entity that represents the events
or sequence of events that occurred for that entity. Digital
memories in a memory thread are selected according to a
selection criterion, which is usually the existence of the
entity. They can then be organized according to an indexing
criterion. The digital memories in a memory thread are
organized in a way that expresses information about the
entity. For example, the time or period within a person’s
life that memory was captured might constitute a criterion
for storing and recalling that person’s memories. In this
example, the person, as an entity, is the selection criterion
and the age of the person constitutes the indexing criterion.
Almost every digital memory is stored with the time at
which the digital memories were captured. Therefore, we
can organize digital memories based on the history of the
entity they relate to, which is likely to be useful since history
is one of the ways to express information about objects,
places and so on. If we organize digital memories according
to the history of an object, it naturally forms a linearly
structured memory thread.

Considering the importance of the underlying network
structure which can have a significant effect on the
performance of the network [22, 24, 30, 32, 39], Memory
Thread-based Communities approach has been proposed
to address this issue. An MTC reflects memory threads
in a similar way to the method we use to structure peers
in these memory thread-based communities. An MTC is
formed by peers that share data for an entity such that
each peer in it connects according to the position defined,
based on the digital memories it shares, by the indexing
criterion. Memory thread-based communities, therefore,
bring together similar peers together, with closeness also
being related to the ordering of the indexing criteria. For
example, if a person is sharing the digital memories of his
school years then good places for him to initially connect
to are the peers of his classmates, which are storing digital
memories relating to the same school and period.

We believe that structuring the community according
to certain criteria gives topological awareness to a peer
for routing search queries [12, 39], which will result in
improving the efficiency of search. It also makes these

communities more scalable because a peer connects only to
a few neighboring peers – those that are most similar based
on the criteria – as part of a larger community. Moreover,
the indexing criteria will give certain information to a user
for browsing the social P2P network.

In our previous work [36], different challenges have
been identified for sharing human digital memories such
as network structure, data privacy, searching, etc. [6, 15,
23] and have proposed an Entity-Based Social Peer-to-Peer
(P2P) Network (ESP2PN) [37] where the communities are
formed according to entities in digital memories [38]. This
operates on the analyzed and annotated digital memories
captured by Memory for Life (M4L) system [21]. We have
assumed the digital memories of each person are stored
on and shared through their own peer or personal social
network [2].

The general contribution of the this article can be listed
as follows:

1. Human digital memories exist with certain patterns
that allows them to be organized meaningfully. The
first contribution is proposing a novel Memory Thread-
Based P2P Communities that are organized according
to the patterns in digital memories in the form of
Memory Threads.

2. To present Memory Thread-based Communities for
addressing the challenge of meaningfully organizing
the number of hosts bearing similar data. As a
result, large communities are organized meaningfully
according to a common reference key and a correlation
among them.

3. To improve the network performance by decreasing the
network overhead and increasing the query success rate
compared to other similar schemes.

4. To maintain the network and its performance irrespec-
tive of the increase in network traffic and size of the
network. Hence, proving them to be more scalable.

In the remainder of this paper, we will elaborate on
these ideas further. Section 2 describes existing work and
the arguments as to why existing architectures are not
suitable in our case. Section 3 explains the idea of memory
threads, its types and how they can be used to organize
digital memories. Section 4 explains how the communities
are formed according to memory threads. Here we explain
how various types of memory thread can be reflected in
the structure of the network and the joining of a peer
to a memory thread-based community. We provide details
of our simulated memory thread-based community system
and compare it with some of the existing file sharing P2P
networks aimed at tackling similar digital memory storage
issues. The results are explained in Section 5. The article
has been concluded in Section 6 with a look at future work.
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2 Related work

Methods for organizing digital memories using computing
devices have been considered since the birth of the
computer, starting with Vannevar Bush in 1945 [5] in his
famous article “As We, May Think” in the form of a
machine called the Memex. According to Bush, “A memex
is a device in which individual stores all his books, records,
and communications, and which is mechanized so that it
may be consulted with exceeding speed and flexibility. It
is an enlarged intimate supplement to his memory”. At
the push of a button, all the data of a person should be
retrieved by the machine in a short time . Gorden Bell’s
MyLifeBits [14] aimed to provide a realization of the
Memex utilizing the tools, increased processing capabilities
and relatively-speaking large digital storage capacities that
have become available more recently. The software of
MyLifeBits has the ability to store images, links, text,
videos, etc. in a database and allows manual annotation
of the material. The area has subsequently been further
extended to collecting digital memories and various tools
and techniques have been developed for this e.g. Eyetape.
Jim Gemmell et al. [13] describe the four principles that
were applied when designing MyLifeBits. First, “strict
hierarchy should not be imposed on data organization”.
Second, “many visualizations of their life bits were
desirable to help understand what they would be looking
at”. Third, “the value of non-text media is dependent on
annotations”. Fourth, “authoring tools create two-way links
to media that they included with new media”. Several other
areas were identified and a single platform was required
to develop tools and techniques for collecting, storing,
organizing, sharing and generating meaningful information
from digital memories. In this effort, developing an M4L
system was accepted as a third grand challenge (GC3) by
the Engineering and Physical Science Council (EPSRC) [1]
in the UK in the year 2008 [4]. Azizan et al. [20] are
currently working on a prototype of a Human Life Memory
system for collecting, storing and organizing different life
events, and for identifying interesting events referred to
as “Serendipitous Moments”, as well as discussing sharing
via P2P networks. In our previous work, we described the
challenges for sharing human life digital memories [36] and
proposed an Entity-based social P2P network [37] based
on the challenges for sharing memories. To share digital
memories, it is important to properly organize the network
so that data of the entities is not lost. The following are a
few approaches which use the data contents to organize and
search peers and data in the network.

Unstructured P2P networks [6, 8, 12, 15, 23, 31], also
called pure P2P networks, connect peers in a ‘random’
manner. Each peer has equal responsibility for routing
messages and providing services. Since there is no central

system that controls and manages the network, it is the
responsibility of each peer to keep a record of its neighbor
peers and resources. Randomwalk [34] and Flooding are the
most commonly used searching techniques in unstructured
networks [3, 12, 15]. Unstructured networks are less
scalable, produce high network overhead and have lower
search precision (due to queries being directed to irrelevant
peers) compared to their structured counterparts [17, 28,
29, 33]. Search precision also depends upon the number of
hops a query travels. If the number of hops a query travels
is higher, then the successful query rate increases while at
the same time generating more network overhead and vice
versa.

Upadrashta et al. [35] utilize the in-network experience
of a peer. Peers analyze queries and find the interest of a peer
from the search queries that are received from other peers.
In this way, every peer keeps (stores) information about
other peers, leading to the formation of virtual communities.
Upon the arrival of a search query, it has been analyzed and
then forwarded to peers with similar interests reflected in
the search query. An inexperienced peer has less knowledge,
making it harder for it to find content stored by others,
which can be a problem for newly joined peers. In Semantic
Overlay Networks (SON) [7], peers that are semantically
similar are grouped into a single cluster. Maze [18] is a
centralized online social P2P network, which allows people
to share their resources, friends list and status. The server is
responsible for connecting peers and issuing tickets to peers
for security. However, the network cannot operate without
the server due to the crucial role it plays in providing
connectivity and security.

In a similar approach proposed by Modarresi et al. [25],
a group of peers with similar interests are gathered in a
community. Data lookup in Interest-Based Communities
(IBC) is performed by sending queries only to members
with similar interests. Community-based approaches group
similar peers together which allow peers that do not have
the required data to be avoided during the search. Such a
community certainly brings similar peers together but does
not provide any information about the status, characteristics
or ‘personality’ of entities. Within these communities, there
is no further structure imposed, and peers will connect with
other peers without consideration for any other similarity
criteria. The exact location of data is therefore not known
in advance. When a peer searches for some particular item
of data, it sends queries to all members – or up to a certain
number of hops – within a community. However, sending
queries to all peers creates overhead since peers that have no
relevant data will also receive these queries. Lowering the
number of hops inside the community reduces the overhead,
but decreases the chance of finding the required data.

In IBCs, data is shared according to the interest of
the host. If the interest of the host changes then there
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is the possibility that their associated peer will leave the
community and the data being shared by the peer will
not be accessible anymore. Contrary to IBCs, we consider
the actual data being shared by the host for creating
communities and connecting peers inside each community;
because as long as the data is available for sharing, it will be
accessible in the same community. We also believe that our
memory thread-based communities will be more stable due
to the entities in our Entity-based social P2P network.

3Memory threads

Memory threads are formed for digital memories where
various hardware and software tools, such as Memory for
Life systems [10], are able to analyse and meaningfully
define memories in a digital form. Some systems where
automatic analysis by a tool is difficult, also allow manual
annotations to be made e.g. MyLifeBits [13]. We refer to
the tagged information stored in the form of metadata (either
by hardware, software or manually) with a digital memory
as a memory key. As described above, people remember
their memories based on some reference, such as person,
place, event etc. which we call entities, which is then used
for recollection. The memory key(s), in the form of entities
in data, contain such reference(s) to a digital memory that
can be used to recall it is called a reference key. A single
or combination of such memory keys forms a reference key.
A digital memory must have at least one reference key. A
reference key for a piece of data can either be set by the
owner or user of the data explicitly, or obtained from a data
analysis and annotation tool such as an M4L system.

We will explore this idea more comprehensively using
an illustrative example (adapted from a real scenario) based
on the picture of the Eiffel Tower shown in Fig. 1 [19].
This picture was captured by Jim and Emmy Humberd in

March 1989 using a digital camera in cloudy weather during
the when it was refurbished for its 100th anniversary. In
this example the type of data (picture), date (March 1989),
device (camera), name of entity (Eiffel Tower), weather
(cloudy), photographer (Emmy Humberd) and event (2nd
year of 100th anniversary) are all memory keys. Reference
keys to the memory in Fig. 1, in the form of the names of
the entities involved, can be set as “Eiffel Tower” and the
photographers. The digital memory not only belongs to the
Eiffel Tower but also forms part of the digital memories of
the photographers.

Similar digital memories have a common reference key
and can be recalled using the same reference. Digital
memories of similar references can be put together and are
organized according to certain criteria to form a memory
thread. In other words, a memory thread is the collection
of memories which has a common reference key and is
organized by a criterion which structures them in a specific
order. The order of the digital memories in a memory thread
should be established so that they can be traced by moving
from one memory item to another. A memory thread should
also be in a form that provides information about the entity
for which the memory thread has been formed. For example,
time, which is further considered as history of an entity to
form memory thread, is often used as a reference to digital
memories since it allows their memories to be recollected
based on when an event took place.

3.1 Selection and indexing criteria

To form a memory thread, certain criteria are used to select
the relevant digital memories that it will be made up of.
As we discusses above, there are two types of criteria used
to form a thread: selection criteria and indexing criteria.
The selection criteria select those digital memories that
have a similar reference key as used by people to recall

Fig. 1 A digital memory and its
associated memory keys

Photographed by: Jim 
and Emmy Humberd

General Info: 
traveling

Weather: Cloudy

Date: March1989

Name of Object:
Eiffel Tower
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their memories. The indexing criterion organizes the digital
memories into a given order. It’s, therefore important that
every digital memory should have at least one memory key
which can be used as an indexing criterion. For example,
to form a memory thread for the Eiffel Tower as shown
in Fig. 2, the selection criterion would be the name of
the entity itself (i.e. the Eiffel Tower). However, as a
selection criterion this will be invariant across all of the
memories, and therefore wouldn’t generally be appropriate
as an indexing criterion as well (although there are certain
situations where this is not the case, such as where the
selection criterion takes the form of a continuous range of
values). A separate indexing criterion is therefore needed,
examples of which could be time, temperature, or any other
total ordering. If time is the indexing criteria for the Eiffel
Tower thread, then the thread will be formed as the digital
memories of the Eiffel Tower at different times, for example
relative to its construction in 1889. A memory thread of
the Eiffel Tower is illustrated in Fig. 2, where each point
represents a digital memory along with the time a digital
memory is captured. In this example, the memory thread
gives us information about the history of the entity. Yet there
is no single memory key that allows organizing all types of
digital memories under a single criterion, which is why it
is not possible to present a specific structure for memory
threads: the structure will change according to the indexing
criterion that organizes the data. For example, as considered
in the above example time can be a memory key for
organizing digital memories of the Eiffel Tower. If digital
memories for the Eiffel Tower are organized according
to time then it will form a linearly structured memory
thread, but the structure of the memory thread would be
different if we were to choose location as an indexing
criterion.

A memory thread is formed for every entity, which has
its own digital memories or is a part of the memories of
another entity. A memory thread stretches over many digital
memories that relate to a single entity. At a certain place in
a memory thread, where the digital memories of different
entities have a common reference key, different threads will
overlap with one another. We call the overlapping points
of different threads networking points, shown in Fig. 3
as circled areas. A memory thread can have a single or

many overlapping points. For example, many people, store
the digital memories of their visit to the Eiffel Tower
as a part of their memory threads. Each of them has
their own memory threads, but at the Eiffel Tower their
memory threads overlap with each other which become a
networking point for them. The networking points connect
different memory threads and form a network of memory
threads. The networking points allow access to the memory
threads of other entities. In our social life, we also have
networking points. For example, a conversation becomes
friendlier when two people have visited the same place or
they belong to the same profession.

Additionally, multiple indexing criteria can be used to
organize the digital memories into a multi-dimensional
space such that applying a single or combination of criteria
can retrieve the required digital memory or memories.
However, this approach has not been considered yet as part
of this study and will be explored further in future.

3.2 Extant and virtual memory threads

As defined above, some entities – such as humans – are
capable of capturing, storing and maintaining their memory
threads using a device such as a computer, mobile phone
etc. Such a memory thread would be called an Extant
Memory Thread (EMT). The memory thread of an entity
whose memories are part of the extant memory threads of
other entities, but where the entity cannot itself capture,
store or maintain memories, is called a Virtual Memory
Thread (VMT). A virtual memory thread is formed at the
networking points of the EMTs as shown in Fig. 3, because
these will be the memories which belong to/involve those
entities which either do not own or cannot store, capture
or maintain their memories. This can be counter-intuitive,
since we wouldn’t normally refer to memories of entities
that are not capable of having memories. However, in our
case it’s convenient to project memories onto inanimate
objects for the purposes of generalization and improving the
effectiveness of the network. Each entity can then find the
memories of other entities by following its extant memory
threads to a networking point that can lead to the virtual
memory threads of the entities it is interested in. Figure 4
illustrates a selection of EMTs connected by VMTs.

Fig. 2 A virtual memory thread
for the entity i.e. Eiffel Tower
(selection criterion) and time
(indexing criterion) where each
point represents a digital
memory along with the time a
digital memory is captured

1984

1989

2005

2006

2008

2010

2011
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Fig. 3 A network of extant memory threads highlighting (circled area)
the networking point

4 The proposed: memory thread-based P2P
communities

A detailed discussions on Memory Thread-based P2P
community, How EMT and VMT based communities are
formed in MTCs, structure of an MTCs and how peer join
the communities are given further below.

4.1 Memory thread-based P2P communities

The network structure of our Memory Thread-based P2P
Communities for Entity-based social Peer-to-Peer (P2P)
networks [37] is based on the idea of memory threads
described in the previous section. In our approach, we
maintain memory threads for each entity across the network.
A memory thread is reflected in the network structure in
order to organize the peers in the form of a Memory Thread-
based Community (MTC). A peer in an MTC represents a
digital memory in a memory thread formed in the network.
Since, a peer can store many digital memories either for a
single or many entities, which allows it to become a member
of one or more than one MTCs. Similar to memory threads,
a selection criterion, which is an entity, is used to form an
MTC and an indexing criterion defines a structure or an
order for the community. In our network, a reference key
for a digital memory can be set in a number of ways. It can
be set by the owner of the data explicitly, set automatically
by an M4L system, or obtained by aggregating search
queries received for a single or a group of memory keys.
As described earlier, an entity can have an extant memory
thread or a virtual memory thread; these are also used to
organize peers in our network. An extant memory thread is
maintained on a single peer and a virtual memory thread
across the network. In other words, a virtual memory thread
spans many extant memory threads stored at different peers,

which allows to connect peers in network in the form of
MTCs.

4.2 Types of communities

Communities has been classified into two categories and
briefly explained in the following sub section.

4.2.1 Extant memory threads based communities

A community of peers of Extant Memory Thread (EMT)
is formed by or for an entity from its digital memories.
As people prefer to be the sole owner of their own data,
therefore, an EMT is stored on a single peer or in the
personal social P2P network of an entity because data
in an EMT contains only a user’s own captured digital
memories. To create an extant memory thread, an entity
specifies selection and indexing criteria and simply binds
their existing digital memories to the thread (or adds them
to the thread when a new digital memory is captured) on his
own peer or personal social P2P network. Note that entities
can have a single or more extant memory threads and that
a digital memory can be part more than one extant memory
thread at a time (but must be part of at least one). Other
peers in the network join an EMT either by invitation or as
members in a virtual memory thread. An EMT is simply a
memory thread stored on a single peer to which other peers
in the network are attached.

4.2.2 Virtual memory threads based communities

Creating a P2P community of Virtual Memory Thread
(VMT) is less straight forward, due to its decentralized
nature. As we discussed above, there are entities that
cannot capture, store or maintain their own digital memories
and their ‘memories’ therefore all – by necessity – form
part of the digital memories of other entities. Also, for
entities which can capture or store their memories there are
nonetheless some digital memories that relate to them but
are not owned by them and cannot therefore become a part
of their EMTs. Such digital memories will be part of EMTs
of other entities and could possibly be stored at more than
one peer. A VMT connects those peers in a community
that store data belonging to a single entity. Memory thread-
based communities are actually formed using VMTs. The
following paragraphs describe the process of forming and
joining a VMT in the network.

To form a virtual memory thread, a peer broadcasts a
request for the digital memories of an entity. The request
contains the selection criterion for the memory thread.
Those peers that have data matching the criteria of the
thread reply with a notification highlighting the availability
of such data. The reply message contains information about
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Fig. 4 VMTs (dashed lines)
spanning over the networking
point of EMTs (solid lines)

the stored data in their EMT which can become a part of
the VMT. The sender receives the replies from all the peers
and starts a new thread-based community by making a list
of those peers which claim to have relevant data. A suitable
indexing criterion is then applied to these digital memories
to structure the list of peers. The list contains the addresses
of the peers structured according to the indexing criteria.
The list is sent to all peers that replied with relevant data and
the peers become a part of the newly formed VMT.

4.3 Joiningmemory thread-based community

A memory thread-based community is formed by connect-
ing those peers which have common reference keys for
similar digital memories. Peers in the MTC are arranged
according to the indexing criterion in a specific order as
described above, and this ordering also defines the structure
of the community. New peers can join an existing commu-
nity, as soon as they are discovered or new digital memories
are added by entities in the network.

If a peer wants to join a memory thread, it follows
the indexing criteria to find its place in the thread. A
peer finds the first peer by broadcasting in the network as
described earlier; once found it connects with it. Each peer
in the thread retains information about its neighbor peers
either side in this thread. A new peer can therefore find its
location in the thread by sequentially sending messages to
each peer along the thread. When a peer finds its suitable
location in the thread, it then stores its two or three hop
neighbors on both sides in the thread. The purpose of
connecting with two or three hop neighbours instead of one
is to avoid partitioning occurring in the event that a peer
leaves the network unexpectedly. In this case the next hop
neighbour will be connected which will avoid the thread
becoming split. There will be no dedicated peer responsible
for maintaining a memory thread; if any peer – whether the
peer that started the thread or one that joined later – leaves a

thread, it will not disconnect the thread since each peer has
equal responsibilities in maintaining the thread.

4.4 The structure of memory thread-based
communities

The purpose of memory thread-based communities is
to organize the network properly. For this purpose, a
characteristic of an entity, stored in the form of metadata,
can be used to form a memory thread in order to organize
the community for an entity. To structure our network for
achieving good network performance, we consider the use
of the history of an entity to organize its digital memories
within the network. One important reason for choosing this
as an indexing criterion is that the time at which a digital
memory is captured is usually stored with the memory, and
is therefore widely available. For this indexing criterion the
peers in our network will be organized linearly such that
each peer stores the address of its immediate one and two
hop neighbors, as shown in Fig. 5.

In our network, two important scenarios have been
considered that have an effect on the average path length and
robustness of the network. First, a single peer may store files
that result in its appearing multiple times and at different
places in a single memory thread. These types of peers can
provide shortcuts while routing through the network. In the
second scenario, multiple peers store duplicate files. The
indexing criteria place all of these multiple files into a single
location within the memory thread. So if any peer fails or
leaves the network then another peer storing the same (or a
very similar) file will remain available, thereby increasing
the robustness of the network.

Figure 6 shows how peers can store many digital
memories about an entity and appear multiple times in a
memory thread; peers drawn with the same colour represent
different files on the same physical device. Each peer
keeps a sorted list of neighbours according to the indexing
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Fig. 5 Memory thread-based
community with 2-hop
connection

criterion. Whenever a query is received at one of these peers,
it can be forwarded according to the list in order to avoid the
extra peers that would otherwise lie in the memory thread
between the two pieces of data stored on the same node.

Figure 7 shows peers that have duplicate files, repre-
sented by the colour of the peer. When a peer joins an MTC,
it finds its location in the thread and attaches to it. Those
peers which have duplicate files will have the same locations
in the thread. When there is more than one such peer they
form a sub-community and select one peer as a represen-
tative for the sub-community. The representative takes part
actively in the thread. The other peers in the sub-community
are connected to the representative as well as to the peers
on the both sides of the representative, so that if the repre-
sentative leaves the network another peer can take its place.
The non-representative peers do not take an active role in
the thread until they become the representative.

The following figures, Figs. 8 and 9, show a snapshot of
our MTCs, for the simulated network that we will discuss in
Section 5, generated by Pajek [22]. Figure 8 shows all the
peers in a circular form. The edges in the diagram indicate
shorts paths running across the circle of peers. Figure 9 is
the network diagram of the peers in Fig. 8, without imposing
any circular arrangement.

5 Simulation results

In this section we describe our simulated MTC network and
compare it to existing methods. In particular we compare
it in terms of performance to interest-based communities
(IBC) and unstructured networks. The simulator has been
adapted from that of Modarresi et al. [26] and is used for
simulating social networks and semantic social networks.

5.1 Simulation setup

The simulation environment was set according to the static
input parameters so that the network structure follows a
power law distribution. This is to reflect the behaviour
expected of an online social network [9]. The total number
of interest-based communities in the simulation was set to
seven and sub-communities are linearly distributed in each
community. Each peer is a member of three communities
at a time and files are distributed linearly throughout the
network. Each peer has an upper limit set for the number
of connections it can support, determined by a neighbour
distribution function that obeys a power law distribution
with scale value greater than two. Network connections are
bi-directional and the simulation time is 5000 simulation
seconds. Peers in the unstructured network are connected
randomly by selecting a peer and connecting it with a
random number of peers until it reaches its upper limit of
connections. The files are also distributed randomly. The
graph density is calculated according to the formula (2 ×
E)/(V × (V − 1)) where E is total number of edges and V
is total number of vertices. For each of the above networks
this is shown in Fig. 10.

Flooding has been used as the search technique for all of
the networks and the maximum number of hops a query can
travels is capped at three. The total number of connections
in each network is approximately the same, as given by
the graph density in Fig. 10. All results are given as the
average value over fifteen experimental runs. The outputs
measured are the rate of successful queries, the resulting
network overhead and the number of hops a query travels if
successful.

To measure the output, the input conditions varied to test
the performance of the network are the following.

Fig. 6 Memory thread-based
community peers having
multiple files
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Fig. 7 Memory thread-based
community with duplicate
digital memories

1. Query distribution: Queries in the network are created
according to a linear distribution function. The distri-
bution function which is used to distribute the events,
and to send new queries in the network within the 5000s
time limit is:

Tn+1 = Tn + (b ± m) (1)

where Tn is the time of the last event, Tn+1 the time
of the next event to be set, b is a base value for the
average delay and m is a modifier. The base b for the
function takes the values 200s, 100s, 60s, 40s, 30s, 25s,
20s and 15s and the modifier m takes the value 40s.
The base value represents the time interval between
sending new queries in the network. The modifier value

Fig. 8 Memory thread-based community showing short paths

is used by the distribution function to vary the interval.
This affects the amount of traffic in the network: the
lower the base value, the greater the network traffic
and vice versa. By changing network traffic, we test
the successful queries in the network and the amount of
overhead created. For these runs the network size is set
at a constant 5000 peers.

2. Number of peers: The number of peers in the network
has also been varied to test the performance of the
network with different node densities. The traffic in the
network is generated according to the linear distribution
Tn+1 = T n + (b ± m) as before, but this time with
a constant base value b of 100 and constant modifier
m of 40 throughout all experiments. The successful

Fig. 9 Network of peers of the Memory thread-based community
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queries in the network and the level of overhead created
were recorded while increasing the network size, which
ranges from 2000 to 20000 peers.

5.2 Results and comparison

The figures given below demonstrate the results obtained
from our simulation. Figures 11 and 12 show the rate of
the successful queries sent in the network in the context of
increasing network traffic and size.

The unstructured network returns approximately 75%
successful queries out of the total queries sent in the
network in both cases (i.e. for increasing network size and
increasing network traffic). The success rate for IBCs is
approximately 90% of total queries sent in the network
which is 20% higher than for the unstructured network.
The MTCs have approximately 95% successful queries out
of the total queries sent in the network, which represents
a 26.67% increase compared to the unstructured network
and a 5.6% increase compared to the IBCs. In order to
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Fig. 12 Successful queries as a result of increase in network traffic

better understand the effect on the network performance
as a result of changes in size and network traffic, we
calculated the Standard Deviation (SD) values for the
rate of successful queries. Standard deviation indicates the
variation of values from the mean value. The higher the
value obtained from the SD, the higher the chances that
a network is more affected by the size of and traffic in
the network, which may make the network unstable during
adverse conditions. The percentage values obtained were
1.086103055, 0.611178069 and 0.368911439 as a result of
increasing the network size and 0.57384652, 0.50756941
and 0.1610037 as a result of increasing network traffic
for the unstructured network, IBCs and MTCs respectively.
The values for MTCs are lower than those for IBCs and
unstructured networks in both cases which suggest it’s likely
to be more stable and can maintain the network performance
longer than for the other two network structures. It’s widely
known that unstructured networks are not scalable and
have poor performance as described above in Section 2,
and the results obtained here corroborate this. Unstructured
networks have difficulty handling increasing amounts of
traffic, resulting in a higher SD value and noticeable
deviation in the graphs in Figs. 11 and 12. Performance
starts to drop after a total of 1000 queries have been sent,
as can clearly be seen in Fig. 12. The situation is similar
for Fig. 12. The IBCs and MTCs successfully maintain their
performance, but due to the instability of IBCs – as can
be seen from the calculated SD values – we expect that
performance will in general drop sooner than for MTCs.
Also, based on the current results, we expect that the MTCs
will maintain their performance for longer due to the higher
query success rate and more stable underlying network
structure.

Interest-based communities reduce the network overhead
as compared to unstructured networks, while the MTC
structure reduces it further. The graphs in Figs. 13 and 14
show the overhead produced for each of these network
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structures. The network overhead is measured as the
number of dropped messages during the experiment. A
message is dropped when the Time-to-Live (TTL) of
the message expires, a repetitive message is received or
the peer that poses the query receives a drop message
in response. The results show a considerable reduction
in the number of dropped messages in the case of our
MTCs as compared to IBCs and unstructured network.
The MTC produces approximately seven and twelve times
less network overhead than IBCs and Unst. Network
respectively.

6 Conclusion and future work

In this paper we presented the idea of memory threads to
properly organize human digital memories and discussed
how they can support social P2P networks. Memory threads
are reflected in our Entity-based social P2P network as
the underlying network structure in the form of Memory
Thread-based Communities. The purpose of MTCs is to
connect peers meaningfully. The data shared by a peer,

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 500 1000 1500

Dr
op

 m
es

sa
ge

s

Total sent queries

IBC

MTC

Unst.
Network

Fig. 14 Network overhead produced as per increase in network traffic

which belongs to an entity, is used to connect it to other
similar peers that are sharing data of the same entity. The
connectivity inside an MTC is carried out according to an
indexing criterion. This indexing criterion is a memory key,
representing tagged information in the form of metadata
produced as a result of data annotation. This allows the
digital memories to be organised in a very effective way,
as shown by our simulation results. The indexing criterion
is reflected similarly in the MTC which organizes the
peers according to the digital memories being shared.
The resulting network improves performance, resulting in
a higher rate of successful queries and lower network
overhead as compared to existing network structures
(unstructured networks and Interest-based communities).

The idea of Memory threads and MTCs is based on
the idea that “Let the data speaks for itself rather than
represented by a peer or person”, which where lays the
novelty of our work. Considering the importance of every
digital memory and the details inside a digital memory
of people, the idea of Entities in digital memories will
consider every bit of a digital memory important and will
be accessible in network through the MTCs. When further
research is carried out and efficient ways are discovered to
organize data, so our social P2P network will accommodate
them and based on the results shown above improved
performance of network is expected because network will
be organized by the way people search for data.

We are currently building on this work by implementing
sub-communities within the MTCs, which will be formed
according to the indexing criteria of a memory thread to
create a more robust network. As the above simulation is
based on a static network, in the future we will also explore
performance for MTCs implemented in dynamic scenarios,
with peers frequently leaving and joining the network
(‘churn’). We are also implementing a search technique
which operates on top of the MTCs, to determine the
flexibility of the system with more complex search criteria.
This may require the development of different structures for
memory threads (not just linear) that can exist due to the
different characteristics that appear in real world scenarios
for various indexing values. The structure of a memory
thread and the communities of peers which are formed
according to the memory thread, depend upon the indexing
criteria of the memory thread. The indexing criteria have
a crucial effect on this structure. For example, while the
history of an entity forms a linearly structured memory
thread, the location at which data is captured might form a
structure other than a linear structure.
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