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Abstract
Functional encryption (FE) and predicate encryption (PE) can be utilized in deploying and executing machine learning (ML)
algorithms to improve efficiency. However, most of existing FE and PE algorithms only consider generic functions. Actually,
quadratic-functions-based FE and PE can be used to further reduce the computation costs significantly. In this paper, we
present a functional encryption scheme for quadratic functions from those for generic functions. In our constructions,
ciphertexts are associated with a pair of vectors (x, y) ∈ Z

n
q ×Z

m
q , private keys are associated with a quadratic function, and

the decryption of ciphertexts CT(x,y) with a private key skF, where F is a n × m-dimensional matrix, recovers (x)�Fy ∈ Zq .
Compared with Baltico et al.’s FEs for quadratic functions (at Crypto 2017), our schemes could obtain almost the same
ciphertexts size of O((n + m) log q) as their schemes (in contrast to O(n) in Baltico et al.’s schemes), and the computation
for quadratic functions in our scheme does not rely on bilinear maps, while their schemes must rely on this assumption. In
particular, our schemes under the standard assumptions achieve adaptive security, while Baltico et al.’s scheme only obtains
selective security. Moreover, beyond the MDDH and GGM assumptions, our schemes allow for instantiations under standard
assumptions such as LWE, LPN, and etc.
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1 Introduction

Applying emerging ML algorithms with the integration
of cloud computing [38] in reality has already brought
large benefits for people [21, 30]. For example, in cloud-
assisted eHealth systems [19, 36, 37], with these ML
algorithms, a medical institution can train a cloud server
(which is subject to a cloud service provider) to deploy ML
models on the server. After that, the cloud server is able to
provide healthcare services for users (e.g., patients) without
requiring the participation of the medical institution.
By doing so, the medical institution can outsource the
healthcare services to the cloud server and enables the users
to leverage the services in an efficient and convenient way.
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Despite the conveniences and benefits brought by ML
algorithms, critical security and privacy concerns [14, 31]
in training the cloud server [33] and requesting services
from it have been raised seriously [22]. Specifically, in most
ML algorithms, it is inevitable to leak training data and key
information to the cloud server during the deploying ML
models, and the cloud server is able to extract users privacy
when it provides services for users. As a consequence, a
malicious cloud server (or a malicious insider working at
the service provider) can illegally gain profits from the
leaked training data and users’ privacy, and the security and
reliability of the system cannot be guaranteed [16].

To protect the training data and users’ privacy [13, 24,
32] against the cloud server, several privacy-preserving
ML algorithms [11, 15, 23] are proposed. Most of them
are constructed on secure multi-party computation (SMC)
and homomorphic encryption (HE). However, due to the
low efficiency to perform SMC and HE, both the users
(including those who outsource services to the cloud server)
and the cloud server, who execute these algorithms, bear
high costs in terms of computation and communication.

To improve the efficiency while remaining the function-
alities of ML algorithms, emerging cryptographic primitives
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[17, 18], such as functional encryption (FE) [12, 27, 28] and
predicate encryption (PE), are employed. Recent literatures
[8, 34] have shown the great improvement of efficiency in
deploying and executing ML algorithms by utilizing FE and
PE.

From the perspective of technique, a functional encryp-
tion for a functionality F defined over a key space K and a
message space M, performs the computation of F(K; M)

from the key skK , associated to a key K ∈ K, and a cipher-
text CTM which encrypts the message M ∈ M. Since the
original functional encryption was proposed in a long line
of researches on it have been spurred. Predicate encryption
is a special functional encryption where ciphertexts CTX,M

are associated with a plaintext M and an attribute X, secret
keys skP are associated with a boolean predicate P , and the
decryption of a ciphertext CTX,M recovers the encrypted
plaintext M with a private key skP , if and only if P(X) = 1.
However, in existing functional encryption and predicate
encryptions, only generic functions are considered but not
quadratic functions, and thus result in lower efficiency.

Our contributions. In this paper, we present a simple
transformation from functional encryption that supports
generic functions to one that supports quadratic functions
(that include inner product function). In our scheme,
ciphertexts CT(x,y) ∈ Z

n
q × Z

m
q are associated with a pair

of vectors (x, y) (when performing encryption, (x, y) can
be seen as a string of length (n + m) log q), private keys
skF are associated with a quadratic function F (where F ∈
Z

n×m
q can be seen as the key of F ), and the decryption

of a ciphertext CT(x,y) with a private key skF recovers
(x)�Fy ∈ Zq , where q > 2λ is a prime number, and
n, m is positive natural number. The ciphertexts in our
schemes have the improved size of length O((n + m) log q)

rather than O(nm log q) which is the case in [1] where they
proposed an FE scheme for inner product functions (our
scheme can implement the inner product functionality if
taking the key matrix F as the identity matrix I).

In particular, our schemes remove the bilinear maps
that is used to implement the quadratic functionality. For
the instantiations, if we take the FE schemes proposed by
Gorbunov et al. in [10] as the underlying FE schemes,
then, beyond the MDDH and GGM assumptions, our
schemes also allow for instantiations under other standard
assumptions such as the decisional diffie-hellman (DDH)
[6], RSA [7], learning with errors (LWE) [25], and learning
parity with noise (LPN) [35]. This is because, the semantic
secure public-key encryption schemes that is used to
build their FE schemes can be instantiated under these
assumptions. Of course, if we adopt the FE schemes in [29]
and [9] as the underlying FE schemes, then we can again
obtain instantiations from non-standard assumptions such
as indistinguishability obfuscator (IO) [29] and multilinear
maps [9].

Overview of Our FE for Quadratic Functions. Our
schemes work over prime fields Zq such that q > 2λ is
a prime number and λ is the security parameter used in
our schemes. They are quite efficient in communication
size: public key and private key has flexible length changed
with the constructions of the underlying FE schemes
for generic functions. The ciphertexts in our schemes
obtain comparable size as that in [4]. The ideas for
designing the generic transformation is very simple where
we only use a sufficiently-expressive FE scheme for generic
functions, beyond which, any additional assumptions are
not introduced. Our both schemes (in the public-key and
secret-key setting) could be proved adaptively secure, where
security is guaranteed even for messages that are adaptively
chosen at any point in time, under the the same security
assumption of the underlying FE schemes. In the following,
we will highlight some of the core ideas in our schemes.

Now, we first introduce the functionality that our
schemes support. Specifically, the functionality refers to
that for an instantiation expressed in the form of a pair of
vectors (x, y) ∈ M encrypted in a ciphertext CT(x,y), and
a function F presented as a matrix F ∈ K, the decryption
for the ciphertext CT(x,y) under the private key skF with
which the function F is associated with, allows to compute
a quadratic function value (x)�Fy ∈ Y , where the function
F is defined as F : K × M → Y .

The first thing we think about is to encrypt the
pair of vectors (x, y) into a ciphertext CT(x,y) under the
underlying FE scheme FE for generic functions which
are computable by a polynomially-size circuit G. Toward
finding a decryption method, we first observe that, given
CT(x,y) and a private key skG (associated with the circuit
class G), under the FE scheme FE, we can compute the
function value (x)�Fy ∈ Y . However, without any extra
processing, this is obviously infeasible. In order to achieve
this goal, we embed the computation of x)�Fy in the circuit
G[F] with the function F hardwired in. Then take the pair
(x, y) as the inputs of the circuit G and endow the circuit
the functionality of computing x)�Fy with the hardwired
function F and the pair (x, y). By running the decryption, we
finally get a desired result.

Concurrent and Independent work. In concurrent and
independent work, Lin [20], and Ananth and Sahai [3]
present constructions of private-key functional encryption
schemes for degree-D polynomials based on D-linear
maps. If taking D = 2, these schemes support quadratic
polynomials from bilinear maps. In 2017, Baltico et al. [4]
also propose constructions of functional encryption (both
in the private-key and public-key settings) for quadratic
functions from the MDDH and GGM assumptions under the
existence of bilinear maps. Their GGM-based schemes are
proved adaptively secure but their MDDH-based schemes
only achieve selective security. In comparison to these
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works, our schemes have the advantage of working without
pairings and can be proved adaptively secure only under the
same security of the underlying FE schemes which is easy
to achieve, since such security can be obtained by many
existing methods.

2 Preliminaries

In this section, we introduce some notations and crypto-
graphic building blocks used in this paper.

2.1 Notations

Throughout the paper, N denotes the set of natural numbers
and λ ∈ N denotes the security parameter. Let y ←
A(x1, · · · ; R) denote the operation of running algorithm A

on inputs x1, · · · and coins R to output y. For simplicity, we
write y ← A(x1, · · · ; R) as y ←$ A(x1, · · · ) with implied
coins. If n ∈ N, we let [n] denote the set {1, · · · , n}. We call
a function negl negligible in λ if negl(λ) ∈ λ−ω(1) and a
function poly a polynomial if poly ∈ λO(1). If x denotes a
vector, then |x| denotes the number of components in x and
xi denotes the i − th component of the vector x. If P denotes
circuit, then we use notation P[z](·) to emphasize the fact
that the value z is hard-coded into P.

In this paper, for security definition and proofs we use
a code-based game playing framework in [5, 26]. A game
G has a main procedure, and possibly other procedure.
G begins by executing the main procedure which runs
an adversary A after some initialization. A can make
oracle calls permitted by G. When A finishes execution,
G continues to execute with A’s output. By GA ⇒ y,
we denote the event that G executes with A to output y.
Generally, we abbreviate GA ⇒ true or GA ⇒ 1 as G,
and boolean flags and sets are initialized to false and ∅
respectively.

Furthermore, given a matrix of scalars F = (fi,j ) ∈
Z

n×m
q and two vectors of a ∈ Z

n
q, b ∈ Z

m
q , one can

efficiently compute

a�Fb =
∑

i∈[n],j∈[m]
fi,j aibj .

2.2 Quadratic function

Let n, m ∈ N
+ be positive integers, q > 2λ be a prime

number. We let the message space M := Z
n
q × Z

m
q be a

pair of vectors (x, y). The key space consists of matrices
K := Z

n×m
q , every key K ∈ K is a matrix F = (fi,j ) and

the output space is Y := Zq . The functionality F(K, M) is
the one that computes the value x�Fy ∈ Zq , where K = F
and M = (x, y) ∈ M.

3 Functional encryption

In the following, we review the definition of functional
encryption from [4].

Functionality. In our scheme, we will use the class of
functionalities F : K × M → Y where K denotes the key
space, M denotes the message space, and Y denotes the
output space of the function F and these spaces are defined
respectively as Section 3.

Definition 1 (Functional Encryption) A functional encryp-
tion scheme FE for a functionality F in the public-key set-
ting (resp., in the private-key setting which adds the boxed
parameter) consists of a tuple of algorithms FE=(FE.Setup,
FE.KeyGen, FE.Enc, FE.Dec) that works as follows.

FE.Setup(1λ, F ). On input a security parameter 1λ and a
functionality F , the algorithm FE.Setup(1λ, F ) outputs a
master public key mpk and a master secret key msk.

FE.KeyGen(msk, K). On input a master secret key msk

and a functionality key K ∈ K, the algorithm
FE.KeyGen(msk, K ∈ K) outputs a private key skK .

On input a master public key
mpk and a message M ∈ M, the algorithm
FE.Enc(mpk, M) outputs a ciphertext CT in the public-
key setting. While, in the private-key setting, the algo-
rithm will additionally take a master secret key msk as
input, similarly hereinafter.

FE.Dec(skK, CT ). On input a private key skK and a
ciphertext CT , the algorithm FE.Dec(skK, CT ) outputs
a y ∈ Y ∪ {⊥}.

Correctness. For correctness, it is required that
for all queries K ∈ K, and all message M ∈ M, if

skK ← FE.KeyGen(msk, K) and ,
then it holds with overwhelming probability that
FE.Dec(skK, CT ) = F(K, M) when F(K, M) 
= ⊥.

Definition 2 (Adaptive Indistinguishable-Based Security)
For the adaptive indistinguishable-based chosen-plaintext
(a-IND-CPA) security, we use aINDCPAFE,b

A,F
(λ) (see Fig. 1)

to denote a-IND-CPA game between a PPT adver-
sary A and a challenger C. We define the advantage
of A in game aINDCPAFE,b

A,F
(λ) as AdvaINDCPAFE,F,A (λ) =

Pr[aINDCPAFE,0
A,F

(λ) = 1] − Pr[aINDCPAFE,1
A,F

(λ) = 1].

Definition 3 (Selective Indistinguishable-Based Security)
For the selective indistinguishable-based chosen-plaintext
(s-IND-CPA) security, where the challenge messages are
required to deliver before the master public key and key
queries. We use sINDCPAFE,b

A,F
(λ) (see Fig. 2) to denote

s-IND-CPA game between a PPT adversary A and a
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Fig. 1 Adaptive
IND-CPA Experiment for FE

challenger C. We define the advantage of A in game
sINDCPAFE,b

A,F
(λ) as AdvsINDCPAFE,F,A (λ) = Pr[sINDCPAFE,0

A,F
(λ) =

1] − Pr[sINDCPAFE,1
A,F

(λ) = 1].

In the above two experiments, we require that if for all
key queries {K} and message queries {(M0, M1)} made by
the adversary A, then we have F(K, M0) = F(K, M1).
Obviously, the adaptive security implies selective security.

4 Construction of functional encryption
for quadratic functions

In this section, we present a functional encryption for quadratic
functions (QFE) with (adaptive) IND-CPA security.

4.1 Construction

In the following, we present a generic construction for
functional encryption for quadratic functions. Let
QFE=(QFE.Setup, QFE.KeyGen, QFE.Enc, QFE.Dec)
denote the scheme over the functional space F : K × M
→ Y (see Section 2.2 for its functionalities) and message
space M = Z

n
q × Z

m
q , where K = Z

n×m
q and Y = Zq . In

particular, our scheme uses the following building block.

– A functional encryption scheme FE=(FE.Setup,
FE.KeyGen, FE.Enc, FE.Dec) for function family G .

The construction is described as follows.

QFE.Setup(1λ, F ). On input a security parameter 1λ and
a function family F , the setup algorithm first samples
(f mk, f sk) ← FE.Setup(1λ) and then sets the master
public key and master secret key as mpk = f mk and
msk = f sk. It finally outputs (mpk, msk).

QFE.KeyGen(msk, F). On input a master secret key msk

and a function key F ∈ K, the key generation algorithm
first parses msk = f sk and then constructs a circuit
G[F] ∈ G with key F hardwired in it (where the

construction of G is shown in Fig. 3). Then it computes
skG ← FE.KeyGen(f sk,G) and sets skF = skG . Finally,
it outputs the private key skF.

On input a master public
key mpk and a message (x, y), this algorithm first
parses mpk = f mk, and then computes CT ←
FE.Enc(f mk, (x, y)) (Note that (x, y) could be seen as
a string of length (n + m) log q). Finally, it outputs the
ciphertext CT .

QFE.Dec(skF, CT ). On input a private key skF and
a ciphertext CT , the algorithm computes y =
FE.Dec(skF, CT ) and finally outputs y.

Correctness. The correctness of the functional encryp-
tion scheme for quadratic polynomial follows by the
correctness of the functional encryption for general
functionalities F . Namely, for all (mpk, msk) ←
QFE.KeyGen(msk, F), all (x, y) ∈ M, all skF ←
QFE.KeyGen(msk, F) and CT ← QFE.Enc(mpk, (x, y)),
where skF = skG , if the circuit G[F] satisfies the function-
ality in Fig. 3, then

QFE.Dec(skF, CT ) = FE.Dec(skG[F], CT ) = x�Fy.

4.2 Security

The security of the scheme QFE follows the following
theorem.

Theorem 1 If the functional encryption scheme FE for
function family G is adaptively (resp. selectively) secure
(see definitions 2 and 3 for the details), the functional
encryption scheme QFE for quadratic function F is also
adaptively (resp. selectively) secure.

Proof Adaptive security. We prove the adaptive security
of the scheme QFE via two games below, then go to the
details of the proof by proving that the two games are
computationally indistinguishable.

Fig. 2 Selective
IND-CPA Experiment for FE
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Fig. 3 Circuit G[F]

G0 : This game is the original adaptive security game
of the scheme QFE except that the challenge ciphertext
encrypts the message (x0, y0).

G1 : This game is the same asG0 except that the challenge
ciphertext encrypts the message (x1, y1).

If there exists an adversary AQFE that can break the
adaptive security of the scheme QFE, then there exists an
adversary AFE that can break the adaptive security of the
scheme FE. In the following, we use the adversary AQFE to
construct the adversary AFE. Let B be the challenger of the
scheme FE. Assume that before proceeding the reduction,
the adversary AFE has received the master public key fpk

from its challenger.

Setup phase In this phase, the adversary AFE first sets the
master public key mpk = fpk for the scheme QFE, then it
sends mpk to AQFE.

Key query phase When the adversary AQFE makes a key
query of the form F ∈ K, the adversary AFE first constructs
a circuit G[F] ∈ G with F hardwired in it. Then it delivers
G[F] to its challenger B and from which it gets the private
key skG[F]. Finally, it sets the private key as skF = skG[F]
and sends skF to the adversary AQFE.

Challenge phase When AQFE makes a challenge query
((x0, y0), (x1, y1)) ∈ M such that (x0)�Fy0 = (x1)�Fy1 for
all queries F that the adversary makes in the key query phase
before the challenge phase, the adversary AFE delivers
the pair ((x0, y0), (x1, y1)) to its challenger, from which it
gets the challenge ciphertext CT ∗ (which is generated by
CT ∗ ← FE.Enc(fpk, (xb, yb)), where b ∈ {0, 1} is chosen
randomly by the challenger B). Finally, the adversary AFE

sends CT ∗ to AQFE.

Key query phase The adversary AQFE makes more private
key queries of the form F ∈ K as above but with the
restriction (x0)�Fy0 = (x1)�Fy1 for all ((x0, y0), (x1, y1))
that AQFE queries in the challenge phase.

Guess phase AQFE eventually outputs a bit b′ ∈ {0, 1}, and
the experiment outputs the same bit.

For any stateful adversary AQFE, if the challenger B
encrypts the message (x0, y0), the adversary AFE perfectly
simulates the game G0 for AQFE; when the challenger B
encrypts the message (x1, y1), the adversary AFE perfectly

simulates the gameG1 forAQFE. Therefore, by Definition 2,
the advantage that the adversary AQFE distinguishes games
G0 and G1 (i.e., the adversary AQFE breaks the adaptive
security of the scheme QFE) is equal to the advantage
that the adversary AFE breaks the adaptive security of the
scheme FE. Thus the theorem follows.

Selective security. The proof of the selective security of
the schemeQFE is similar to that of the adaptive security but
with the difference that the reduction relies on the selective
security of the scheme FE where the challenge messages
must be decided before the setup and key generation. For
simplicity, we omit the details about the proof.

5 Instantiations

In this section, we describe how to instantiate the underlying
functional encryption scheme FE for generic functions
used to construct our resulting FE schemes for quadratic
functions (see Section 4.1).

The underlying FE schemes for generic functions
required by our FE schemes for quadratic functions can be
built from a wide range of assumptions. For instance, they
can be instantiated under the standard assumptions such as
decisional diffie-hellman (DDH) [6], RSA [7], learning with
errors (LWE) [25], and learning parity with noise (LPN)
[35], and the non-standard assumptions such as intractable
problems on composite order multilinear maps [9] and
indistinguishability obfuscator (IO) [29]. Particularly, these
instantiable FE schemes under the standard assumptions can
be taken from the general-purpose public-key FE schemes
proposed by Gorbunov et al. in [10]. As their schemes
are based on the existence of semantically-secure public-
key encryption (PKE) and pseudorandom generators (PRG).
To our knowledge, there are already many PKE schemes
proposed based on various standard assumptions (DDH [6],
RSA [7], LWE [25], and LPN [35]). Therefore, our resulting
schemes can also be instantiated from these assumptions.
For those FE schemes under IO and multilinear maps,
their constructions can be taken directly from [29] and
[9] respectively. In particular, if these underlying FEs are
selectively secure, we can use these techniques proposed
by Ananth et al. in [2] (i.e., generic transformations
from selective security to adaptive security for FE), to
convert them into adaptive ones. Furthermore, from this
constructions, we can see that the underlying FE schemes
that satisfy lightweight circuit is ok (due to the lightweight
computation x�Fy only existed in the circuit G[F]).
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Table 1 Comparisons with [4]

Schemes # of SK # of PK

SK-FE in SXDH [4] 2 log q |bgp|
PK-FE in SXDH [4] 2 log q 2(n + m) log q

PK-FE in GGM [4] (nm + 2) log q |bgp| + (n + m + 1) log q

SK-FE in our paper |SK| of FE |PK| of FE
PK-FE in our paper |SK| of FE |PK| of FE

6 Comparisons

In this section, we give the performance analysis and
comparison between our FE scheme and that by Baltico
et al. in [4] in terms of private key size, master public
key size, ciphertext size, and etc. in Tables 1 and 2. From
the two Tables, we can see that the size of public key
and private key in our schemes (both in secret-key settings
and public-key settings) has flexible length changed with
the varied constructions of the underlying FEs for generic
functions used in our schemes. The ciphertexts in our
both schemes have comparable size with those in [4]. In
particular, different from [4], where the computations of
the quadratic functions must rely on the bilinear map,
while ours do not. Moreover, beyond the MDDH and GGM
assumptions, our schemes can also be instantiated from
other assumptions such as the DDH, RSA, LWE and LPN
assumptions, while Baltico et al.’s schemes [4] can only
be instantiated by SXDH and GGM. Furthermore, all our
schemes are provably secure against adaptive adversaries,
while the schemes of Baltico et al.’s [4] from the MDDH
assumption are only proved selectively secure, and under the
same assumption, their encryption scheme in the secret-key
setting is a deterministic encryption.

Notations in Tables 1 and 2. n, m ∈ N
+, k ∈

N
∗; log q: size of an element in group; “N”: NO; “Y”:

YES; “# of SK”: size of private key; “# of PK”: size of
master public key; “# of CT”: size of ciphertext; “BP”: the
number of bilinear pairings needed in decryption algorithm;
“R/D”: deterministic encryption or randomized encryption;
“security”: selective security or adaptive security ; “|SK|
of FE”: size of private key in FE for circuit; “|PK|

Table 2 Comparisons with [4]

Schemes # of CT security BP R/D

SK-FE in SXDH [4] 2(n + m) log q selective mn+2 D

PK-FE in SXDH [4] (6n + 6m + 2) log q selective 2mn+2 R

PK-FE in GGM [4] 2(n + m + 1) log q adaptive 2 R

SK-FE in our paper O((m + n) log q) adaptive 0 R

PK-FE in our paper O((m + n) log q) adaptive 0 R

of FE”: size of master public key in FE for circuit;
“|bgp|”: description of bilinear group setting, where bgp =
(q, G1, G2, GT , e, g1, g2).

7 Conclusions

In this paper, we present a simple framework that transforms
generic functions to quadratic functions for functional
encryption and provided a concrete scheme, which can be
utilized to construct efficient privacy-preserving machine
learning algorithms. The proposed scheme is built on the
proposed framework, could be constructed based on the
standard assumptions (such as DDH, LWE, LPN etc.) and
be proved to achieve adaptive security. Compared with
existing schemes, the proposed scheme is more scalable
and provides a stronger security guarantee. Moreover, the
future is that we intend to propose the functional encryption
for randomized functionalities with application to machine
learning under standard assumptions.
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