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Abstract
Internet of Things (IoT) design focuses on concurrently handling multiple tasks for improving the scalability and robustness of
the information sharing platform. Therefore, sophisticated resource allocation and optimization methods are necessary to prevent
backlogs in request processing and resource allocation. This paper introduces a scalable resource allocation framework that is
designed to maximize the service reliability in IoT because of a large volume of tasks and information. In this process, deep
learning is used to assist the effective and scalable framework in allocating the resources to tasks with respective time constraints.
The assisted allocation through deep learning balances the density of users, requests, and available resources without replications
and overloading. Thus, the proposed deep learning based resource allocation framework helps in reducing the waiting and
processing times of the requests under a controlled response time. Besides, the optimal segregation of available resources and
request density facilitates failure-less allocation.
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1 Introduction

Internet of Things (IoT) design facilitates visualization and
representation of unprocessed data in digital format. This dig-
ital visualization provides easy access to heterogeneous de-
vices, ranging from small sensors to large cloud systems [1,
2]. The design goal of IoT is to provide pervasive access to
resources and devices in a distributed communication plat-
form without the need for additional infrastructure or compu-
tation units. For this purpose, the common Internet platform is
used by the connected devices and service providers [3, 4].

The IoT platform consists of heterogeneous devices, and
the communication technologies vary from Zigbee to
WiMAX, a wireless local area network (WLAN) [5, 6]. This

heterogeneous communication platform is interoperable
across all devices that share common computation capabilities
and storage [7, 8]. Resource allocation and sharing is preceded
with the help of content dissemination and centralized cloud
servers through infrastructure and other gateway devices [9,
10]. The fundamental process is the pervasive request process-
ing by the cloud servers for allocating resources to the end-
users [11, 12]. Time-constrained request processing and re-
source allocation improves the quality of service (QoS) and
experience of the users over various applications [13].

Resource allocation in IoT is a challenging and demanding
task because of its distributed nature, and the necessity for
timely access. The interconnection between distributed sys-
tems through heterogeneous connectivity and distinct applica-
tions increases the demand for available resources [14].
Besides, the allocation interval and response, along with the
processing time, are some other QoS constraints when deter-
mining the efficiency of an IoT-based system [15].

The primary task in a IoT-coupled resource allocation pro-
cess is its support for interoperability, along with shared ac-
cess and service response without delay [16]. Therefore, a
resource allocating IoT environment has to balance between
the available resources, allocation time interval, and user de-
vice requests for improving the QoS of the application [17,
18]. This aids in meeting the user requirements and in-time
processing of requests to prevent allocation failures. The
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resource allocation and request processing are balanced for
any number of devices to meet the application/ user require-
ments [19, 20]. Moreover, machine learning techniques are
used to select a task from the list of tasks, which helps in
reducing the resource allocation complexity. A number of
techniques such as neural networks, k-nearest neighbor, sup-
port vector machine, and deep neural network are used to
provide resources for their respective tasks. These intelligent
learning techniques improve the resource allocation process
by optimizing the learning process. Therefore, this study uti-
lizes a deep learning technique to allocate resources by over-
coming time and computation complexities. The main contri-
butions of the study are as follows:

& To allocate optimal resources for a task by applying deep
learning with a scalable resource allocation framework

& To minimize time and computation complexities while
allocating resources

& Allocating a resource by resolving its replication and
overloading issues

The rest of the manuscript is organized as follows:
Section 2 discusses various opinions regarding the resource
allocation process. Section 3 analyzes the proposed scalable
resource allocation framework (SRAF) with a resource allo-
cation process based on deep learning, and Section 4 evaluates
its efficiency. Finally, Section 5 provides the conclusions.

2 Related Works

This section discusses different opinions regarding the resource
allocation process. Abedin et al. [21] introduced an effective
QoS, formulated joint user association, and resolved the re-
source allocation problem using analytic hierarchy process
(AHP)-matching. AHP-matching examines the priority of
QoS requirements in heterogeneous applications. After identi-
fying the priority, an association between an IoT device and fog
infrastructure is established. This association helps in minimiz-
ing the resource allocation problem by selecting the best re-
source from a collection of resources. It consists of QoS require-
ments imposed by ultra-reliable low latency communication
(URLLC) and enhanced Mobile Broadband (eMBB) services.
Owing to the computation of quality constraints, the resources
are allocated easily and effectively. In addition, this also main-
tains the reliability and scalability of resource allocation.

Mergenci and Korpeoglu [22] have discussed generic re-
source allocation for heterogeneous cloud infrastructure. They
propose two metrics for reflecting the current state of a virtual
machine. Thus, their proposed method uses a multi-
dimensional resource allocation heuristic algorithm.

Nassar and Yilmaz [23] designed reinforcement learning
for resource allocation in fog radio access networks (F-

RANs). The limited resources are allocated to IoT applica-
tions. For each access, a fog network (FN) decides whether
to serve the request from an IoT user locally at the edge by
utilizing its own resources, or to refer it to the cloud and
conserve its valuable resources for future users with a poten-
tially higher utility to the system.

Efficient resource allocation for the uplink transmission of
wireless IoT networks was proposed by Liu et al. [24]. In this
study, an efficient channel allocation algorithm (ECAA) of
low complexity was designed for user grouping. Then, a
Markov decision process (MDP) model was used for
unpredicted energy arrival and channel condition uncertainty
from each user.

Li et al. [25] proposed an edge-cloud-assisted IoT. They
designed an iterative double-sided auction scheme (DSAS) for
computing resource trading. Here, the brokers solve an allo-
cation problem, and design a specific price rule for the buyers
and sellers of a computing resource to truthfully submit bids.
Thus, the proposed system is able to assist different tasks and
provide the resources without creating any complexity.
However, regular update of price rules is difficult.
Nevertheless, this DSAS system is able to manage compati-
bility, budge balance, and individual rationality.

Li et al. [26] introduced a fog computing node with IoT
(FN-IoT) by collecting a large amount of data to make reliable
offloading decisions. It transfers the data to the fog computing
nodes, thereby supporting a large amount of data with low
latency and limited resources. The deployment of non-
orthogonal multiple access (NOMA) in an IoT network is
used to transmit the data to the same FN in the same time
and code domain. The NP-hardness in this process is resolved
by applying an improved genetic algorithm. However, an in-
termediate access may change the task representation because
of multiple access, creating difficulties in provisioning of re-
sources. Duplications may occur, thereby reducing the entire
system’s performance.

A data-driven resource allocation for NFV-based IoT was
proposed by Tian et al. [27]. This synthetic approach is based
on examining both network processing procedures and sta-
tionary users’ behaviors. Then, a matrix mapping based dy-
namic resource allocation mechanism is modeled for the
virtualized core mobile networks.

Ramezani et al. [28] introduced a single wireless-powered
relay for multiple users. An energy-constrained relay assists
the information transmission from a number of IoT devices to
the access point (AP) using WPC. It maximizes the total net-
work throughput by optimizing the wireless energy transfer
(WET) duration and the relay’s energy expenditure in each
time slot together.

Wireless-powered IoT networks with short packet commu-
nication has been proposed by Chen et al. [29]. An effective
throughput and an effective amount of information are used to
manage the transmission rate and packet error rate (PER). It
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cooperates with the optimized transmission time and PER of
each user to maximize the total effective throughput or mini-
mize the total transmission time, subject to individual user’s
information requirements.

Aazam et al. [30] addressed 5G tactile industrial fog com-
puting. The tactile Internet has its own use-cases across a
number of application domains, the industrial sector being
one of the most popular among them. The objective is the
quality of experience (QoE)-awareness for dynamic resource
allocation in a tactile IoT application.

Dai et al. [31] presented a game-theoretic approach for
QoE-driven, 5G enabled IoT. They introduced an allocation
channel problem for the IoT uplink communication in a 5G
network. A mean opinion score (MOS) function of transmis-
sion delay was used to measure QoE of each smart object.

Gao et al. [32] introduced the expansion of data based on
wisdom architecture as an organized approach for modeling
both entities and relationship elements. This approach focuses
on accessing and processing resources for security protection
by exploiting the cost variation in both types of resource con-
versions and traversals. Here, resources are allocated to a task
based on their characteristics, reliability, and scalability.
Therefore, this study proposes an effective, scalable, and reli-
able framework using deep learning techniques. The intro-
duced techniques not only resolve the above-discussed prob-
lem but also attain the mentioned contributions. Here, refer-
ences [21, 25, 26] are chosen for comparison because of their
use of massive amount of data, along with reliable resource
allocations and scalable allocation processes. Based on the
statistical survey, the proposed deep learning based resource
allocation framework helps in reducing the waiting and pro-
cessing times of the requests under a controlled response time.
Besides, the optimal segregation of available resources and
request density facilitates failure-less allocation. The proposed
system is details discussed in the next section as follows,

3 SRAF

An SRAF integrates the user requests and available resources
to meet the user requirements. This framework jointly
operates in the cloud and IoT layer for improving the resource
allocation rate. The concise management of available re-
sources, user requests and allocation lag is aided through deep
learning. This deep learning paradigm is responsible for
retaining the liveliness of requests and in-time allocation of
resources. Therefore, the proposed framework is modeled in
three phases: request mapping, resource allocation, and time
lag optimization. Here, the interconnection between heteroge-
neous devices and long-range access support of resources are
exploited for improving performance. Besides, the machine
learning process for resource allocation and lag optimization
is augmented to retain the quality of response. In the following

subsections, the three phases will be explained briefly. The
proposed SRAF is shown in Fig. 1.

Figure 1 represents that the SRAF structure for allocating
the resources according to the user request. The data is col-
lected with the help of IoT devices, which are collected using
fog nodes, and stored in the cloud data center. Based on the
user request, the requests are mapping with relevant data
which is performed by passing the instruction via the data
controller and wireless transmission. According to the request,
the resources are allocated by performing the resource map-
ping. The detailed explanation of the Scalable Resource
Allocation Framework based resource allocation process is
discussed in the following section.

Generally, Fog nodes have an extreme virtualization fea-
ture. Here, Each Fog node may be made up of one or more
devices and therefore build a virtual network to serve the
region of coverage in accordance with base station. Such ma-
chines may be routers, switches, gateways or the central base
stations where controls run and managed using controllers.
IoT Edge is connected to a Fog Computing Layer that is con-
nected in turn to the centralized Cloud Computing Layer,
which enables optimized resource, mapping and request of
resources. That kind of relation forms a network framework
for hierarchical computing architecture.

3.1 Resource Allocation Problem

Resource allocation problem is based on the joint optimization
of n IoT users requestingR resources that are available withM
service providers. Further, the time and type of resource request-
ed by the users depend on the application platform. Here, Based
on each resource and service provider as named as
r1; r2;…:rnf gR;m∈M , The n IoT users accommodated and

serviced at a time ts need not be the same. However, the service
provider M = {1, 2,….,m} verify the availability of resources
R¼ r1; r2;…; rnf g at the request time tr, which is first proc-

e s s e d b y s e r v i c e p r o v i d e r M t o v e r i f y i f
r1; r2;…rnf g : → ts1 ; ts2 ;…tsnf g, that is, the resources {r1,

r2,…rn}are allocated at the service time ts1 ; ts2 ;…tsnf g. Let ρa
and ρr denote the allocation of R to n and the total R allocated to
n in ts. The allocation function for a user is given as 2R→ ts∀
R ∈M andR : → ts.With reference to the allocation function, the
resource allocation problem is framed as follows:

max
ρa;γ

∑n
i¼1ρri ρai−∑

M
j¼1∑

R
k¼1ρri �

k
j
∑n

i¼1γi
k
j

� �
ð1aÞ

ρai ¼
0; if R : ↛ts
1; if R : →ts

�
ð1bÞ

∑M
j¼1γijkj ¼ rikj ρai ;∀i∈R;∀k∈M ð1cÞ

∑n
i¼1γijkj ≤

ri
tri
;∀i∈n and k∈M and j∈R ð1dÞ
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In the above formulations, the requirement for resource
allocation is defined, where γ ¼ ts

tr
. In Equation (1a), the max-

imization of the ρa = 1 resource allocation fromM to all n in ts
is expected. The conditions in Equations (1b), 1(c), and 1(d)
are designed to ensure that the R is high, the resources are
mapped for appropriate tr and the ratio of serviced requests
is high. From the above problem formulation, maximizing γij
and ri=tri for ρai ¼ 1 helps achieve optimal resource alloca-
tion. The design of the proposed framework considers the
above-mentioned constraints. The framework design focuses
on improving γ and ri

tr
for the available R, to ensure ρr = 1 for n

in time (tr − ts).

3.2 Request Mapping

In the request mapping phase, the service measures for the
input requests at tr from n are handled and allocated to an
active resource. In the request mapping process, the new re-
quest has towait for a time ta after the existing request, where t-
a is the time for allocation of the resource. Similarly, the pro-
cessing time (tp) ofM needs to be considered when effectively

determining the wait time; therefore, tw ¼ tp ¼ sþ count ρa
ta

� �
is the required time for the next request to be allocated to the
resource. When M < n, the incoming requests are queued in
the IoT buffer for assigning M with a tw. As formulated, the
wait time of the new request is defined as the processing time
for the existing request, and this depends on the processing
speed (s) of M. Allocation failures will happen if this time
exceeds the waiting time of successive requests. Therefore,
request mapping is facilitated on the basis of best-fit M. The

best-fit M is identified based on its allocation rate. The opti-
mized resource of M(fM) is then defined by Equation (2):

f M ¼
tp þ ρa

ρr
s

where;

s ¼ 1−
tr
ts

� �
þ γ

9>>>>>=
>>>>>;

ð2Þ

In Equation (2), s, the processing speed, is based on the
ratio of balanced r and tr

ts
. This fM is used by the deep learning

process with respect to time (tp) for assigning r to an appro-
priate request. Assigning r to the processed request follows the
satisfaction of internal and external constraints, that is, γijkj≤

ri
tri

and fM has a maximum value. If these two constraints are
satisfied, then the request mapping occurs sequentially. On
the other hand, retaining fM is crucial as {r} ∈ R→ {t} in all t-
r accepted for processing. Therefore, a change in the sequence
of request mapping degrades the performance of the allocating
framework. Based on conditional analysis, the exploited and
internal conditions are handled by training the fM at each se-
quence. Figures 2 (a) and 2 (b) present the analysis of fM with
respect to the above conditions.

As presented in Fig. 2 (a), the initial mapping of R→ {tr}
until γ≤ r

tr
. If a change in this condition from prolonged ts or

min {fm} is observed, then fM based ordering of γ is facilitated.
The output of Fig. 2 (a) is refined on the basis of
max {fM} condition, following which the reordering takes
place.

In the reordering process, the tr with less ts is mapped with
the R (i.e.) for reordering the request map and analyze the all

Fig. 1 SRAF structure
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the mapped and unmapped data. In the successive mapping
instances, R→ {ts} in the diminishing order of γ and fM. The
outputs of processing layers fM and γ in Figs 2 (a), (b) are
represented by Equations (3) and (4).

f M1
¼ ρa1

ρr
þ s1 � ts1−tr1ð Þ½ �

f M2
¼ ρa2

ρr
þ s2 � ts2−tr2ð Þ½ � þ r1

tr1
−γ1

� �

⋮
f Mn

¼ ρan
ρr

þ sn � tsn−trnð Þ½ �− rn
trn
−γn

� �

9>>>>>>>=
>>>>>>>;

ð3Þ

In Equation (4), a variation in rn
trn
−γn

� �
is observed when

Equation (1d) is not satisfied. Therefore, the allocation of R
and request mapping is reordered to satisfy the condition in
Equation (1d). This reordering is followed by the validation
of γ for all mapped and unmapped requests. This validation is
given as

γ2 ¼ ρa2 �
r1
ts1
−
r2
ts2

� �����
����− 1

s1

γ3 ¼ ρa3 �
r2
ts2
−
r3
ts3

� �����
����− 1

s2
⋮

γn ¼ ρan �
rn−1
tsn−1

−
rn
tsn

� �����
����− 1

sn−1

9>>>>>>>>=
>>>>>>>>;

ð4Þ

The request mapping is based on the validation of γn, that
is, the analysis of γn prefers {tr} ∀ R : → {ts}, either in an
ordered or unordered manner. Therefore, the mapping order
that does not satisfy Equation (1d) is rolled over to next ts,

provided ts/tr ≤ γn (as per Equation (4)). If this condition is
satisfied, then validation of ρa is not necessary, and tr and ts
are not recorded. This ensures that the request is mapped suc-
cessfully on either of the orders to R provided by M.

3.3 Resource Allocation

In this phase, we focus on the objective defined in Equation
(1a) by satisfying Equations (1c) and (1d). In the request map-
ping process, the condition in Equation (1d) is satisfied by
allocating requests to the appropriate ts and maximizing γ.
Therefore, this resource allocation process focuses on the con-
dition in Equation (1c). In a conventional process, resource
allocation is performed on a first come first serve basis, where-
in the available resource is mapped to the request processed
in tr. Equation (1c) specifies that the rate of serviced requests γ
is equal to the resource mapped for the requests with ρa = 1
constraint. This means the available requests are mapped with
the allocated resource such that ρaρr ¼ 1 in time ts. The s of

the M is the deciding factor in handling all requests and their
allocated resources. Therefore, the instant allocation process
for maximizing γ is defined as

f γð Þ ¼
∑M

i¼1 f Mi
:
1

sni
; if M ≥

tr
ts

∑R
i¼1 f Mi

1

sni
−∑M

i¼1 1−
tri
tsi

� �
; if M <

tr
ts

8>><
>>:

ð5Þ

In Equation (5), f(γ) denotes the maximizing function with
respect to the available M and R. The case of M ≥ R can be
neglected as the available resource is sufficient for allocation,

Fig. 2 (a) Analysis of fM for γijkj ≤ri
tri
(b) Analysis of max fM (order

of γ)
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providedM ≥ tr
ts
. Instead, if m < tr

ts
, the overloading of R needs

to be considered. In this case, the changes in s of aM needs to
be verified, and hence, s and tr

ts
at any time instance is used for

analyzing the allocation process. As given in Equation (1c),

we can consider the case of ∑M
i¼1γ ijk

j
< rikj as M < tr

ts
for

identifying the possible resource allocation criteria.
Therefore, the allocation is determined bymax {f(γ)}, for tr

ts

> M or tr
ts
> R. When tr

ts
> R, the service provider is

overloaded based on its s and tr
ts
rate. The process is differen-

tiated based on s and tr
ts
rate illustrated in Figs 3(a), (b),

respectively.
When handling requests based on s, The following changes

has been considered which are listed as follows,

& M−tr
ts
Requests are allocated with the M to achieve max

f(γ).
& if tsn for R is high under the condition when s is high,

thereby reducing the (ts − tr),
& If tr

ts
is maximized, the allocation time of the requests, on

the other hand of the M is considered.

If trn ≤ tsn−1−trn−1ð Þ, then theM with min trnf g is selected for

serving M−trts
� �

requests. The allocation precedes the M with

minimum trn such that the remaining requests are allocated

with appropriate resources. Therefore, Equation (1c) can be
re-written as

∑M
j¼1γijkj ¼

rikjρa þ si
1

tri
;∀M <

tr
ts
and i∈M

rikj ρa þ si:
tsn−1−trn−1ð Þ
min trnf g:tsn

;∀ M−
tr
ts

� �
≤R and i∈M

8>><
>>:

ð6Þ

From Equation (6), the objective of resource allocation in
Equation (1a) can be redefined as

maxρa;γ ∑n
i¼1ρri ρai−∑

M−tr
ts

j¼1 ∑R
k¼1ρri �

k
j
∑n

i¼1 f i γð Þ
� �

þ mintrn∑
tr=ts
j¼M−tr

ts

∑R
k¼1ρri �

k−M
j

∑n
i¼1

k−m

tri
�
tsi−1−tri−1

0
@

1
A

ð7Þ

The achievable resource allocation based on s and tr
ts
anal-

ysis differentiates the mapping of R using time and resource
availability. Both the factors are verified to improve the rate
of γ and tr

tn
, irrespective of the requests in tr. This also improves

the non-overloading functions ofMwithout increasing (ts − tr)
for anyM < tr

ts
. The objective of Equation (1a) is redefined in

Equation (7) for satisfying Equation (1c), where γijkj is

achieved through maxρa;γ and mintrn . Therefore, the

Fig. 3 (a) Analysis based on s (b)
Analysis based on tr

ts
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allocation is satisfied by maximizing γ based on f(γ) for all R

and trn , for all M−tr
tn

� �
requests.

3.4 Time Lag Optimization

The delay in resource allocation is a significant factor in
SRAF, as the scalability support for n user devices must not
increase (ts − tr). If the allocation time of the requests increase,
the change in ordering of request mapping and overloading
of M requires additional time. Therefore, (ts − tr) causes a lag

in the allocation of resources for M−trts
� �

requests. Another

factor affecting the regular allocation time is f(γ), as the con-
centration of requests in mintrn : is high from the remaining
requests. This trn must be addressed in order to prevent unnec-
essary wait time of the consecutive requests. Therefore, the
time constraints are resolved by controlling the processing and
response time of previously queued requests. Different from
the objectives in Equations (1a), (1c), and (1d), the time lag

for M−tr
ts

� �
is addressed in this phase. First, the time for pro-

cessing and response are estimated for their balanced valida-
tion such that tp = (tr − ts), and the instances of tp and ts are the
same. This condition is validated in two constraints, namely t-
p = ts and tp > ts. The case of ts < tp is not feasible as the proc-
essed request is dropped when this case is satisfied.
Considering that the proposed resource allocation satisfies
the condition and constraints in Equations (1a)–(1d), the ts <
tp condition is discarded. Similarly, when tp = ts, the request
processing and allocation is ideal. On the other hand, if ts >
tp,then tw ≠ 0, which results in prolonged serviced time/
resource allocation (response) time. In order to confine the
process time of resource allocation, tw needs to be reduced.
In some overloaded request-based scenarios, tw ≠ 0, but tw can
be shared among the available requests to reduce ts. This time
lag optimization follows the recurrent analysis of fM and γM in

the preceded allocation process based on s. The consideration
of trts and the mapping is not necessary as tw is relevant for a

allocated/processed request. The mapping and maximization
of trts is achieved through a learning based analysis as derived in

Equation (7). The lag optimization is performed for M−tr
ts

� �
requests that experience tw. The validation of fM and γM based
on available M and s is considered such that

f M M−
tr
ts

� �
¼

tw þ ρa
ρr

� �
s

M−
tr
ts

� �

and

γM M−
tr
ts

� �
¼

M−
tr
ts

∑tp
−
tr
ts
� 1

s

0
B@

1
CA−

ρa
ρr

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð8Þ

In Equation (8), the modified fM and γM for M−tr
ts

� �
is

computed where the existing requests are mapped to s with a

high γM M−tr
ts

� �
. This case is valid until ts ≤ tp; when this con-

dition is not satisfied, M with max f M M−tr
ts

� �n o
is selected

for accommodating the request. This means (tr − ts) + tw ≤ tp
for γM M−tr

ts

� �
constrains ts ≤ tp; else, M is replaced based on

ρa
ρr
, where ρr > ρa. This helps in allocating all resources ex-

pelled by ρa to the overloaded requests in time (tr − ts) + tw ≤
tp. Therefore, tw = tp − (tr − ts) when tp = ts; then, tw = 2tp − tr,

which is less than M−tr
ts

� �
� tp or M−tr

ts

� �
� tw þ tr−tsð Þ

time interval. Hence, the delay in processing is optimized by

differentiating γM and fM conditions for M ¼ tr
ts

� �
requests.

4 Results and discussion

In this section, the performance of the proposed framework is
discussed through suitable experiments. The experiments are
carried out using an opportunistic network environment
(ONE) simulator [33]. The IoT environment is created with
varying number of devices (30, 60, 90, and 120), in which the
number of resource servers is fixed. Metrics such as process-
ing time, response time, resource allocation rate, and failure
probability are observed through the simulation. The number
of resource servers in the experimental simulation is 10, capa-
ble of handling multiple resources at the same time. The re-
quests vary from 20 to 200, for 30 to 120 IoT devices. The
maximum wait time of the request is set as 2.4 s. The 10
resource servers are configured with 2 × 2 Gb physical mem-
ory and 1 TB storage. Besides, the IoT environment is sup-
plied with a shared resource of 1 TB multimedia application.Fig. 4 Processing Time
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A resource server is configured to handle and serve 40 re-
quests at a particular time instance. To verify the consistency
of the proposed framework, the observed metrics are com-
pared with the existing DSAS, AHP-matching, and FN-IoT
methods which were discussed in the related work section.

4.1 Processing Time

Figure 4 illustrates the comparative analysis of processing
time over the allocated resources. The processing time for
the accepted requests is less until ρr > ρa, where the
availableM accepts the additional requests. On the other hand,
if ρr < ρa or requests, then resource allocation follows

γijkj∀ M−tr
ts

� �
. The conditional analysis in Figs 2(a) (b) allo-

cate M−tr
ts

� �
requests to M with max {s} and min trnf g. This

means there is no additional wait time for the overloading
requests. Besides, in the time lag optimization process,

f M M−tr
ts

� �
and γM M−tr

ts

� �
attenuation prevents tw > tp; in

addition, (tr − ts) + tw ≤ tp is retained. Therefore, the wait time

for M−tr
ts

� �
requests is confined within the maximum service

time; hence, the processing time is retained for M−tr
ts

� �
� tp

in tw + (tr − ts) interval. Therefore, tp is (ts − tr + tw), for

M−tr
ts

� �
condition, whentw = 0, Then tp = (ts − tr) for the

overloaded requests, which helps to reduce the processing
time.

4.2 Response Time

The response time of varying requests and devices is com-
pared in Figs 5 (a)– (d). The optimal response time is (tr − ts)
for the requests that are processed with the condition ρa < ρr ∀

Fig. 5 Response Time

Fig. 6 Allocation Rate
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M. Response time increases if the number of ρr is less than the
incoming requests. Therefore, the response time is (tr − ts) +
tw, where tr is determined based on ρa = 1 condition. In the
proposed framework, request mapping and resource allocation
rely on the condition ρa < ρr for all incoming requests handled
by the service providers. These two processes limit the re-
source allocation response time. Contrarily, the response time

for M−tr
ts

� �
requests are to be limited by reducing tw; this is

done by selectingM based on max{s} and min trnf g such that

γijkj and γM M−tr
ts

� �
jointly satisfy the resource allocation ob-

jective in Equation (7). Therefore, based on s and trn , the re-
maining requests are assigned toM for which tr = 2tp − tw or 2t-
s − tw, provided the overall response time is s

2 tr−twð Þ, satisfy-
ing the maximum limit of M−tr

ts

� �
tp
s . Hence, the processing

time is less than M−tr
ts

� �
� tw þ tr−tsð Þ.

4.3 Resource Allocation Rate

The resource allocation rate in the proposed framework is
high, depending on ρa and s of the availableM. In the request
mapping process, fM and {tr} : → {ts} based allocations are
formed, where fM and γn are the balancing factors for
assigning n requests toM resource servers. Different from this

allocation process, M−trts
� �

requests are mapped with M sat-

isfying the s and trn constraints. Besides,Mmust also meet fM
and γM (as defined in Equation (8)) modeled using s and tw.
Therefore, in the resource mapping and allocation phase, trts is

the maximum requests served, which implies the resource
allocation is performed for this rate of processed requests.

Similarly, in the mapping of M−tr
ts

� �
, ρaρr is the achievable re-

source allocation rate. Here, ρa < ρr as the additional requests
are allocated to M with min trnf g. Therefore, trts and

ρa
ρr
achieve

maximum resource allocation in the proposed framework
(Fig. 6).

4.4 Failure Probability

The chances of failed resource allocation in the request map-
ping phase is less as the condition tr

ts
is satisfied for all ρa ≤ ρr

of M. In order to reduce the failure probability of M−tr
ts

� �
requests, the selection of M is based on min trnf g. If tw or t-
pexceeds (tr − ts), then the resource allocations is unsuccessful,
reducing the success rate of the request. The time allocated for
processing prolongs the delay for the consecutive requests.
Therefore, assigning M based on γM and fM (as per Equation
(8)) helps retain the concurrent processing and mapping of trts

Fig. 7 Failure Probability
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requests. Therefore, the (tr − ts) time of the previous requests is
the tw for the new requests. In particular, the successive time
for two tr is tw, and hence, the processing experiences a delay.

Besides, allocating M−tr
ts

� �
requests within the defined time

interval helps reduce the failure in request processing and
resource allocation (refer Figs 7(a)–7(d)). This case is unani-
mous for varying requests and user densities.

5 Conclusion

This paper proposes an SRAF for a user-focused IoT para-
digm. The aim of this framework is to improve the quality of
response for available users with in-time resource allocation
and swift request processing. Deep learning aids the concise
management of available resources, user requests, and the lag
in allocation. This deep learning paradigm is responsible for
retaining the liveliness of requests and in-time allocation of
the resources. Therefore, allocation is performed by balancing
processed requests and available resources. The optimal per-
formance and delay in response is attuned using a time lag
optimization process for the overloaded requests, based on the
processing speed and time of the resource providers. The joint
process flow helps improve the resource allocation rate, and
reduce the processing and response time and failure probabil-
ity. Future studies can include meta-heuristic techniques to
further improve the resource allocation process.
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