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Abstract
k-means clustering, which partitions data records into different clusters such that the records in the same cluster are close to
each other, has many important applications such as image segmentation and genes detection. While the k-means clustering
has been well-studied by a significant amount of works, most of the existing schemes are not designed for peer-to-peer (P2P)
networks. P2P networks impose several efficiency and security challenges for performing clustering over distributed data. In
this paper, we propose a novel privacy-preserving k-means clustering scheme over distributed data in P2P networks, which
achieves local synchronization and privacy protection. Specifically, we design a secure aggregation protocol and a secure
division protocol based on homomorphic encryption to securely compute clusters without revealing the privacy of individual
peer. Moreover, we propose a novel massage encoding method to improve the performance of our aggregation protocol. We
formally prove that the proposed scheme is secure under the semi-honest model and demonstrate the performance of our
proposed scheme.
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1 Introduction

k-means clustering [4, 25] is a simple and well-studied
technique in machines learning areas which aim to group
data records into k clusters. Informally, the clustering
algorithm partitions data records into different clusters such
that records in the same cluster are close to each other
based on some distance metrics. Clustering has been applied
in many domains, such as image segmentation and genes
detection [9, 11, 45]. The traditional k-means clustering
algorithm is assumed that data is centralized in a single
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location, which cannot be directly applied to distributed
situations where each party holds a part of the dataset.

As a typical distributed system consisting of thousands
of connected nodes, peer-to-peer (P2P) networks are
emerging as a good choice for many technologies [6,
33, 46]. Performing clustering in P2P networks arises
more and more attention. Among this, designing a
distributed clustering algorithm in P2P networks instead
of collecting data in a single point is a practical option.
There are many important applications of distributed
clustering in P2P networks. For example, in a P2P file-
sharing network, we can utilize the distributed clustering
algorithm to mine browsing history of users and find
users with common interest [18]. However, P2P networks
impose several challenges for performing clustering over
distributed data. First, since peer-to-peer networks are
highly decentralized and always contain millions of nodes,
it is not practical to centralize the whole dataset and achieve
global synchronization in the network. Second, there are
frequent topology changes in P2P networks. Third, each
peer in P2P networks suffers from frequent data update.
Fourth, peers may not reveal their local data for the privacy
concern.

Many schemes [2, 7, 27, 29] have been proposed to solve
the above challenges. Among these works, Datta et al. [7]
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proposed two algorithms to perform k-means clustering
over distributed data in peer-to-peer networks, which only
require that each node achieves local synchronization
with its neighbors. Mashayekhi et al. [27] presented a
general fully decentralized method to perform clustering
over dynamic and distributed data in P2P networks. Their
scheme constructed a summarized view of the distributed
dataset and utilizes the partition-based and density-based
clustering methods to learn the clusters over the summarized
view, which achieves effective clustering accuracy and
efficient communication costs. Although the above works
achieve comparable accuracy with centralized methods,
each peer in their schemes is required to send local
information to its neighbors for collaborated computations.
Since the local data in each peer may contain sensitive
information about itself, directly sending local data in
the existing distributed clustering schemes compromises
the privacy of peers [21, 42–44]. Some recent works [3,
5] designed several privacy-preserving feature selection
schemes in P2P networks. Unfortunately, their schemes
cannot be directly applied to solve privacy-preserving k-
means clustering in P2P networks. Among another line
of work, many secure schemes [36, 40, 48] are proposed
to handle k-means clustering over horizontally partitioned
or vertically partitioned data. However, these privacy-
preserving clustering schemes either only consider the two
parties situation or require global synchronization with all
parties, which is not suitable for the topology of P2P
networks. There still lacks a practical privacy-preserving
k-mean clustering scheme in P2P networks.

In this paper, we propose a novel privacy-preserving
k-means clustering scheme over distributed data in P2P
networks. Each peer in our scheme iteratively updates the
clusters and achieves local synchronization at each iteration,
i.e., it only requires to synchronize with its neighbors to
learn the clusters. Specifically, each peer implements our
secure aggregation protocol to obtain local centers and
cluster counts from its neighbors and computes the novel
clusters by using our secure division protocol. As a result,
each peer can learn the clustering result without revealing
its local information. Our main contributions in this paper
can be summarized as follows.

– We propose a novel privacy-preserving k-means clus-
tering scheme over distributed data in P2P networks,
which simultaneously achieves local synchronization
and protects the privacy of each peer.

– To protect the privacy of local data in each peer, we
design a secure aggregation protocol and a secure divi-
sion protocol based on homomorphic encryption [31].

In addition, we design a novel message encoding mech-
anism to improve the performance of our aggregation
protocol.

– We formally prove that the proposed scheme is secure
under the semi-honest model. We also theoretically
analyze the performance of our proposed scheme.

The remainder of this paper is organized as follows.
We introduce the system model and threat model in
Section 2. We present some preliminaries used in our
scheme in Section 3. We describe the proposed scheme in
Section 4. Then, we analyze the security and computational
complexity of our proposed scheme in Section 5. We review
the related work in Section 6. Finally, we conclude the paper
in Section 7.

2 Problem statement

2.1 Systemmodel

The dataset consisting of n data records {p1, p2, · · · , pn}
is distributed over different nodes in peer-to-peer networks.
Each node denotes a user and holds a part of the dataset.
In other words, the dataset D is horizontally distributed
over different nodes. The nodes try to learn k collaborated
clusters C′ = {c′

1, c
′
2, · · · , c′

k} over the distributed dataset
by using the k-means clustering algorithm. Nevertheless,
the standard clustering algorithm only works on centralized
datasets. It is still a challenge to perform k-means clustering
over distributed datasets in peer-to-peer networks. In this
paper, we consider the network as a connected, undirected
graph where each peer represents a vertex and each
edge between two nodes denotes they can communicate
with each other. Our scheme is based on local node
synchronization and each node is only synchronizing with
its neighbors in each iteration. Thus we simply assume that
each node can only communicate with its neighbors and
each node has a unique identity. Given a node Ni , we use
the notion �i to denote its neighbors and |�i | to represent
the number of neighbors. The all notations used in this paper
are summarized in Table 1.

2.2 Threat model

We consider the security of our proposed scheme under
the semi-honest (honest-but-curious) model [10]. That is,
each party will correctly follow the protocol, but try to
learn other’s inputs using what he legally receives during
the protocol. A protocol � is secure under the semi-honest
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Table 1 Notation Table
Ni the i-the node in peer-to-peer networks.

Di the local dataset hold by Ni .

�i , |�i | the neighbors of a node Ni , the number of neighbors.

Nsi the assistant neighbor node of Ni .

(pki , ski) the public and secret key pair of Paillier cryptosystem.

ε the termination threshold of k-means clustering algorithm.

C(1) =
{
c
(1)
1 , c

(1)
2 , · · · , c

(1)
k

}
k initial clusters.

C
(l)
i =

{
c
(l)
i1 , · · · , c

(l)
ik

}
the local clusters of the node Ni at l-th iteration.

m
(l)
i =

(
m

(l)
i1 , m

(l)
i2 , · · · , m

(l)
il

)
the number of records in Ni assigned to C

(l)
i at l-th iteration.

w
(l)
i =

(
w

(l)
i1 , w

(l)
i2 , · · · , w

(l)
ik

)
k local centers in the node Ni at l-th iteration.

Epk(·), Dsk(·) the encryption and decryption functions.

model if each party’s view during the protocol can be
simulated given only its input and output. The semi-honest
model has been adopted by several existing woks [16, 20,
22, 41]. A formal definition of security against semi-honest
adversaries can be described as follows.

Definition 1 Let F be a functionality and � be a n-party
protocol for computing F . Fi represents the computation
on parity i. The view of party i during the execution of
� is denoted by V iewi and equals to (xi, ri , m1, · · · , mt )

where xi represents the input, ri represents the randomness
and mj represents the j -th received message. We say that
the protocol � is secure under the semi-honest model if
there exist a probabilistic polynomial-time simulator Simi

for each party i such that

Simi(xi , Fi(x1, x2, · · · , xn))
c≡ viewi(xi , Fi(x1, x2, · · · , xn)), (1)

where
c≡ represents computational indistinguishability.

2.3 Design goal

In our scheme, the dataset D is horizontally distributed
over different peers, so each peer can learn the content of
different data records. The nodes try to learn k clusters over
the whole dataset, thus we assume each node learns the
whole clusters during the computation process. The main
privacy issues we consider in this paper are listed below.

– A node cannot learn the content of data records
possessed by other nodes.

– A node cannot know the closest clusters of data records
possessed by other nodes.

– A node cannot learn the number of data records
assigned to a cluster for all of the clusters.

3 Preliminaries

3.1 k -means clustering

Given a dataset of n data records D = {p1, p2, · · · , pn}, k-
means clustering partitions the dataset into k disjoint subsets
called clusters, where k is a user-defined parameter and
pi is an element of Rd . The goal of k-means clustering
is to find clusters that achieve the minimized sum of
the distances between clusters and data records. In this
paper, we use Euclidean distance as the distance metric,

i.e., Dist (p, q) =
√∑d

i=1(pi − qi)2, and represent each
cluster as its centroid. The k-means clustering algorithm [4,
25] can be described as follows.

We first set l = 1 and randomly selects k data records

C(l) =
{
c
(l)
1 , c

(l)
2 , · · · , c

(l)
k

}
in the dataset D as the initial

clusters and iteratively refine the k potential clusters until
reaching a termination condition. Specifically, in each
iteration, we assign each data record pi to the cluster c

(l)
j

which is closet to it and count the number of such data
records, which is represented as m

(l)
j . Then we compute

the novel clusters C(l+1) =
{
c
(l+1)
1 , c

(l+1)
2 , · · · , c

(l+1)
k

}

based on the cluster assignment, i.e., the new clusters are
computed by the arithmetic mean of the points in the
clusters. We check whether the difference between the novel
and the old clusters is within a predefined threshold. If
the condition holds, we terminate the iteration and outputs
C(l+1) as the final results; otherwise, we will replace C(l)

with C(l+1)and repeat the above process. The main steps is
illustrated in Fig. 1.

The above algorithm only works on the centralized
situation where the whole dataset D is stored in a single
place. Nevertheless, the dataset D in peer-to-peer networks
is distributed over different nodes. Each node Ni holds a
part of the dataset. The specific topology of P2P networks
makes it difficult to design a distributed k-means clustering
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Fig. 1 k-means clustering
algorithm

algorithm. Moreover, the subset Di holds by each node may
contain sensitive information about himself, thus the node
is not willing to reveal this information to others. Designing
a distributed k-means clustering algorithm maintaining the
privacy of each node is still a challenge.

3.2 Homomorphic encryption

Paillier cryptosystem [31] is an efficient public key
cryptosystem with semantic security (indistinguishability
under chosen plaintext attack, IND-CPA). The encryption
scheme is additively homomorphic, i.e.,

Epk(x1) × Epk(x2) = Epk(x1 + x2), (2)

Epk(x)α = Epk(αx). (3)

Here, E denotes the encryption function, x1, x2 and α are
arbitrary messages in the plaintext space, pk is the public
key, Epk(x1) represents the ciphertext of x1, and D denote
the decryption function. The main steps of the Paiilier
encryption system is shown as follows.

Key Generation. Choose two large enough primes p and
q. Then, the secret key sk = lcm(p − 1, q − 1), that is,
the least common multiple of p−1 and q −1. The public
key pk = (N, g), where N = pq and g ∈ Z

∗
N2 such

that gcd
(
L(gs mod N2), N

) = 1, that is, the maximal
common divisor of L(gs mod N2) and N is equivalent
to 1. Here, L(x) = (x − 1)/N , the same below.

Encryption. Let x0 be a number in plaintext space ZN .
Select a random r ∈ Z

∗
N as the secret parameter, then the

ciphertext of x0 is c0 = Epk(x0) = gx0rN mod N2.
Decryption. Let c0 ∈ ZN2 be a ciphertext. The plaintext

hidden in c0 is

x0 = Decsk(c0) = L(cs
0 mod N2)

L(gs mod N2)
mod N .

Note that Pailler encryption only supports positive
integers, we need to transform real numbers into integers
through multiplying them by a large integer δ (δ > 0) as
previous works [23, 24, 35].

4 Privacy-preserving k-means clustering
in P2P networks

4.1 Overview

Our proposed privacy-preserving k-mean clustering scheme
does not require that all nodes in a peer-to-peer network
achieve global synchronization. The scheme only requires
each node to synchronize with its neighbors, i.e., it only
requires local synchronization. Each node moves on to
the next generation once it receives responses from all its
neighbors. To protect the privacy of each node, we design a
secure aggregation protocol and a secure division protocol
between each node and its neighbors.

In the initial stage of our scheme, a single node randomly

generates k initial clusters C(1) =
{
c
(1)
1 , c

(1)
2 , · · · , c

(1)
k

}

and a termination threshold ε > 0. Then the node sends
(1, C(1), ε) to all its neighbors and starts the iteration 1.
When a node Ni receives the message (1, C(1), ε) form it
neighbors for the first time, it randomly chooses a neighbor
Nsi as its assistant node. Nsi generate its public and secret
key pair (pki, ski) and sends the public key pki to Ni . The
node Ni then sends (1, C(1), ε, pki) to the remainder of its
neighbors and starts the iteration 1. Eventually, all nodes
finish the initial stage and enter the iteration 1 with the same
initial clusters C(1) and threshold ε.

In each iteration of our scheme, each node Ni securely
aggregates clusters from his neighbors and computes novel
clusters. Specifically, Ni first implement a k-means cluster
algorithm on its local dataset Di with location clusters C

(l)
i .

For each data record in Di , Ni calculates the distances
between it and each cluster and assign it to the closest
cluster c

(l)
ij . Then Ni counts the number of records in his

dataset assigned to the cluster c
(l)
ij , which is denoted as m

(l)
ij

and computes k local centers w
(l)
i =

(
w

(l)
i1 , w

(l)
i2 , · · · , w

(l)
ik

)

where w
(l)
ij is a d-dimensional point and w

(l)
ij =

∑
p∈c

(l)
ij

p. Ni stores
{
w

(l)
i , m

(l)
i =

(
m

(l)
i1 , m

(l)
i2 , · · · , m

(l)
il

)}

in its history table. It also sends a request (i, l) to its
neighbor nodes �i . This request requires all its neighbors
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to implement the secure aggregation protocol to securely
respond their local centers and cluster counts in the iteration
l. Then, Ni and its assistant node Nsi will learn the

secret shares of
∑

Na∈�∗
i
w

(l)
aj and

∑
Na∈�∗

i
m

(l)
aj , i.e., Ni

gets αj1, βj1 and Nsi gets αj2, βj2 where
∑

Na∈�∗
i
w

(l)
aj =

αj1 +αj2 mod N and
∑

Na∈�∗
i
m

(l)
aj = βj1 +βj2 mod N .

The details about the secure aggregation protocol will be
described in the next part. Ni then utilizes the secure
division protocol with the assistant node Nsi to update its

clusters. For each cluster c
(l+1)
ij , Ni obtains

c
(l+1)
ij =

∑
Na∈�∗

i
w

(l)
aj∑

Na∈�∗
i
m

(l)
aj

.

Ni computes Dist
(
c
(l)
ij , c

(l+1)
ij

)
and finds the max distance

among them. Ni compares max
{
Dist

(
c
(l)
ij , c

(l+1)
ij

)}
1≤j≤k

with ε. If max
{
Dist

(
c
(l)
ij , c

(l+1)
ij

)}
1≤j≤k

> ε, it continues

to next iteration l + 1; otherwise, it moves on to the
termination state and C

(l)
i =

{
c
(l+1)
i1 , c

(l+1)
i2 , · · · , c

(l+1)
ik

}
is

the final clusters. The main steps of each iteration in our
proposed scheme are illustrated in Fig. 2.

4.2 Secure aggregation protocol

In our secure aggregation protocol, Ni securely sums
centers and cluster counts from its neighbors �i . In the

protocol, each node Na ∈ �i holds a local dataset Da ,

local centers, and cluster counts
{(

w
(l)
a , m

(l)
a

)}
in its his-

tory table. Once receiving a request (i, l̂) from Ni , Na

first compares its current iteration l with l̂. If l̂ ≤ l, Na’s
history table contains local centers and cluster counts

for the iteration l̂. Na finds
{(

w
(l̂)
a , m

(l̂)
a

)}
from its his-

tory table and encrypts them with the pubic key of Nsi .

Concretely, for w
(l̂)
a =

(
w

(l̂)
aj1, w

(l̂)
aj2, · · · , w

(l̂)
ajd

)
and

m
(l̂)
aj (1 ≤ j ≤ k), Na encrypts them as Epki

(
w

(l̂)
aj

)
=(

Epki

(
w

(l̂)
aj1

)
, Epki

(
w

(l̂)
aj2

)
, · · · , Epki

(
w

(l̂)
ajd

))
, and

Epki
(m

(l̂)
aj ). Na then responses

Epki
(w(l̂)

a ) =
{
Epki

(
w

(l̂)
a1

)
, Epki

(
w

(l̂)
a2

)
, · · · , Epki

(
w

(l̂)
ak

)}
,

Epki

(
m(l̂)

a

)
=

{
Epki

(
m

(l̂)
a1

)
, Epki

(
m

(l̂)
a2

)
, · · · , Epki

(
m

(l̂)
ak

)}

to Ni . If l̂ > l, Na puts (i, l̂) into its wait table. Then
Na checks the wait table during each iteration l. Once l

reaches l̂, it computes and sends the response Epki
(w

(l̂)
a ) and

Epki
(m

(l̂)
a ) based on the above procedure to the node Ni .

After receiving all responses from its neighbors �i ,

Fig. 2 An overview of our
privacy-preserving k-means
clustering algorithm
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Ni aggregates all messages based on the additively
homomorphic property of Paillier encryption. It computes

∏
Na∈�∗

i

Epki

(
w(l̂)

a

)
=

⎧⎨
⎩

∏
Na∈�∗

i

Epki

(
w

(l̂)
a1

)
,

∏
Na∈�∗

i

Epki

(
w

(l̂)
a2

)
,

· · · ,
∏

Na∈�∗
i

Epki

(
w

(l̂)
ak

)
⎫⎬
⎭ ,

∏
Na∈�∗

i

Epki

(
m(l̂)

a

)
=

⎧⎨
⎩

∏
Na∈�∗

i

Epki

(
m

(l̂)
a1

)
,

∏
Na∈�∗

i

Epki

(
m

(l̂)
a2

)
,

· · · ,
∏

Na∈�∗
i

Epki

(
m

(l̂)
ak

)
⎫⎬
⎭ .

Then Ni randomly selects d val-
ues {rj1, rj2, · · · , rjd} ∈ Z

d
N for each

∏
Na∈�∗

i
Epki

(
w

(l̂)
aj

)
=

(∏
Na∈�∗

i
Epki

(
w

(l̂)
aj1

)
,

∏
Na∈�∗

i
Epki

(
w

(l̂)
aj2

)
, · · · ,

∏
Na∈�∗

i
Epki

(
w

(l̂)
ajd

))
and

computes

αjs =
∏

Na∈�∗
i

Epki

(
w

(l̂)
ajs

)
∗ E−1

pki
(rjs),

where 1 ≤ s ≤ d. For each
∏

Na∈�∗
i
Epki

(
m

(l̂)
aj

)
, Ni

randomly selects a value Rj ∈ ZN and calculates

βj =
∏

Na∈�∗
i

Epki

(
m

(l̂)
aj

)
∗ E−1

pki
(Rj ).

Ni sends {αj , βj }1≤j≤k to its assistant node Nsi , who will
decrypts {αj , βj }1≤j≤k with its secret key ski and obtains

Dski
(αjs) =

∑
Na∈�∗

i

w
(l̂)
ajs − rjs mod N,

Dski
(βj ) =

∑
Na∈�∗

i

m
(l̂)
aj − Rj mod N .

After executing the secure aggregation protocol, Ni gets
rjs, Rj while Nsi gets Dski

(αjs), Dski
(βj ) satisfying rjs +

Dski
(αjs) = ∑

Na∈�∗
i
w

(l)
aj mod N , Rj + Dski

(βj ) =
∑

Na∈�∗
i
m

(l)
aj mod N , i.e., Ni and Nsi learn the secret

shares of
∑

Na∈�∗
i
w

(l)
aj ,

∑
Na∈�∗

i
m

(l)
aj (1 ≤ j ≤ k) (Fig. 3).

4.2.1 Optimization

In this part, we propose a novel message encoding
mechanism to improve the performance of our secure
aggregation protocol. Our encoding method is based on
Horner’s rule [19]. A formal definition about it is shown as
follows.

Horner’s rule Given a n-degree polynomial p = anR
n +

an−1R
n−1+· · ·+a1R+a0, we can represent the polynomial

as p = (· · · (anR + an−1)R + · · · )R + a0.
In our encoding method, we construct a polynomial p =

anR
n + an−1R

n−1 + · · · + a1R + a0 and ensure R >

max{an, an−1, · · · , a1}. If we know p and R, we can get
n + 1 coefficients an, an−1, · · · , a0 based on the Horner’s
rule, which costs n+1 division operations and n+1 modulo
operations. The detail of our message encoding mechanism
in the secure aggregation protocol is described as follows.

We take m
(l̂)
a =

{
m

(l̂)
a1, m

(l̂)
a2, · · · , m

(l̂)
ak

}
as an example

to show the main steps of our novel encoding method. In

the original secure aggregation protocol, Na encrypts m
(l̂)
a

as Epki
(m

(l̂)
a ) =

{
Epki

(m
(l̂)
a1), Epki

(m
(l̂)
a2), · · · , Epki

(m
(l̂)
ak)

}

and sends Epki
(m

(l̂)
a ) to Ni . Then Ni randomly selects

k values {R1, R2, · · · , Rk} ∈ ZN and computes β =
{β1, β2, · · · , βk} where βj = ∏

Na∈�∗
i
Epki

(m
(l̂)
aj ) ∗

E−1
pki

(Rj ). Ni sends β to Nsi , who decrypts β and obtains

{∑Na∈�∗
i
m

(l̂)
a1 − R1 mod N, · · · ,

∑
Na∈�∗

i
m

(l̂)
ak − Rk mod N}. In the original protocol, we

encrypt a k-dimensional vector m
(l̂)
a element-wise, which

costs k encryption operations. Note that the plaintext space

N of Paillier encryption is usually much larger than m
(l̂)
aj ,

we can integrate a k-dimensional vector into an integer and
then encrypt the integer, such that the encryption cost can
be reduced from k to 1. In our novel encoding method, we

choose a value R and encodes ml̂
a =

{
m

(l̂)
a1, m

(l̂)
a2, · · · , m

(l̂)
ak

}

as a (k − 1)-degree polynomial p(R) as

p(m(l̂)
a ) = m

(l̂)
a1 + m

(l̂)
a2R + · · · + m

(l̂)
akR

k−1.

Then we encrypt p(m
(l̂)
a ) with public key pki and sends

Epki
(p(m

(l̂)
a )) to Ni . After receiving all Epki

(p(ml̂
a)) from

its neighbors, Ni randomly selects k values {r1, r2, · · · , rk}
and encodes it as p(r) = r1 + r2R +· · ·+ rkR

k−1. Then Ni

computes

β =
∏

Na∈�∗
i

Epki
(p(m(l̂)

a )) ∗ Epki
(p(r)).

Ni sends β to its assistant node Nsi . Nsi decrypts β

and utilizes Horner’s rule to get {∑Na∈�∗
i
m

(l̂)
a1 + r1

mod N, · · · ,
∑

Na∈�∗
i
m

(l̂)
ak + rk mod N}.

We require R > max{an, an−1, · · · , a1} to ensure the
correctness of Horner’s rule. In our encoding method, we

have ak = ∑
Na∈�∗

i
m

(l̂)
ak + rk . We select proper parameters

R and rj based on the following strategy. Assume m
(l̂)
ak is σ -

bit and the maximum number of Na ∈ �i is θ . we can set
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Fig. 3 Secure aggregation
protocol
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R to a (σ + θ + κ)-bit integer and selects rj from the range
[0, 2κ ].

4.3 Secure division protocol

In our secure division protocol, values a, b are shared
between two nodes Ni, Nj where Ni holds a1, b1 and Nj

holds a2, b2 satisfying a = a1 + a2 mod N, b = b1 + b2

mod N . After executing the protocol, Ni learns the value a
b

while Nj cannot learn any useful information about a, b and
a
b

.
Ni first generates the public and secret key pair

(pk, sk) of Paillier cryptosystem and encrypts a1, b1 with
the public key pk. Then Ni sends encrypted values
(Epk(a1), Epk(b1)) to Nj . After receiving messages from
Ni , Nj selects a non-zero random value λ ∈ Zn and
computes

Epk(λa) = (Epk(a1) ∗ Epk(a2))
λ,

Epk(λb) = (Epk(b1) ∗ Epk(b2))
λ.

Nj then sends Epk(λa) and Epk(λb) to Ni , who decrypts
received values with the secret key sk and obtains λa

mod N , λb mod N . Finally, Ni obtains the division by
computing a

b
= λa

λb
(Fig. 4).

5 Evaluation

5.1 Security analysis

We consider the security of our scheme under the semi-
honest model [10]. The security of our scheme can be
proved based on the following theorems.

Theorem 1 Our secure aggregation protocol is secure
under the semi-honest model. Each participant cannot learn
any useful information about others.

Proof Our secure aggregation protocol involves participants
with three different types: neighbor nodes Na ∈ �i , the
node Ni , and the assistant node Nsi . We prove the theorem
by considering each participant is corrupted in turn by an
adversary. We show that we can construct a computationally
indistinguishable simulator to simulate the corrupted party’s
view.

When the node Ni is corrupted, we construct a simulator
Simi to simulate Ni’s view as follows. In a real execution,
the Ni’s view V iewi is as follow:

V iewi =
{
w

(l̂)
i , m

(l̂)
i , (Epki

(w(l̂)
a ), Epki

(m(l̂)
a ))Na∈�i

, (αj , βj )1≤j≤k,

×(rjs)1≤j≤k,1≤s≤d , (Rj )1≤j≤k

}

In the above V iewi , w
(l̂)
i , m

(l̂)
i are the input,

(Epki
(w

(l̂)
a ), Epki

(m
(l̂)
a ), αj , βj ) are the ciphertexts

of Paillier encryption, and rjs, Rj are random value
selected from ZN . To simulate the Ni’s view V iewi ,
Simi randomly selects w∗

a, m
∗
a from ZN and encrypts

them with the public key pki . Then it randomly
selects (r∗

js, R
∗
j )1≤j≤k from ZN and computes α∗

j , β∗
j

as α∗
js = ∏

Na∈�∗
i
Epki

(w∗
ajs) ∗ E−1

pki
(r∗

js), β
∗
j =∏

Na∈�∗
i
Epki

(m∗
aj ) ∗ E−1

pki
(R∗

j ). The simulator Simi =
{w(l̂)

i , m
(l̂)
i , (Epki

(w∗
a), Epki

(m∗
a))Na∈�i

, (α∗
j , β∗

j )1≤j≤k,

(r∗
js)1≤j≤k,1≤s≤d, (R∗

j )1≤j≤k}. In both V iewi and Simi ,

the input are identical. (Epki
(w

(l̂)
a ), Epki

(m
(l̂)
a ), αj , βj )

and (Epki
(w∗

a), Epki
(m∗

a)), (α
∗
j , β∗

j ) are the cipher-
texts of Paillier encryption. Since Paillier encryption is

Fig. 4 Secure Division protocol
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semantically secure, (Epki
(w

(l̂)
a ), Epki

(m
(l̂)
a ), αj , βj ) and

(Epki
(w∗

a), Epki
(m∗

a)), (α
∗
j , β∗

j ) are computationally indis-
tinguishable. Since rjs, Rj and r∗

js, R
∗
j are all random

values in ZN , they are indistinguishable. Therefore, we can
claim that Simi is computationally indistinguishable from
V iewi .

When the assistant node Nsi is corrupted, we can
construct a simulator Simsi as follows. The Nsi ’s view is

V iewsi = {(Dski
(αjs))1≤j≤k,1≤s≤d, (Dski

(βj ))1≤j≤k}.
To simulate V iewsi , Simsi randomly chooses γ ∗

js and η∗
j

from ZN once Nsi obtains Dski
(αjs) and Dski

(βj ). The
simulator Simsi = {(γjs)1≤j≤k,1≤s≤d, (η∗

j )1≤j≤k}. Since
both Dski

(αjs) and Dski
(βj ) are masked with random val-

ues, γ ∗
js, η

∗
j are indistinguishable from Dski

(αjs), Dski
(βj ).

Therefore, we can conclude that Simsi is computationally
indistinguishable from V iewsi .

The case where neighbors Na ∈ �i is corrupted. The
node Na in our protocol only receives (i, l̂) from Ni . These
messages are all public parameters, thus an adversary cannot
learn any useful information once he corrupts the neighbor
Na ∈ �i .

Combining the above, we can conclude that the secure
aggregation protocol is secure under the semi-honest
model.

Theorem 2 Our secure division protocol is secure under
the semi-honest model.

Proof Our secure division protocol involves two partici-
pants Ni and Nj . We construct a computationally indistin-
guishable simulator to simulate the corrupted party’s view
as follows.

The Nj ’s view during the protocol is V iewj =
{Epk(a1), Epk(b1), λ, Epk(λa), Epk(λb)}. Once Nj

receives Epk(a1), Epk(b1), Simj randomly selects a∗
1 , b∗

1
from ZN and encrypts them with the public key pk.
Then Simj randomly selects a non-zero value λ∗ from
ZN and computes Epk(λ

∗a∗) = (Epk(a
∗
1) ∗ Epk(a

∗
2))λ

∗

and Epk(λ
∗b∗) = (Epk(b

∗
1) ∗ Epk(b

∗
2))λ

∗
. The simulator

Simj = {Epk(a
∗
1), Epk(b

∗
1), λ∗, Epk(λ

∗a∗), Epk(λ
∗b∗)}.

Since λ and λ∗ are randomly selected values and
Pallier cryptosystem is semantically secure, Simj is
computationally indistinguishable from V iewj .

The Ni’s view in this protocol is V iewi = {λa, λb}.
To simulate it, Simi selects a non-zero value a∗ from ZN

and computes a
b
a∗. The simulator Simi = {a∗, a

b
a∗}. Since

λa, λb are masked with random values, they are indis-
tinguishable from a∗, a

b
a∗. Thus, Simi is computationally

indistinguishable from V iewi .
Based on the above analysis, we can claim that our

secure division protocol is secure under the semi-honest
model.

Theorem 3 Our privacy-preserving k-means clustering
protocol is secure under the semi-honest model if the secure
aggregation protocol and the secure division protocol are
secure under the semi-honest model.

Proof In our k-means clustering protocol, each node Ni

first computes local centers w
(l)
i and cluster counts m

(l)
i .

Then it implements the secure aggregation protocol with
its neighbors �i to securely sum local centers and cluster
counts. We have learned that the secure aggregation protocol
is secure under the semi-honest model in Theorem 1. Thus
Ni cannot learn any useful information about other node’s
local data. Then Ni runs the secure division protocol with
Nsi to compute the next iteration clusters. Theorem 2 has
proved that the secure division protocol is secure under the
semi-honest model. Therefore, Ni cannot learn any useful
information about the aggregation result expect the novel
clusters. Based on the above analysis, we can claim that our
k-means clustering protocol is secure under the semi-honest
model.

5.2 Complexity analysis

In this part, we analyze the computational complexity of
our proposed scheme. For simplicity, we omit the cost of
operations over plaintexts and focus the time-consuming
operations on ciphertexts including encryption operations
E, exponentiation operations Exp, and decryption opera-
tions D. The computational complexity of our proposed
protocols is shown in Table 2. The detailed analysis is
described as follows.

We first analyze the cost of our original secure
aggregation protocol. In the proposed protocol, each

node Na ∈ �i first encrypts (w
(l̂)
a , m

(l̂)
a ), which

requires (dk + k) encryption operations. Ni computes∏
Na∈�∗

i
Epki

(w
(l̂)
a ) which costs |�∗

i |kd exponentiation

operations and
∏

Na∈�∗
i
Epki

(m
(l̂)
a ) which takes |�∗

i |k expo-
nentiation operations. Then Ni selects random values and
computes {αj , βj }1≤j≤k , which requires (kd + k) encryp-
tion operations and (kd + k) exponentiation operations.
Nsi decrypts {αj , βj }1≤j≤kwhich takes (kd + k) decryption
operations. The overall computational cost in our origi-
nal secure aggregation protocol is O(|�∗

i |kd) encryption
operations, O(kd) decryption operations, and O(|�∗

i |kd)

exponentiation operations. In our optimized secure aggre-

gation protocol, we encode vectors w
(l̂)
aj and m

(l̂)
a into

two integers respectively. Thus Na ∈ �i only requires

(k + 1) encryption operations to encrypt (w
(l̂)
a , m

(l̂)
a ).

Ni takes |�∗
i |k exponentiation operations to compute

∏
Na∈�∗

i
Epki

(w
(l̂)
a ) and |�∗

i | exponentiation operations to
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Table 2 The computation
complexity of proposed
protocols

Encryption Decryption Exponentiation

Original secure aggregation protocol O(|�∗
i |kd) O(kd) O(|�∗

i |kd)

Optimized secure aggregation protocol O(|�∗
i |k) O(k) O(|�∗

i |k)

Secure division protocol O(1) O(1) O(λ)

PPkMb O((d + |�∗
i |)kdl) O(kdl) O((dλ + |�∗

i |)kdl)

PPkMe O((d + |�∗
i |)kl) O(kl) O((dλ + |�∗

i |)kl)

compute
∏

Na∈�∗
i
Epki

(m
(l̂)
a ). Then Ni encodes random val-

ues and computes {(α1, α2, · · · , αk), β} which requires (k+
1) encryption operations and (k + 1) exponentiation opera-
tions. Nsi decrypts {(α1, α2, · · · , αk), β} to learn the result
which takes (k + 1) decryption operations. The overall
computational cost in our optimized secure aggregation pro-
tocol is O(|�∗

i |k) encryption operations, O(k) decryption
operations, and O(|�∗

i |k) exponentiation operations.
In our secure division protocol, Ni encrypts a1, b2 which

requires 2 encryption operations. Nj encrypts a2, b2 and
computes Epk(λa) and Epk(λb) based on the additively
homomorphic property of Paillier encryption, which needs
2 encryption operations and 2λ exponentiation operations.
Ni then receives responses from Nj and decrypts the
messages which requires 2 decryption operations. The
overall computational cost of our secure division protocol
is O(1) encryption operations, O(1) decryption operations,
and O(λ) exponentiation operations.

In each iteration of our privacy-preserving k-means
clustering protocol, the node Ni implements the secure
aggregation protocol to gather centers and clustering counts
from all its neighbors and securely share this information
with its assistant node Nsi . Ni then implements the
secure division protocol to compute local clusters. The
update procedure needs to invoke the secure division
protocol kd times to calculate the new clusters C

(l+1)
i .

Therefore, the computational cost of single node in our
privacy-preserving k-means clustering scheme with the
original secure aggregation protocol denoted by PPkMb in
each iteration is O((d + |�∗

i |)kd) encryption operations,
O(kd) decryption operations, and O(kd(dλ + |�∗

i |))
exponentiation operations. Assume the number of iteration
is l, the overall computational cost of single node in our
PPkMb scheme is O((d + |�∗

i |)kdl) encryption operations,
O(kdl) decryption operations, and O((d + |�∗

i |)kdl)

exponentiation operations. Similarly, the computational
cost of single node in our privacy-preserving k-means
clustering scheme with the optimized secure aggregation
protocol denoted by PPkMe is O((d + |�∗

i |)kl) encryption
operations, O(kl) decryption operations, and O((d +
|�∗

i |)kl) exponentiation operations.

5.3 Experiments

In this part, we evaluate the performance of our proposed
scheme under various parameter setting. The dataset we
used is a real dataset from the UCI repository,1 which
consists of 56,000 data records and each record has 8
attributes. We assume that the number of data records
in each peer node is same and is fixed to 500 in our
experiments. We implement the Paillier encryption by using
Paillier library2 and conducts all experiments on a 4-
core CPU, 16GB RAM machine. The key size of Paillier
encryption is set to 2048 bits and the number of clusters k in
the experiments is set to 8. We vary the number of neighbors
of each node |�i | to evaluate computation time of single
node at each iteration. The experiment results are shown in
Table 3. We can learn from the results that the computation
time of both PPkMb and PPkMe increases with the value
|�i | and the cost of PPkMe is smaller than that of PPkMb.
For example, when |�i | is 5, the computation time of PPkMb

is 0.72 seconds while the corresponding time of PPkMe is
only 0.12 seconds; when |�i | grows to 30, the computation
time of PPkMb ups to 4.63 seconds while the corresponding
time of PPkMe is only 0.74 seconds. The experiment results
indicate that our novel encoding method based on Horner’s
rule can effectively reduce the computation costs.

6 Related work

6.1 Distributedmachine learning in peer-to-peer
networks

A large number of works have been proposed to perform
machine learning over distributed data in peer-to-peer
networks. Luo et al. [26] proposed an ensemble scheme
for distributed classification in peer-to-peer networks. In

1http://archive.ics.uci.edu/ml
2http://python-paillier.readthedocs.io/en/stable/index.html.
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Table 3 The computation time
of single node at one iteration.
(Seconds)

|�i | = 5 |�i | = 10 |�i | = 15 |�i | = 20 |�i | = 25 |�i | = 30

PPkMb 0.72 1.63 2.53 3.27 4.01 4.63

PPkMe 0.12 0.25 0.39 0.51 0.62 0.74

the proposed scheme, they constructed local classifiers
on each peer by using the learning algorithm of pasting
bites and proposed a distributed plurality voting protocol
to combine the decisions by local classifiers. Wolff
et al. [39] presented a generic algorithm to calculate any
ordinal function of the average data in a large peer-
to-peer network and proposed a general framework to
consequently update any model of distributed data. Datta
et al. [7] proposed two algorithms to perform k-means
clustering over distributed data in peer-to-peer networks.
Their scheme avoids large-scale synchronization or data
centralization and only requires that each node achieves
local synchronization with its neighbors. Ang et al. [1]
combined cascade support vector machine (SVM) and
reduced SVM methods to construct SVM classifiers in
peer-to-peer networks. Their scheme achieves comparable
classification accuracy with centralized classifiers. Kan
et al. [17] presented a collaborative classification method to
build SVM classifiers in scale-free peer-to-peer networks.
The proposed method improves the local classification
accuracy through propagating SVM models with the most
influence. Ormándi et al. [30] proposed a general approach
named gossip learning to combine local classification
models based on multiple models taking random walks
and virtual weighted voting mechanisms. Papapetrou
et al. [32] presented a collaborative approach for document
classification in peer-to-peer networks. Their scheme
constructs local classification models on each node and
combines the most discriminative model to construct the
collaborative classification model. Mashayekhi et al. [27]
presented a general fully decentralized method to perform
clustering over dynamic and distributed data in peer-to-
peer networks. Their scheme first constructs a summarized
view of the distributed dataset through decentralized gossip-
based communication and then utilizes the partition-based
and density-based clustering methods to learn the clusters
over the summarized view. The above solutions mainly
focus on designing machine learning algorithms over
distributed data, which maintain high accuracy and low
computation and communication costs without centralizing
distributed data in a single node. Although some of the
above works achieve comparable accuracy with centralized
methods, they fail to consider the privacy issues when
performing machine learning over distributed data. Some
nodes may not want to reveal his local data or model to
others for privacy consideration.

6.2 Privacy-preserving distributedmachine learning

Privacy-preserving machine learning over distributed data
has been investigated by several secure schemes, such
as privacy-preserving naive Bayes classification [37, 38,
49], secure support vector machine [15, 47, 50], and
privacy-preserving deep learning [28, 34]. For the k-means
clustering, Vaidya et al. [36] utilized secure permutation
protocol and homomorphic encryption to construct the
first privacy-preserving k-means algorithm for vertically
partitioned data where each party holds a portion of the
attributes of data records. The work [8] presented a secure
multi-party clustering scheme over vertically partitioned
data based on additively secret sharing, which achieves
better computational performance than existing works.
works [14] proposed secure protocols based on oblivious
polynomial evaluation and homomorphic encryption to
perform k-means clustering over horizontally partitioned
data where each party holds different data records in the
dataset. Yu et al. [48] proposed a secure multi-party k-means
clustering scheme where they consider both horizontally
partitioned and vertically partitioned datasets. Jagannathan
et al. [13] proposed a secure scheme to perform k-means
clustering over arbitrarily partitioned data based on random
shares and Yao’s garbled circuits [12]. Xing et al. [40]
designed a mutual privacy-preserving k-means clustering
scheme in social participatory sensing environments, which
preserves both each party’s private information and global
clusters.

There are also some works considered the privacy-
preserving machine learning in peer-to-peer networks. Das
et al. [5] proposed a privacy-preserving feature selection
scheme over distributed data in large peer-to-peer networks.
Their scheme incorporated misclassification gain, Gini
index, and entropy feature measurement and combines the
secure sum protocol with the Bayes optimal privacy model
to aggregate features without revealing the privacy of each
node. Bhuyan et al. [3] utilized the fuzzy methodologies
technique to design a privacy-preserving sub-feature section
scheme in distributed environments.

7 Conclusion

In this paper, we proposed a novel privacy-preserving k-
means clustering scheme in peer-to-peer networks. In our
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scheme, we designed a secure aggregation protocol to learn
the sum of centers and clustering counts from neighbors and
a secure division protocol to perform division operations
over shared values. Moreover, we presented a novel mes-
sage encoding method based on Horner’s rule to improve the
performance of our aggregation protocol. Compared with
existing solutions, our scheme achieves local synchroniza-
tion and privacy protection in each peer. We also formally
proved the security of our proposed scheme and analyzed
the computational complexity of our proposed scheme.
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