
DPAS: A dynamic popularity-aware search mechanism
for unstructured P2P systems

Elahe Khatibi1 & Mohsen Sharifi1 & Seyedeh Leili Mirtaheri1

Received: 21 February 2019 /Accepted: 28 September 2019 /Published online: 12 November 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
One of the pivotal challenges of unstructured Peer-to-Peer (P2P) systems is resource discovery. Search mechanisms
generally utilize blind, or informed search strategies wherein nodes locally store metadata to quicken resource
discovery time compared to blind search mechanisms. Dynamic behavior of P2P systems profoundly affects the
performance of any deployed resource-searching mechanism and that of the whole system in turn. Therefore,
efficient search mechanisms should be adaptable to the dynamic nature of P2P systems whose nodes frequently
join and leave the system. Nonetheless, existing informed search mechanisms have failed to accord with dynamicity
of P2P systems properly, thereby becoming inefficient. To address this issue, we put forth a new resource-searching
mechanism called Dynamic Popularity-Aware Search mechanism (DPAS). Our mechanism estimates the dynamic
responsiveness states of candidate nodes to direct search selection process by exploiting temporal number of hits,
temporal penalty, and node heterogeneity. Besides, it controls the search scope at each step by estimating both the
dynamic temporal popularity of resources and recently obtained results. It thus considers at each step of the search
decision-making process to conform itself with the dynamics of P2P systems. Extensive experiments have demon-
strated that DPAS has enhanced performance in comparison to other pertinent search mechanisms by virtue of an
upsurge in the success-rate and decrease in the response time and bandwidth consumption.

Keywords Unstructured peer-to-peer systems . Resource searching . Dynamic popularity of resources

1 Introduction

Peer-to-Peer (P2P) systems are a kind of distributed sys-
tem wherein each participating node can simultaneously
act as a server and as a client—owing dual functionality;

each node is free to join network and interchange re-
sources and services to other nodes spontaneously. P2P
systems have often comprised of many nodes that share
huge amounts of all types of resources. The main char-
acteristics of P2P systems include scalability, dynamicity,
ad-hoc connections, robustness, self-organization, and
self-administration. In recent years, P2P systems have
gained a lot of attention from both industrial and aca-
demic organizations due mainly to the above desirable
inherent features; the most popular P2P applications are
file-sharing ones. Investigations reveal that a consider-
able fraction of total Internet traffic is due to P2P file-
sharing applications, even more than Internet traffic due
to Web applications [1–4].

Buford et al. [1] have classified P2P systems into
structured and unstructured based on how they control
resource placement and form their network topologies.
Structured systems exploit strict rules to specify both file

* Mohsen Sharifi
msharifi@iust.ac.ir

Elahe Khatibi
elahe.khatibi@iust.ac.ir

Seyedeh Leili Mirtaheri
mirtaheri@iust.ac.ir

1 Distributed Systems Research Lab, School of Computer
Engineering, Iran University of Science and Technology,
Tehran, Iran

Peer-to-Peer Networking and Applications (2020) 13:825–849
https://doi.org/10.1007/s12083-019-00831-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-019-00831-2&domain=pdf
http://orcid.org/0000-0003-4992-2500
mailto:msharifi@iust.ac.ir

locations and peer placement in the topology; this is
done usually by using a Distributed Hash Table (DHT)
mechanism—a distributed indexing service—resulting in
an efficient resource searching [2, 5]. Hence, DHT has
placed a substantial strain on the system due mainly to
the necessity for compulsory self-organizing method of
overlay maintenance. In contrast, topologies of unstruc-
tured P2P systems are arbitrary and suffer from ineffi-
cient resource searching mechanisms. In this regard,
coming up with an efficient resource searching is both
lifeblood and the most paramount challenge in any given
unstructured P2P systems [2].

In this paper, we focus on resource searching in het-
erogeneous, decentralized unstructured P2P systems.
Unstructured P2P systems like Gnutella do not have
any restriction on the placement of resources in the
system—thereby, enjoying lower maintenance under
churn. In other words, they do not consider any corre-
lation between the placement of resources and the net-
work topology, thereby lacking any knowledge about
the location of stored files. Hence, most of these sys-
tems exert kind of flooding to search for resources and
as such create huge network traffic [3, 6].

To counter flooding, many resource-searching mecha-
nisms [7–14] have been proposed for unstructured P2P
systems with the purpose of reducing traffic overhead in
the primary Gnutella flooding mechanism; these search
mechanisms include blind and informed ones. In a blind
search mechanism [15–17], nodes do not store any in-
formation about locations of resources. Existing mecha-
nisms falling into the blind group still are afflicted with
low performance due to their random nature, and
inadaptability to different degrees of popularities of re-
quested resources; moreover, blind mechanisms generate
large amounts of network traffic. In informed mecha-
nisms [15–18], nodes locally store some information
regarding their neighbors, and upon receiving a query
message, they opt for a subset of their high-scored
neighbors to forward the query to the best ones [8, 9].

Although informed search mechanisms can signifi-
cantly reduce network traffic, they suffer from important
flaws. Current informed resource searching mechanisms
do not well accord with alternations in the popularity of
resources; the root cause of the fluctuation in resource
popularity is in skewed data access patterns in P2P sys-
tems. To achieve the best tradeoff between search per-
formance and search cost, any resource searching mech-
anism should adaptively operate with regard to variable
popularities of resources. Search performance is defined
as the gained success-rate and search cost, the latter of

which is equal to the number of generated messages [2,
19–21]. Furthermore, resource-searching mechanisms
must take into account diverse load status of nodes
[22, 23]; as a matter of fact, when a node becomes
overloaded, it fails to handle received queries, causing
a sudden drop in system performance [13–17]. Several
critical factors may cause the candidate node to be
overloaded like node heterogeneity, node degree, and
resource popularities. Additionally, informed mecha-
nisms are not properly adaptable to the dynamic nature
of the P2P systems in which nodes frequently join/leave
and insert/delete their resources; this results in degrada-
tion in system performance swiftly. In fact, stored infor-
mation at each node may become rapidly invalid; inva-
lid information should be purged, and therefore updated
information about either new incoming peers or inserted
resources should be stored as well [15–17].

To address the shortcomings of resource searching
mechanisms in unstructured P2P systems attributed to
inadaptability of these mechanisms to the dynamicity
of P2P systems, we present a Dynamic Popularity-
Aware Search mechanism (DPAS) for unstructured P2P
systems. We focus on files as resources shared by
nodes, although our mechanism applies to other kinds
of resources too. DPAS is fully distributed, dynamic,
scalable, and informed. It enhances searching process
by virtue of the following five techniques.

Firstly, each node builds a neighbor table containing
information about its neighbors, from which queries are
sent to the best neighbors in terms of response
capability.

Secondly, DPAS exploits negative feedbacks to up-
date information in the neighbor tables dynamically
considering the varying popularities of requested re-
sources as well as nodes’ responsiveness states. As a
result, DPAS is a new dynamic mechanism that con-
siders both nodes heterogeneity and system erratic
conditions.

Thirdly, DPAS makes the best online decision at each
search step grounded on the environment’s conditions as well
as information obtained during recent searches. To do so, by
virtue of profiled information during recent searches, it does
estimate the popularity of requested resources; therefore,
DPAS can define the proper value for Time-to-Live (TTL)
and subsequently the number of required queries to be
forwarded at the next step. Thus, DPAS behaves differently
towards the manifold popularity of requested resources and a
different number of obtained results.

Fourthly, DPAS uses a dynamic estimation of node’s
responsiveness status and node’s usefulness. To this end,

826 Peer-to-Peer Netw. Appl. (2020) 13:825–849

we estimate node’s working load and consider such sit-
uations as deletion of node’s resources and leaving of
the node from the systems; in this respect, DPAS can
cover dynamic conditions of unstructured P2P systems
as well as high heterogeneity among nodes in terms of
responsiveness status. Usefulness and responsiveness of
candidate nodes are determined before forwarding
queries to them to avoid forwarding queries to
overloaded or useless nodes. DPAS applies adaptive
penalty and dynamic ranking reduction techniques with
regard to system status to reflect recent modifications in
nodes’ states.

Fifthly, temporal parameters with higher weights on
more recently collected data in neighbor tables are intro-
duced. The rationale behind this notion is that a lifetime
of most nodes in P2P systems is short [3] and that old
information is usually invalid. In light of these efficient
techniques, DPAS prevents a drastic plunge in overall
system performance; performance degredation is highly
probable when incorrect hops are chosen during resource
searching due mainly to out-of-date information.

We show experimentally how much DPAS improves
the performance of resource searching in terms of suc-
cess-rate, bandwidth consumption, and response time.

To put it in a nutshell, unstructured P2P technologies
and their concomitant concepts due to their inherent char-
acteristic are found overwhelmingly fruitful in a plethora
of interactive online and Internet applications; these in-
clude file-sharing, video streaming, Voice-over-IP applica-
tions, Massive Multiplayer Games (MMG), and Online
Social Networks (OSN) [24]. The search mechanism is
the mainstay of any given unstructured P2P systems to
both maintain and boost the system performance. Given
these points, we have been spurred to propose a new
search mechanism for unstructured P2P systems to ame-
liorate deficiency of previous mechanisms. To the best of
our knowledge, DPAS is the first search mechanism trying
to reap the rewards of the above-mentioned techniques;
hence, DPAS takes into account the near-real-time infor-
mation in diverse parts of their algorithm, including can-
didate neighbor selection, estimating the number of queries
coupled with their attendant TTL values for the next hop,
and assessing candidate node status. Consequently, in
the interest of search performance assurance, DPAS
can involve and reflect dynamicity of P2P systems—a
sweeping and underlying factor in the whole system’s
productivity. In this regard, DPAS has surpassed their
counterparts.

The remainder of the paper is organized as follows.
Section 2 summarizes related works. Section 3 introduces

the main parts of DPAS mechanism. Section 4 reports simu-
lation results and some performance measurements. Section 5
draws our conclusion and outlines future works.

2 Related work

We classify resource-searching mechanisms in unstruc-
tured P2P systems into five groups: blind, informed,
group, hybrid , and bio- inspired meta-heur is t ic
mechanisms.

2.1 Blind search mechanisms

The first group called blind mechanisms produce a great
deal of network traffic by sending queries to many nodes
blindly [2, 13, 14] [25–27]. In the k-walker random walk
mechanism [3]—a blind mechanism—the query origina-
tor randomly sends a query message to k number of its
neighbors. The mechanism has low performance due to
its random behavior and its inadaptability to varying
popularities of requested resources. A newer version of
BFS like Alpha Breadth-First Search (α-BFS) mecha-
nism [28] has tried to diminish the network resources
wastage. Even though this mechanism reduces the aver-
age message traffic compared to the flooding scheme, it
still generates too much overhead. α-BFS suffers from
uninformed query forwarding causing performance
degeneration.

There are also some blind resource searching mecha-
nisms that act based on the popularity of requested re-
sources [1, 15, 29], one of which is Expanding Rings
(ER) [1, 15]; ER is a blind mechanism that aims to
solve the overshooting problem, although it is not too
successful. Overshooting happens when additional un-
wanted results are returned, leading to system resource
wastage. ER considers the popularity of resources by
defining a set of TTLs during consecutive BFS searches
at increasing depths. At first, it forwards a query with a
small value of TTL, and search terminates if sufficient
resources are found after a defined waiting time.
Otherwise, searching is continued by initiating another
BFS search with a bigger TTL depth than the previous
one. ER suffers from flaws such as repeti t ive
forwarding of queries to nodes having already processed
the query, blind query forwarding, ignorance of nodes’
heterogeneity during query forwarding, and high net-
work traffic due to flooding the query at each step.

Another blind mechanism that exerts the popularity
of requested resources is called Dynamic Querying

Peer-to-Peer Netw. Appl. (2020) 13:825–849 827

(DQ) [15]. DQ first sends a probe query with a small
value of TTL to a handful of neighbors. If the desired
number of results is not returned, it initiates an iterative
process. At each iteration phase, the value of TTL for
the next query is estimated based on the number of
returned results by which the query is sent to the next
neighbor. Search process stops when the desired number
of results is received, or all neighbors have been
contacted. DQ assumes some conditions for the system
that may not always hold due to the heterogeneity of
the system. For instance, it presumes that it has always
high degrees nodes at its disposal to increase control
over the number of hits in a query; this means that
nodes with equal degrees are always linked to candidate
nodes, and that an equal number of results are always
returned from super-nodes that have received the query.
As a result putting such strict constraints on the net-
work prevents DQ from being widely adopted. In this
mechanism, query forwarding is done blindly and it
suffers from long response time, which is due to its
sequential operations.

The Equation Based Adaptive Search mechanism
(EBAS) [30] is a blind mechanism that uses the request-
ed resources’ popularities too. It creates a popularity
table in each node to store popularity estimation of each
resource in the network based on feedbacks from previ-
ous searches. EBAS chooses TTL and a number of ran-
dom walkers based on information in popularity tables.
It assumes that there is some restricted number of re-
sources in the system. This assumption does not always
hold in most P2P systems wherein the lack of global
information exists. In addition, it forwards the queries
blindly and does not consider the temporal popularities
of resources and their variation in different conditions.
Additionally, this mechanism does not consider nodes’
different degrees of responsiveness when forwarding
query messages.

Adaptive Resource-based Probabilistic Search mecha-
nism (ARPS) [31] is another blind mechanism that uses
the requested resources’ popularities. It creates a popu-
larity table in each node for the queries the node pro-
duces itself or queries that are received by that node.
Each node estimates the resource popularity in the net-
work based on the feedbacks obtained from previous
searches; then, each node calculates the query’s
forwarding probability based on its own degree and
the popularity of the requested resource. The main
drawback of ARPS is the way it forwards the queries
blindly. It does not consider important parameters such
as nodes’ different responsiveness capabilities when
forwarding query messages.

2.2 Informed search mechanisms

The second group of resource searching mechanisms is
the informed mechanisms, wherein each node amasses
and stores some information that is helpful during the
search process. Each node sends a query to the nodes that
have better responsiveness and are most likely to return
wanted results [32]. The informed Directed BFS mecha-
nism (DBFS) [8, 15] has tried to reduce search response
time while ignoring important parameters like nodes’
changeable responsiveness when it forwards query mes-
sages. More precisely, each node forwards a query merely
to some of its neighbors that have returned more results
during previous searches. In Local Indices [15]—an in-
formed mechanism—each node indexes resources of
nodes within a specified radius and answers queries on
behalf of those nodes. It uses the BFS mechanism for
resource searching, but only nodes in a specified depth,
process a received query. It thus achieves higher success-
rate due to its indexing method, but at the cost of gener-
ating higher network traffic. The network traffic is due to
the flooding process that takes place per node leave/join
in order to keep correct indexes. In the informed Routing
Indices mechanism (RI) [15], each node stores file meta-
data for each of its outgoing paths and forwards a query to
the neighbor having the highest number of documents
nearby. Flooding process is required to update nodes’
storages after nodes leave/join the system, or when they
insert/delete their resources. In Gianduia (GIA) [15], an-
other informed mechanism, a requester node exploits bi-
ased random walks to find requested resources by
forwarding queries to neighbors that have lots of indexed
resources as well as high degrees; the degree of a node is
defined as the number of its neighbors. This mechanism
also utilizes a topology adaptation algorithm that puts
most nodes in short distance of high capacity nodes. The
adaptation algorithm imposes extra network traffic. In
Intelligent Search Mechanism (ISM) [15, 33] whose goal
is to diminish network traffic of flooding mechanisms,
queries are forwarded according to their similarities to
previous successful queries. Information regarding neigh-
bors and similarity of responded queries are stored in each
node; LRU mechanism is used to omit old and invalid
information. ISM has critical hurdles, as it does not use
negative search feedbacks to update profiles. This means
that it does not consider both nodes and resources, which
leave the system. It also does not take into account vary-
ing popularities of resources, overloading probabilities of
candidate nodes, the bandwidth of nodes, and the uptime
of nodes during the selection of candidate nodes for next-
hop forwarding. Some other new resource discovery

828 Peer-to-Peer Netw. Appl. (2020) 13:825–849

mechanisms like Flooding with Random Walk with
Neighbors Table (FRWNT) [34], leverages a combination
of the blind as well as informed search mechanism across
resource searching. FRWNT also languishes due to being
negligent on updating information, the popularity of re-
sources, and distinct capacity of each node.

There are some informed search mechanisms deeming
either an updating scheme or popularity of resources.
Because our suggested mechanism intends to assuage
shortcomings of already-proposed search mechanisms
by reaping the rewards of both updating scheme and
popularity of resources, we assimilate an exhaustive re-
view of informed mechanisms; these informed search
mechanisms place a high premium on the aforemen-
tioned concepts hereunder. Several informed search
mechanisms exploit some type of updating scheme in
dynamic P2P environments [35, 36] . Adapt ive
Probabilistic Search mechanism (APS) [15] is one such
mechanism that deploys k-walker random walk mecha-
nism to forward probabilistically a query to k neighbors
based on previous results. It only uses one updating
mechanism and applies it to different P2P dynamic situ-
ations; application of a single updating mechanism does
not suit dynamic unstructured P2P systems. In addition,
it ignores nodes’ heterogeneity and resources’ varying
popularities during the selection of candidate nodes in
forwarding query messages. Another problem occurs
when walkers collide, especially when the requester
node’s degree is less than k. There are also other mech-
anisms with their own updating schemes. For example,
in [37], the query is forwarded to the neighbor that has
previously returned the related results in a short period.
In 6Search mechanism (6S) [38], each node directly con-
nects to the nodes that have previously returned the de-
sired results; moreover, each node forwards a received
query to the best neighbors based on both their previous
responses and types of their shared resources. The above-
mentioned mechanisms do not deem diverse dynamic
parameters during decision making to forward a query
at each step, including variable system conditions and
different responsiveness capabilities of nodes. In the
Hybrid Periodical Flooding mechanism (HPF) [15],
which is an informed mechanism, a specified number
of queries should be forwarded at each step based on
the TTL value and each query receiver node degree.
HPF uses two metrics for neighbor selection, namely
communication cost (i.e., the physical shortest path be-
tween a node and its neighbor), and the number of
shared files on each neighbor node. However, it does
not consider resources’ popularities and the candidate
nodes responsiveness states when forwarding queries.

2.3 Group-based search mechanisms

Group-based mechanisms comprise the third group of
resource searching mechanisms. In these mechanisms,
nodes with similar resources form a system group. A
query is sent to one of the groups that are more prob-
able to respond to the query [39]. Interest-Aware Social-
Like Peer-to-Peer (IASLP) model for social content dis-
covery has been suggested. IASLP has exploited the
group-based approach to identify relevant as well as
useful content so as to find the requested resource
[40]. Group-based mechanisms are more accurate but
are less efficient, especially in systems with limited
but varieties of resources at each node. This inefficiency
is due to the complication in defining similarities be-
tween nodes.

2.4 Hybrid search mechanisms

The fourth group of resource searching mechanisms is
hybrid mechanisms that use the positive features of
existing searching mechanisms in both structured and
unstructured P2P systems. This means utilizing flooding
for searching popular resources and DHT in the case of
rare ones [41, 42]. This group tries to foster searching
success-rate, especially for rare requested resources
while maintaining the success-rate within an acceptable
threshold for popular requested resources [43]. In these
mechanisms, both construction and maintenance of the
structured overlay impose excess overhead.

2.5 Bio-inspired meta-heuristic search mechanisms

In addition, we have also considered a fifth group—
called bio-inspired meta-heuristic group. Some re-
searchers have strived to deploy organic and biological
concepts—bio-inspired mechanisms—to wrestle with is-
sues in computer science domains, including search al-
gorithms [44–48]. In this regard, some search mecha-
nisms [44–48] have been inspired from humoral im-
mune system (IBS) [46], structure of fungi, or cellular
slime mold life cycles (Dictyostelium discoidem)
(SMP2P) [44, 45]; the latter proposed mechanism suf-
fers from considering some rules for peer position and
overlay network in order to map slime mold bio-
mechanism to P2P lookup operation; this brings about
extra overhead. Other mechanisms use food-foraging be-
havior of either bees or ants—whose focus is on using
swarm intelligence to resolve complex problems [3, 47,
48]. Take food-forager ants analogous to query, tries to
search for desired resource by depositing some chemical

Peer-to-Peer Netw. Appl. (2020) 13:825–849 829

substance, namely pheromone as trials, for instance.
IACO search mechanism [7] utilizes inverted ant colony
optimization to take into account load-imbalance issue
as compared to ACO [48], by diminishing the phero-
mone impact on used paths. IACO fails to adapt to
frequently changing conditions of P2P systems by ap-
praising a myriad of contributing factors at each search
step. Moreover, IACO is negligent in considering can-
didate node status before sending queries. Accordingly,
the system suffers from additional network traffic,
overloaded nodes, dwindling success-rate, and prolonged
response-time.

3 DPAS mechanism

In this section, we present our new resource searching
mechanism called DPAS. Resource popularities change
in P2P systems as system conditions vary. Thus, it is
required to define the TTL values of queries and the
number of forwarded queries at each step; these calcu-
lations should be done based on system conditions and
resource popularities to prevent drops in system perfor-
mance. DPAS considers the mentioned factors to control
and constrain the search scope. Briefly, the novelty of
DPAS is that it pushes itself to the limits so as to
estimate both the search scope and the best candidate
nodes at each search step in a near-real-time manner; to
do so, DPAS defines some temporal parameters parallel
to adapting to the dynamic nature of P2P systems.

Our mechanism prevents overshooting by dynamical-
ly estimating the search scope at each step based on
current popularities of requested resources, the number
of obtained results and the responsiveness of neighbor-
ing nodes. In addition, DPAS considers accurate factors
in its decision-making procedure in selecting candidate-
neighboring nodes to which forwards the queries.
Hence, DPAS exhibits a high success-rate.

Message queues of nodes with popular resources usually
get full quickly because each queue has a finite capacity,
and the usually extreme number of queries is received for
the popular resources. When the incoming message-rate
exceeds the node’s capacity, the node gets overloaded and
drops any subsequent messages sent to it. Furthermore,
when the overloaded nodes drop the incoming messages,
i.e., query or response message, they are not able to for-
ward these messages to other nodes; as a result, the
success-rate and consequently the whole system perfor-
mance drop rapidly. In addition, when the degree, ranking
or usefulness of a node are high, the number of received

queries and responses as well as the number of forwarding
queries by that node increase. The usefulness of a node is
calculated based on the node’s previous responses to its
neighbors’ queries. Furthermore, a huge number of queries
and response messages can overload any node in the search
path that has the mentioned characteristics. This is especial-
ly more probable to happen for low-capacity nodes. In light
of these, we consider all of the mentioned contributing
factors in our mechanism as a whole to estimate response
capability of each candidate node before forwarding the
query to them; this is one contribution of our work. In
the system that we model, we consider two finite message
queues for each node, one for received query messages and
another for received response messages. If any of these
queues get full, subsequently received messages are
dropped. The important goals of DPAS include increasing
the success-rate and accuracy as well as decreasing the
bandwidth consumption and response time while adapting
to dynamic P2P system conditions in terms of nodes fre-
quent leave and join and also insertion or deletion of re-
sources. Each node executes DPAS mechanism locally.
DPAS mechanism comprises of two main schemes, namely
dynamic neighbor table scheme and search scheme.
Figure 1 illustrates the visual overview of DPAS’s indis-
pensable components.

In the first scheme, namely dynamic neighbor table, each
node stores some information about the recently answered
queries via its neighbors in a table. This information is used in
the second scheme, namely a search scheme, to select the best
candidate neighboring nodes. Dynamic neighbor table scheme
uses the following two mechanisms: Adaptive Replacement
Mechanism and Dynamic Updating Mechanism.

Adaptive replacement mechanism This mechanism is used to
replace the old values in the dynamic neighbor table with
newly gathered information whenever a node’s dynamic
neighbor table gets full. To achieve this, two parameters,
namely query popularity and responsiveness abilities of nodes
are considered.

Dynamic updating mechanism This mechanism updates the
stored information of the table by applying the feedback
it receives from recent queries. There are three feedback
messages, namely query-hit, rank-setting, and updating
messages. Using these messages, the rankings of nodes
are modified to reflect the varying system conditions.

The following pseudocode demonstrates the process of dy-
namic neighbor table scheme.

Pseudocode_1.

830 Peer-to-Peer Netw. Appl. (2020) 13:825–849

Dynamic Neighbor Table Scheme //incorpora�ng both Adap�ve Replacement and
Dynamic Upda�ng Mechanisms

If Dynamic Neighbor Table is full

call Adap�ve_Replacement()

End if

Else If Receive any feedback message msg �(query-hit, rank-se�ng,
upda�ng-message, query) // func�onality of Dynamic Upda�ng Mechanism

If msg is query-hit

Update value of temporal-total-number-of-hits
parameter

End if

If msg is rank-se�ng //implica�on of infer�le search path

Update value of Temporal Ascending Penalty parameter

End if

If msg is upda�ng-message // implica�on of corrupted or low-
quality resource

Update value of temporal-number-of-invalid-hits
parameter

End if

If msg is query which bears a striking resemblance to previously
stored queries

Update value of temporal-number-of-queries parameter

End if

If msg is query and receiver possesses the requested resource

Update value of temporal contribu�on level parameter

End if

Procedure Adap�ve_Replacement() // Adap�ve Replacement
Mechanism

begin procedure

select row as a vic�m_row whose value)(irowU is minimum

StatesNodesMax
StatesNodesW

PopTempMax
PopularityTemp

WU irow
irow

__

_
*

__

_
* 2

)(

1)(

// formula (5)

end procedure

End if

Peer-to-Peer Netw. Appl. (2020) 13:825–849 831

The second schema—search scheme—uses the dynamic
information in the neighbor tables to select the best candidate
nodes; these so-called best candidate nodes are more capable
of responding, and enjoying the higher probability to own the
desired requested resource—when a new query is received. It
uses the following two mechanisms: Dynamic Estimation
Mechanism and Dynamic Status-Aware Search Mechanism.

Dynamic estimation mechanism Each node uses this mecha-
nism upon receiving a query to estimate the number of
forwarding queries and query’s TTL value for the next step;
these calculations are done based on both node’s dynamic
neighbor table’s information and the number of already
returned results.

Dynamic status-aware search mechanism (DSAS) This mech-
anism selects the best neighbor nodes to forward them
the current query considering their responsiveness. This
mechanism uses dynamic neighbor table’s information
as well. The following pseudocode depicts the searching
process of the DPAS mechanism—functionality of
above-mentioned search scheme.

Pseudocode_2.

The two schemes, namely Dynamic Neighbor Table Scheme
as well as Search Scheme and the mechanisms they use–
including Adaptive Replacement Mechanism, Dynamic

Updating Mechanism, Dynamic Estimation Mechanism, and
Dynamic Status-Aware Search Mechanism (DSAS)—are pre-
sented in detail in the following subsections.

3.1 Dynamic neighbor table scheme

In our proposed mechanism, DPAS, each node has a Dynamic
Neighbor Table (DN-Table) for storing information on its
neighbors. In the dynamic neighbor table scheme, dynamic
updating mechanism uses the information stored in this table.
Each row of this table, for each node, is allocated to a self-
produced or received query by that node and consists of a list
of neighbors that have previously responded to this query.
This response is either generated by the neighbor itself or it
is routed through the neighbor; in unstructured P2P systems,
query-hit messages traverse the same path as that of the query
but in reverse direction. Query’s keywords and its temporal-
number-of-queries parameter are stored in each row. For each
row, the temporal-number-of-queries parameter contains the
number of other received queries that are supposed to be sim-
ilar to that row query.

Each node stores extra-temporal information on its own
resources in related resources rows of the table to estimate
resources popularities; resource popularity specifies the

Search Scheme //entailing Dynamic Es�ma�on as well as Dynamic Status-Aware Search
Mechanisms

1. Receive a query
2. If the number of needed results or TTL value equals zero then

Do not send the query further
3. Else

4. Opt for the k most similar queries to the currently received query via
cosine similarity func�on
5. Calculate the number of queries and TTL value for the next hop, via
Equa�ons (13), and (16) // Dynamic Es�ma�on Mechanism
6. Send the query to the highest-rank neighbor by Equa�on (23) //Dynamic
Status-Aware Search Mechanism

End if

832 Peer-to-Peer Netw. Appl. (2020) 13:825–849

number of nodes that should process the query. This informa-
tion is in fact about the contribution level of the previous
requester nodes who have already received the mentioned
resources. By contribution level, we estimate the probability
that the requester node shares the received resource in the
system. Each cell of the mentioned neighbor list contains a
sub-list containing some items; these items include the name
of the responding neighbor node, temporal-total-number-of-
hits, temporal-number-of-invalid-hits that are not supposed to
be valid based on their quality, and the value of temporal
adaptive ascending penalties for the related query. Each node

also stores both name and size of files shared by its neighbors
by asking them to do so. Each node uses this information to
calculate loads of its neighbors, node state, as we explain later.
All items in the DN-Table, except query keywords, are tem-
poral parameters. These temporal paramteres are used to re-
cord changes in system conditions like nodes leaving/entering
the system or deletion/insertion resources. Hence, the more
recent such information is collected, the more effective they
would be.

Items in the DN-Table are calculated based on the received
queries, their relevant query-hit messages, and their number of
related returned results (as defined in more details in later sec-
tions). Figure 2a shows the structure of DN-Table coupled with
illustrative values; moreover, Fig. 2b depicts the content of each
cell of DN-Table.

Let us now explain how temporal items in DN-Table are
initialized and weighted. We have designed a temporal
“Dynamic Weighted Interval Set” mechanism that uses dis-
tinct sets for recording the temporal and weighted values of
each of the items; each set records the values for that item at a
given time upon the occurrence of a given event. To this end,
we consider x interval sets. Each of these interval sets con-
tinues for t units of time and a pointer is used to demonstrate
the current set. We have implemented these sets by storing
related information in two data structures (Fig. 3), namely a
cyclic list. These cyclic lists record the first event occurrence

Fig. 2 a. Structure of Dynamic
Neighbor Table b. Content of
Each Cell of Dynamic Neighbor
Table

Fig. 1 Visual Overview of DPAS Mechanism and its Attendant
Components

Peer-to-Peer Netw. Appl. (2020) 13:825–849 833

time and another cyclic list to record the item value [49]. We
call these lists time-list and value-list, respectively. The size of
each list is x.

Whenever a related event for each temporal item in the
DN-Table is triggered, in each entry of the time-list, its related
value-list entry is set. The time of the first occurred event in
each of the intervals is also recorded in a time-list entry in
terms of that value-list entry. These sets are designed to be
cyclic. After reaching the end of each time-list entry, the next
entries of both lists are started, and the two related pointers are
set to these newly arrived entries. A time-list entry ends if by
receiving an event the subtraction of the value of time-list’s
current entry from current system time (i.e., time of received
event) is bigger than t units of time. If the current entry of the
time-list is the last one, and the mentioned previous condition
is held, by going to the first entries of both lists again, the
values of both lists entries are reset based on the received
related event.

Events triggering changes to temporal items are as follows:

1. An event for the temporal-total-number-of-hits item,
which is triggered by receiving query-hit messages.

2. An event for temporal-number-of-invalid-hits item, which
is triggered by downloading a resource with low (i.e.,
imperfect or incorrect) quality.

3. An event for temporal-number-of-queries item, which is
triggered by receiving a new query if there is any similar-
ity between the current received query and previously-
stored queries.

4. An event for temporal contribution level item, which is trig-
gered when the owner of a resource receives a query,

messages for that resource. Therefore, the contribution level
of requester node is recorded in resource owner node table
based on information that is stored in the query message.

5. An event for temporal ascending penalty item that is trig-
gered by receiving rank setting messages.

Parameters x and t are systems defined. For giving more
weight to more recent events, we subtract the time in which
the above-mentioned events have triggered from the current
system time; afterward, we utilize the inverse of this result as a
weighting value for temporal items as it is described in details
in the following example. Because each node does these op-
erations locally, there is no need for global time. We use tem-
poral items and their attendant weighting schemes in most of
the mechanisms such as in replacement, updating and search
mechanisms.

To clarify the above points, let us consider an example for
setting the temporal-total-number-of-hits item i.e.,
Temp_Total_Hit(responder_neighbor, query). Suppose that t
and x are set to 3 and 2, respectively. Node n1 has received 2
query-hit messages from its neighbor n2 for the stored query
q1 in its DN-Table. As each query-hit message can contain
more than one result, we assume the first message is received
at time ti = 0 = 3 where i is the index of the current entries in
both of the mentioned lists; moreover, the message includes 4
results as Temp_Total_Hit(i = 0) is set to 4. Therefore, the first
entry of temporal-total-number-of-hits’s relevant time-list is
set to 3 and the first entry of its relevant value-list is set to 4.
The second query-hit message is received at time ti = 1 = 7, and
it includes 2 results as Temp_Total_Hit(i = 1) is set to 2.
Therefore, the current system time has the value of 7
(current_time = 7) when this event has occurred; because the
subtraction of the time-list’s current entry from current system
time is bigger than t, i.e., (7–3) > 3, we go to the next entries of
both lists. Figure 3 shows the filling process of the entries in
both of the mentioned lists.

In order to give weight to the temporal-total-number-of-
hits item, we divide the content of the value-list entries by
the subtraction of their relevant time-list entries’ values from
the current system time. Assuming that current system time in
node n1 is equal to 10, the weighted value of temporal-total-
number-of-hits for neighbor node n2 is:

Temp Total Hit n2; q1ð Þ ¼ ∑
x

i¼1

Temp Total Hit ið Þ
current time−ti

¼ 4

10−3ð Þ þ
2

10−7ð Þ : ð1Þ

By this way, the effect of old value-list’s entries is reduced.
In Eq. (1), the Temp _ Total _Hit(i) variable is temporal-

total-number-of-hits value of the i-th value-list’s entry and ti is
its related event occurrence time in the i-th time-list’s entry.
The related event is triggered by receiving a query-hit message
for each row of the table. Other temporal items can be calcu-
lated similarly using their own relevant events.

Fig. 3 Cyclic lists for temporal items with illustrative values

834 Peer-to-Peer Netw. Appl. (2020) 13:825–849

3.1.1 Adaptive replacement mechanism

Because of the limited capacity of nodes’ dynamic neighbor
tables, we have to think of an efficient replacement policy to
put in a new incoming query in place of the old ones in a table,
in case the table is full. We call this policy Adaptive
Replacement mechanism (AR) and replace entries based on
both temporal as well as variable files’ popularities and
Node_Status parameter. By popularity, we mean how often a
specific resource is requested, and in fact, it shows the interest
of other nodes to have this resource. The reason for consider-
ing the popularity factor is that most queries in P2P systems
target popular resources. We have provided the “Temporal
Popularity” parameter, i.e., Temp_Popularity, to execute the
replacement policy for the rows of tables. This parameter is
calculated by Eq. (8) and Eq. (9) that are presented later.

In addition, we pay attention to recent responsiveness states
of responding neighbor nodes when deleting DN-Table rows
and when choosing a candidate neighbor node for the next-
hop forwarding. The reason for considering recent responsive-
ness states of responding neighbor nodes is that there may be a
situation wherein a requested resource is popular, but selected
candidate nodes cannot respond because their states have
changed or their responsiveness levels have dropped.

Due to the dynamic nature of P2P systems, it is probable
that nodes leave the system, delete some of their popular re-
sources, or become overloaded (i.e., this may occur due to
incoming message traffic or the traffic of downloading each
node files); as a result, responsiveness states of nodes degrade.
Therefore, we consider responsiveness states of responding
neighbor nodes in each row of a DN-Table. In this regard,
we can select the row that relates to responding neighbors with
minimum responsiveness states to be replaced. We show re-
sponsiveness states of all nodes in each table row with
Nodes_States parameter that is calculated by Eq. (2). The re-
sponsiveness state of each node is based on two parameters,
namely Overloading_Probability (i.e., the probability of
nodes becoming overloaded) and usefulness. The first param-
eter in Eq. (2) is the Overloading_Probability parameter that
denotes the probability of each row’s overloaded responding
neighbor node. The Overloading_Probability parameter is
used to estimate the load that is imposed on each responded
neighbor node; this load includes incomingmessage load (i.e.,
query or query-hit messages) and the load that is due to
downloading the node’s files. This parameter is calculated
via Eq. (24) and is explained in details later in subsection
3.2.2. In the calculation of the Overloading_Probability pa-
rameter, we avoid calculating the Pop_Current_Query param-
eter in Eq. (25)—pointed out in subsection 3.2.2—because it
does not design for ARmechanism. TheUsefulness parameter
defined by Eq. (3) using penalty values calculated in the
Dynamic Updatingmechanism (DU) to be described in details
in subsequent sections—in subsection 3.1.2. Briefly, a penalty

value is assigned to a node that on the one hand has a positive
value showing its base usefulness status but at the other hand
its resources are not accessible (i.e., when resources are delet-
ed or the node has left the system or has failed). By subtracting
the penalty values from the base value, the usefulness status or
usefulness parameter for the node is calculated.

Nodes States

¼ 1−
∑n

i¼1Overloading ProbabilityPi

� �
Max Overloading Prob

� �
þ ∑n

i¼1UsefulnessPi

� �
Max Useful ness

� � ð2Þ

Usefulness ¼ Initial Score− Asc Penalty½ � Pið Þð Þ ð3Þ

Asc Penalty ¼ ∑x
j¼1

Aβ jð Þ
current time−t j

ð4Þ

Parameter Pi in Eq. (2) and Eq. (3) denotes the i-th
responding node of each row and parameter n denotes the
number of responding nodes in each row. In addition,
Asc_Penalty in Eq. (3) denotes the temporal ascending penalty
value for each responding node that is calculated by Eq. (4). In
Eq. (4), is the ascending penalty value for the j-th value-list’s
entry and tj is its related event occurrence time for the j-th
time-list’s entry. The related event for the temporal ascending
penalty parameter, in fact, receives a rank setting message for
each row of the table. For calculating all temporal parameters,
we sum up their weighted values in distinct interval sets. For
example, consider we have 3 interval sets (x = 3) with ascend-
ing penalty values =1, =3 and Aβ(j = 2) = 4 (j is the index of
list’s entry). Assuming the occurrence time values are tj = 0 =
4, tj = 1 = 7 and tj = 2 = 12 and the current system time in node
n1 is 19, the final value of temporal ascending penalty param-
eter is calculated by Eq. (4).

∑x
j¼1

Aβ jð Þ
current time−t j

¼ 1

19−4ð Þ þ
3

19−7ð Þ þ
4

19−12ð Þ

The Usefulness parameter should have a positive value, so
we subtract the summation of penalty values from a big pos-
itive value Initial_Score. Our simulations reveal that setting
Initial_Score to 100 produces the best results. After calculat-
ing the Nodes_States value, we use it in Eq. (5) to select the
victim row. Equation (5) is a utility function that selects the
row with minimum utility value; this means the row with
minimum values for both temporal popularity and
Nodes_States parameters to be replaced by the new received
query. W1 and W2 are system-defined parameters that weight
the parameters and show the level of importance of these
factors in the system and W1 +W2 = 1 always holds.

Urow ið Þ ¼ W1*
Temp Popularityrow ið Þ

Max Temp Pop
þW2*

Nodes States
Max Nodes States

ð5Þ

In the denominator part of the first and second expressions
of Eq. (5), we put the maximum value of temporal popularity

Peer-to-Peer Netw. Appl. (2020) 13:825–849 835

and Nodes_States parameters among each table row m of the
DN-Table, respectively. This is done to normalize these pa-
rameters as their values are from different ranges. These
values are calculated by Eq. (6) and Eq. (7).

Max Temp Pop ¼ max∀1≤m≤ last rowTemp Popularityrow mð Þ ð6Þ

Max Nodes States ¼ max∀1≤m≤ last rowNodes Statesrow mð Þ ð7Þ

3.1.2 Dynamic updating mechanism

There are different reasons when no response is returned from
a node that is expected to return a response. No response from
a candidate node path may be due to the zero value of TTL,
indicating an end to the search process. No response may also
occur when some node in the search path has left the system,
or when it has deleted the requested resource. Considering
these different situations, DN-Table is updated as follows.

To reflect the dynamicity of the system due to the departure
of nodes, resource deletion or changes in users’ favorites, we
use a dynamic updating mechanism in order to update infor-
mation that is stored in each node’s DN-Table. Users’ variant
favorites lead to different query generation rates for resources
that demonstrate the popularity level of each resource. In this
mechanism, if a query is forwarded to a selected candidate
node, and the last node in the search path has no relevant
resource while its received query has the value of TTL = 0, a
rank setting message is sent from this last node in the search
path in reverse direction to the requester node. Therefore, each
node A that receives the rank setting message registers a pen-
alty value for the sender node B with regard to the value of
TTL at the time A had sent the query to B, namely theMY_TTL
value. This way, the penalty values for the intermediate nodes
along the inverse path of search path increase as we get nearer
to the query originator node.

It is worth noting that to cover the dynamicity of P2P sys-
tems, we introduce the “Temporal Ascending Penalty” param-
eter. We allocate weights to the penalty values by using a
temporal mechanism and initializing them by their pertinent
event; this means, their event is receiving a rank setting mes-
sage. In other words, by receiving a rank-setting message,
each node uses the relevantMY_TTL value to update the value
of the temporal ascending penalty parameter for the current
interval of the related row and its relevant neighbor, from
which the rank setting message is received. In addition, if
the result of subtraction of the time-list’s current entry from
the system time is bigger than the interval length t, we go to
the next entries of both of the mentioned lists and set the time-
list’s current entry to current system time. The key point be-
hind this scheme is that nodes that have received the query
with TTL= 0 still can be a candidate for later queries while

only their ranks are decreased by a small value. This mecha-
nism helps in AR process to delete useless paths.

In addition, if the query generator receives a corrupted or
low-quality resource, it sends an update message in the path
through which it has received the mentioned requested re-
source. Every node that receives this update message and the
query generator node, reduces the rank of the node that they
had already selected to forward the related query. This is done
by adding one value to the value-list’s current entry of the
temporal-number-of-invalid-hits parameter for the related
row and its relevant neighbor, which had sent the query to it
previously. In this case, the receiving of an update message by
each intermediate node is the event of the temporal-number-
of-invalid-hits parameter. In addition, if the result of subtrac-
tion of the time-list’s current entry of the temporal-number-of-
invalid-hits parameter from the system time is bigger than the
interval length t, we go to the next entries of both of the
mentioned lists and set the time-list’s current entry to the cur-
rent system time. After a while, if some useful nodes join a
previous useless path, the effects of these temporal penalties
get lower and lower due to the adaptive nature of our
mechanism.

3.2 Search scheme

Consider the problem of searching for a copy or multiple
copies of a resource in a large, connected unstructured P2P
network. Each node can start to search for a resource by cre-
ating a query message with both a specified number of needed
results and a specified TTL to indicate the termination condi-
tion. Then, it forwards the query by virtue of dynamic and
online decision-making mechanism, which are explained later
in details in Subsections 3.2.1., and 3.2.2 accordingly. The
requester node calculates the proper number of queries to be
forwarded to the next step; this is dones by considering the
number of needed results that is stored in the query message
and estimating the popularity of the requested resource via
collected information in its DN-Table.

The popularity estimation mechanism is explained later
(Section 3.2.1). To select candidate nodes to forward the query
to them, the requester node dynamically chooses nodes with
the most responsiveness ability to the current query. Every
query receiver node that owns the requested resource also
sends the response message in the reverse direction of the
search path to the query originator node. Intermediate nodes
can update their DN-Tables’ information too based on this
received response message.

Every node that receives the query message calculates
some value through the dynamic TTL estimation mechanism
and subtracts this value from TTL. If the result is greater than
zero, the search continues in the same manner as explained
above. In addition, each query receiver node should estimate
the number of needed queries for the next step and selecting

836 Peer-to-Peer Netw. Appl. (2020) 13:825–849

the best candidate neighbor nodes as well. Dynamic TTL es-
timation mechanism is explained later (Section 3.2.1). Each
query message has also a field called the Request History List
in which the name of query receiver nodes is stored. The main
thrust behind this field is to prevent repetitive forwarding of
that query message to nodes that already have received the
query.

The DPAS mechanism works well in both cases of
searching for a copy or N copies of a requested resource.
However, it does not use the same search policy for the case
of a popular resource or a rare resource searching. This is done
to adapt to different dynamic P2P environment conditions and
as a result preventing performance degradation or incurring
excess overhead. To this end, we propose solutions for the
overshooting problem, i.e., preventing from excess returned
results and spreading the query message more than necessary.
This way, system resource consumption is reduced. In other
words, DPAS controls the search scope and the number of
generated query messages at each search step; DPAS cotrols
search scope based on an estimation of the popularity level of
the requested resource and the number of local results received
during previous search steps. In addition, due to the parallel
spread of query messages that belong to the same search pro-
cess, every query receiver node can update its information
about the remaining number of needed results by online con-
tact with the query generator node after a specified number of
hops passed by the query. This is done by subtracting the
number of results received by the query generator node from
other search paths, from the original number of needed results;
this results in the termination of the search process when no
other result is needed.

3.2.1 Dynamic estimation mechanism at each step

Resource popularities are not static and may vary as nodes
leave/join and resources are inserted, deleted, or replicated.
In addition, different nodes may have different favorites for
each file, resulting in different incoming query rates for that

file. Therefore, the dynamic popularity of resources should be
estimated adaptively, as it is a driving factor in the imposed
load on the nodes. That is, dynamic popularities of resources
have great consequences on nodes’ workloads based on dif-
ferent incoming query-rates with consideration to the popular-
ity level of resources.

There are usually many replicas for popular resources, so
they are found easily. In this case, if the search process termi-
nates after obtaining the desired number of results, the number
of generated messages, and consequently the search cost is
decreased. Conversely, when searching for low popularity
(i.e., rare) resources, we should send more query messages
to find the desired number of results. Therefore, the DPAS
mechanism adaptively considers the current popularity of
each resource into account to improve the search performance,
and reduce the search cost.

Every node that receives a query message first calcu-
lates the popularity of the requested resource rr via Eq.
(8) by using the information stored in its DN-Table.
This is done to determine the number of nodes that
should process the query at the next step based on the
estimation of the requested resource’s popularity. This
means that the TTL value and the number of query
processing nodes for the next step is calculated based
on resource popularity. If the requested resource is not
in the query receiver node’s DN-Table, the query receiv-
er node uses the cosine similarity function to select the
k most similar queries rrj (0 < j < k) to current query rr.
These similar queries are stored in the node’s DN-Table.
In this case, the popularity of the requested resource is
calculated by weighted averaging of the popularities of
these k similar rows using Eq. (9). This is because of
the fact that usually similar resources have similar pop-
ularity levels and when a resource becomes popular,
similar resources become popular too. If the requested
resource is in the query receiver node’s DN-Table and
j = 1, we use Eq. (8) to estimate the popularity of the
requested resource.

Temp Popularityrr ¼
∑n

i¼1Real Temp Hit Pið Þ
n

þ Dynamic Feat þ ∑m
i¼1Contribution Pið Þ

m

� �
*Wc

� �
ð8Þ

Temp Popularityrr ¼ Weighted:Average
h ∑n

i¼1Real Temp Hit Pið Þ
n

þ Dynamic Feat þ ∑n
i¼1Contribution Pið Þ

m

� �
*Qsim rrj; rrð Þa

� �
ð9Þ

The popularity of a requested resource is calculated by Eq.
(8) or Eq. (9) based on three main factors, namely

Real_Temp_Hit, Dynamic_Feat, and Contribution level of
each node as follows. In Eq. (8) and Eq. (9), the first

Peer-to-Peer Netw. Appl. (2020) 13:825–849 837

expression, namely the real-temporal-number-of-hits denoted
by R eal _ Temp _Hit(Pi) for each responder neighbor node
Pi, is calculated by Eq. (10). Firstly, we calculate the final
value of the number of invalid returned results from Pi, i.e.,
Invalid _ Temp _Hit(i), by taking into account the temporal
feature as well. Secondly, we calculate the final value of the
total number of returned results by Pi, i.e., temporal-total-
number-of-hits; needless to say, temporal feature is also ap-
plied; the aforementioned two final values are derived from
the first and second expressions of Eq. (10), respectively.
Ultimately, we subtract these two values. By giving more
weight to more recent data as explained in Section 3 on the
temporal mechanism, we increase the effect of new data com-
pared to old gathered data. Of course, all returned results are
not valid results. They may be corrupt or have low quality.
Therefore, we define the concept of results-quality by the pa-
rameter temporal-invalid-number-of-hits to cover low quality
returned results. We consider the number of hits when calcu-
lating the popularities of resources. This is because often
many responses are returned when searching for popular re-
sources, and there is a direct relation between the popularity of
a resource and the number of returned results for that resource.

Real Temp Hit Pið Þ ¼ ∑x
i¼1

Temp Total Hit ið Þ
current time−ti

−∑x
i¼1

Invalid Temp Hit ið Þ
current time−ti

� �

ð10Þ

The final value of the real-temporal-number-of-hits param-
eter is derived by averaging the real-temporal-number-of-hits
parameter values of each of the Pi responder nodes for the
equivalent row to the current query in Eq. (8). For the case
that there is no equivalent row to the current query, the final
value of the real-temporal-number-of-hits parameter is de-
rived by averaging the real-temporal-number-of-hits parame-
ter values of each of the Pi responder nodes for each of the k
similar rows to the current query in Eq. (9). Parameter n in the
first statement of Eq. (8) and Eq. (9) indicates the number of
responder nodes for the related row.

The Pi parameter in the above-mentioned equations, name-
ly (8), (9), and (10) denotes the i-th responder neighbor node
of each similar/equal query row to the current query; the n
parameter defines the number of responder neighbor nodes
in each row. In Eq. (9), rrj stands for the j-th similar query
that is responded by the Pi neighbor node. The received re-
sponse from Pi is either generated by the Pi itself or is routed
through it; in unstructured P2P systems, query-hit messages
traverse the same path as the query is routed but in the reverse
direction. By R eal _ Temp _Hit(Pi)we mean the real-tempo-
ral-number-of-hits parameter value for each query rrj which is
responded by neighbor node Pi.

In Eq. (10), and Invalid _ Temp _Hit(i) are temporal-total-
number-of-hits and temporal-invalid-number-of-hits parame-
ter values for the i-th value-list’s entry and ti is their related

event occurrence time for the i-th time-list’s entry. The related
event for the temporal-total-number-of-hits parameter re-
ceives a query-hit message for each row of the table. In other
words, any node that receives the query sends the query-hit
message in the reverse direction of search path to the query
originator if it has the requested resource; furthermore, the
intermediate nodes will change temporal-total-number-of-hits
parameter value in their tables to show this new query-hit.

Each query-hit message can include more than one result if
its related resource owner has more than one related resource.
The number of results for each query-hit message is stored in
its query-hit message’s field named result-set. In this case, the
receipt of a query-hit message by an intermediate node con-
stitutes the temporal-total-number-of-hits event parameter.
Therefore, the value of the temporal-total-number-of-hits pa-
rameter for the related row and its relevant responded neigh-
bor, from which the query-hit message is received, gets up-
dated. Its new value is derived from adding the value of the
result-set field in the query-hit message to the value stored in
the value-list’s current entry of the temporal-total-number-of-
hits parameter. The related event for the temporal-invalid-
number-of-hits parameter is also the receipt of a low-quality
resource that was explained in Section 3. Calculation of all
temporal parameters and definitions of other parameters in Eq.
(10) and the rest of equations, namely (11), (12), and (20) are
similar to those for the temporal-total-number-of-hits param-
eter example explained in Section 3.

Given the facts that TTL has different values in different
queries or response messages, the number of queries
forwarded at each step is different, nodes frequently leave or
join the system, and resources are added or removed from the
system, the number of recently returned results for a query is
not the exact estimation of the popularity of the requested
resource. For example, it is possible that while a node in a
previous search process for a possibly popular resource re-
ceives some queries, no good or not enough results are re-
ceived because the TTL value has reached zero.

In other words, when we want to estimate precisely the pop-
ularity of a requested resource, we must take into account the
above-mentioned situations by proposing the temporal
number_of_Queries parameter; this means the number of recent-
ly received queries for each requested resource. By this parame-
ter, we consider two cases that affect the popularities of resources.
The first case is when a sufficient number of results is not
returned due to limited search scope of previous searches. The
second case relates to the estimation of the number of returned
results for a popular resource; this number grows in comparison
with the previous number of returned results by increases in the
popularity of resource as time passes.

Given the above reasoning, we use another parameter
namely, Dynamic_Feat (i.e., the second parameter of Eq. (8)
and Eq. (9)) to calculate the popularity in Eq. (8) and Eq. (9).
This new parameter is calculated via Eq. (11). In Eq. (11), we

838 Peer-to-Peer Netw. Appl. (2020) 13:825–849

have introduced the temporalnumber_of_Queries” parameter
in order to count the number of recently received queries for
each table’s row. This parameter is initialized to zero for all
rows of DN-Table, and its value is set later when the related
event is t r iggered . The event for th is temporal
number_of_Queries parameter is defined as follows.

When a node receives a query, if there are some similarities
between the currently received query and the stored queries in
the DN-Table, the event for the current interval set of related
row’s temporal number_of_Queries parameter is triggered.
Therefore, the value-list’s current entry related to the temporal
number_of_Queries parameter i.e., number _ of _Queries(i),
is increased by one; this increment is done for each similar/
equal stored queries of the table. The final weighted value of
the temporal number_of_Queries parameter is calculated by
Eq. (11); the definitions of other parameters in Eq. (11) are
similar to the temporal-total-number-of-hits parameter exam-
ple. However, the fact is that this parameter does not has a
direct effect on the estimation of resource popularity value, so
a weighted variable Wd is used to reduce its effects.

Dynamic Feat ¼ ∑x
i¼1

number of Queries ið Þ
current time−t ið Þ

� �
*Wd ð11Þ

The third parameter in Eq. (8) and Eq. (9) is the “contribu-
tion level” of each receiver of requested resources (i.e., re-
quester node). This parameter is calculated as follows. For
each row in the node’s DN-Table if the owner of the table also
owns the resource of this row, we consider the contribution
level of the requester nodes in calculating the resource popu-
larity parameter too. When a node downloads a file, it shares
this replica with other nodes if it is not a free rider, so its
contribution level increases. The more the contribution levels
of nodes are, the more replicas of resources are available.
Therefore, the contribution level parameter can influence the
estimation of resources popularities.

As it has been shown that many nodes in P2P systems are free
riders [15], we consider the “contribution level” parameter that
takes into account how much nodes share their received re-
sources. It has been shown that many nodes in P2P systems are
free riders [15] that do not share their downloaded resources with
other nodes in the system. For calculating the contribution level
parameter, we first calculate the contribution level of each node at
each interval by dividing the number of its uploads over the
number of its downloads. This is done in the nominator part of
Eq. (12). Then, the overall contribution level is calculated by
summing up the results of dividing the number of uploads by
the number of downloads of each node at different time intervals.
If a node’s contribution level is small, the probability that this
node shares its resources with other nodes is low too. The num-
ber of each requester node’s downloads and uploads are stored in
the query message that is sent by that node. The event for this

temporal contribution_level parameter is defined as follows.
When a node receives a query and it has the requested resource,
the event for the current interval set of related row’s temporal
contribution_level parameter is triggered. Therefore, the value of
contribution_level parameter for the related row gets updated. Its
new value is set by adding the contribution value of requester that
is stored in the query message by the value stored in value-list’s
current entry of the contribution_level parameter. Final weighted
value of the temporal contribution_level parameter is calculated
as in Eq. (12).

Contribution ¼ ∑x
i¼1

contribution level ið Þ
current time−t ið Þ

� �
ð12Þ

In the third expression of Eq. (8) or Eq. (9)—in subsection
3.2.1, we average the value of contribution level parameters of
m nodes that have received the resource in order to calculate
the final value of contribution level parameter for the related
row. We use the weighted variableWc to decrease the effect of
this parameter as it has no direct effect on the calculation of
resource popularities. It is worth noting that after calculating
the values of the three mentioned parameters in Eq. (8) or Eq.
(9), and before applying their weighted variables, the values of
these parameters are mapped to the maximum value of these
three parameters.

Equation (9) calculates the popularity of a requested re-
source, when the exact requested resource is not in the table,
by selecting the k queries rrj (0 < =j < =k) most similar to the
current query rr; this is done by using the cosine similarity
function and multiplying the summation of all the mentioned
parameters to the similarity level of each row rrj that is denot-
ed by the Qsim(rrj, rr)α parameter. This parameter is calculat-
ed as presented in [50] and shows the similarity score between
rrj and rr. Parameter α (0 <α< 1) is set to show the impor-
tance degree of the most similar previous responded queries.
This way, the effects of most similar rows are significant.
Finally, by weighted averaging of the popularity values of
these k similar rows, each of which is estimated via Eq. (9),
the final popularity value of the requested resource is calcu-
lated. In all temporal parameters mentioned here, variable x
denotes the number of time interval sets and each of these
interval sets continues for t units of time.

After calculating the popularity of a requested resource by
each query receiver node based on the resource popularity
value, that node can estimate the number of required queries
and the queries’ TTL values that should be forwarded to the
next step. Equation (13) calculates the number of required
queries that should be forwarded to the next step using two
parameters, namely Required_Results and Temp_Popularity;
moreover, Eq. (14) calculates the number of remaining results
that must be acquired. The Required_Results parameter repre-
sents the number of remaining required results and the

Peer-to-Peer Netw. Appl. (2020) 13:825–849 839

Temp_Popularity parameter denotes the popularity of the re-
quested resource that is estimated by Eq. (8) or Eq. (9). In Eq.
(13) we round the result to upper bound (ceil).

No of Queries ¼ Required Results
Temp Popularity*Wp

� 	
ð13Þ

Required Results

¼ no needed Results−no Obtained Results ð14Þ

The two parameters in Eq. (13) help to reduce the number
of queries to be forwarded at each step if the expected number
of results is low or the popularity of the requested resource is
high; the number of queries is increased, i.e., when the popu-
larity level is low or the expected number of results is high. It
is thus possible for Eq. (13) to give wrong estimations that is
probably due to Eq. (9) that estimates the popularities of re-
quested resources by using their similar responded queries
residing in the DN-Tables.

To reduce the effect of wrong estimations by Eq. (13), we
use the weighted variable Wp for the popularity parameter.
Variable WP is dynamically calculated at each step based on
the acquired results via Eq. (15). When the lower number of
results are expected, the value of this variable is increased,
affecting more strongly on the popularity parameter in the
calculation of Eq. (13). By adapting the variableWp to differ-
ent system conditions, we can avoid search performance
drops. The initial value of Wp is 0.5. If the query, itself is
available in the DN-Table, the popularity is calculated by
Eq. (8) and Wp is set to 1 as there is no need for it.

Wp ¼ 0:5þ no Obtained Results
no Needed Results

ð15Þ

In Eq. (14) and Eq. (15), no_Needed_Results denotes
the number of results that user expects to receive; this
value is stored in the query message and is initialized
by the query generator node. The no_Obtained_Results
variable denotes the total number of local results re-
ceived in each search path started from the query gen-
erator node towards candidate nodes driven by the que-
ry message; the value of this variable is also stored in
the query message with a default value of zero. Every
time a query is received by a node, the value of
no_Obtained_Results in the query message is updated
by summing up the value of this variable; this value
is stored in the query message, with the number of
results that the query receiver node has; the query with
this new value is sent to other candidate nodes.

After forwarding the query in n hops, the query receiver
node contacts the query originator node and gets informed
about the updated value of no_Obtained_Results ;
no_Obtained_Results denotes the total number of received
results from other search paths that have started from the re-
quester node. In our simulations that are reported later in
Section 4, we experimentally show that by setting the value
of n to 4, the best results are achieved.

If the number of queries that should be forwarded is more
than the degree of a query receiver node, we forward the
maximum possible queries that are equal to the node’s degree.
We also define two thresholds for the number of forwarding
queries at each step. These thresholds are defined as an upper
threshold and a lower threshold to prevent huge overheads or
low success-rate. In our simulations that are reported later in
Section 4, we have set these thresholds to 10 and 2 respective-
ly to produce the best results. If the No_of_Queries parameter
produces a value bigger than the upper threshold, it is set to an
upper threshold value; if its value is smaller than the lower
threshold, it is set to a lower threshold value.

Equation (16) calculates the value of the query’s TTL for the
next hop. We have defined default value, namely 10, for the
initial value of TTL for each query through simulations. At each
step, using Eq. (16), a value is calculated based on the popularity
of the requested resource, i.e., Temp_Popularity parameter, and
the number of obtained results, i.e.,Obtained_Results parameter,
and then this value is subtracted from the current value of the
query’s TTL, i.e., Current_TTL. The two involved parameters in
Eq. (16) help to reduce the TTL value of the forwarded query at
each step from a large value to shorten the search path length if
the number of obtained results is high or the popularity of the
requested resource is high. When the inverse situation happens,
the TTL value is decreased from a small estimated value. In other
words, if the Obtained_Results parameter has a high value, and
the Temp_Popularity parameter has a high value, i.e., the request-
ed resource has high popularity, the Current_TTL variable is
decreased from a value bigger than one. On the other hand, the
Current_TTL’s value is decreased from a value lower than one if
the first parameter’ value is low, and the last parameter’s value is
low, i.e., requested resource has low popularity.

We consider two weighted variables for theObtained_Results
and Temp_Popularity parameters; due to significant effect of
Obtained_Results parameter, the value of its weighted variable
is bigger than the weighted variable of the Temp_Popularity
parameter. In Eq. (16), the value of Max_Temp_Popularity is
estimated by each node via table information. The value of the
two parameters in Eq. (16) is always in [0,1], but as we want to
apply their importance by considering the current value of TTL at
each step, we map the summation of them to the Current_TTL
value. This is done by multiplying the mentioned summation to
Current_TTL. In addition, in order to terminate the search

840 Peer-to-Peer Netw. Appl. (2020) 13:825–849

process in a logical manner and avoid system resource wastage,
we choose a suitable lower threshold l to map the mentioned

summation. Simulation results (reported in Section 4) show that
setting l to 2 produces the best results.

Next TTL ¼ Current TTL−
Obtained Results
Required Results

*W1 þ Temp Popularity
Max Temp Popularity

*W2

� �
* Max l;Current TTLð Þð Þ ð16Þ

Search is stopped at any step when the value of the required
results parameter estimated by Eq. (14) for the query receiver
node gets equal or less than zero, or TTL is equal or less than
zero in the next hop. By this flow, it is possible that searching
for rare resources continues in an excessive number of hops
because of the process of getting a zero value for TTL contin-
uously for a long time. To limit the search in this case and
prevent unnecessary traffic, we introduce a variable called
TTL_limit that is put in the query message; so, if the query’s
number of passed hops exceeds the TTL_limit value, the
search process is terminated. In simulations (reported later in
Section 4) we found that setting the TTL_limit variable to 12
leads to the best performance.

3.2.2 Dynamic status-aware search mechanism

Any node that receives a query sends a query-hit message in
the reverse direction of the search path to the query originator
if it has the requested resource. In addition, every query re-
ceiver node defines the proper number of queries to be
forwarded and the value of the query’s TTL for the next hop
as explained in Section 3.2.1, if stop conditions of search
process are not held. Then with regard to nodes’ heterogene-
ities, the query receiver node selects some candidate neighbor
nodes with maximum abilities to respond to the current query.
The number of selected candidate nodes is equal to the num-
ber of forwarding queries.

The number of neighbor nodes being forwarded the
query is specified by the dynamic estimation mechanism.
Neighbor nodes are selected based on information in DN-
Table of the query receiver node as well as their dynamic
scores and their overloading probability. First, we de-
scribe the calculation of the dynamic ranking process.
When a node receives a query, it first uses the cosine
similarity function to select the k most similar queries
rrj (0 < j < k) to current query rr. These similar queries
are stored in the DN-Table. Assuming each query rrj is
previously responded by a neighbor node Pi, we calculate
Pi’s dynamic score for the received query. The received
response from Pi either is generated by the Pi itself or is
routed through it. The dynamic score is calculated by Eq.
(17) using score and usefulness factors as follows.

We calculate the first expression of Eq. (17) using Eq. (18)
by multiplying the value of temporal-Real-number-of-hits,
i.e.,R eal _ Temp _Hit(Pi, rrj), to the similarity value of each
query rrj i.e.,. Next, we calculate the summation of different
values of these multiplication results for all queries rrj
responded by Pi. Finally, we add the normalized result with
the normalized summation of usefulness value in Eq. (16). In
the mentioned equations, rrj stands for the j-th query that is
responded by the node Pi, and the value of is taken from [33];
it calculates the similarity score between rrj and rr. Parameter
α (0 < α< 1) is set to show the importance degree of the most
similar previous responded queries. Also, the value of R eal _
Temp _Hit(Pi, rrj) is derived from Eq. (10).

In Eq. (10), we use the temporal-number-of-hits concept to
give different weights to the number of hits achieved at dif-
ferent times that were explained in Section 3.1.1. Usefulness
that is used in the second expression of Eq. (17) is calculated
by Eq. (19) similar to Eq. (3), which was explained in
Section 3.1.2. There are, however, two differences. We calcu-
late the summation in the second expression of Eq. (19) based
on each node Pi and responded query rrj. In addition, we
weigh penalty values with the expression, based on the simi-
larity score between rr and rrj to reduce the enhanced effect of
the penalty parameter, i.e., Asc_penalty; this is because of the
fact that Asc_penalty is less important than the score parame-
ter. The value of the Asc_penalty parameter in Eq. (19) is
calculated via Eq. (20) that indicates the weighted temporal
ascending penalty for node Pi and every query rrj. By
Aβ_rrj(n), we mean the ascending penalty value for each que-
ry rrj. The calculation in Eq. (20) is similar to the one de-
scribed in Section 3.1.2.

DynamicScore Pi; rrð Þ ¼½ Score Pi; rrð Þ
Max Score

þ Useful ness
Max Useful ness� ð17Þ

Score Pi; rrð Þ ¼ ∑∀rrj was answred byPi
Qsim rrj; rrð Þα*Real Temp Hit Pi; rrjð Þ

 �

ð18Þ
Useful ness ¼ Initial Score−∑∀rrj Asc penalty* 1−Qsim rrj; rrð Þα½ �ð Þ

 � ð19Þ

Asc penalty ¼ ∑x
n¼1

Aβ rrj nð Þ
current time−tn

� �
ð20Þ

Peer-to-Peer Netw. Appl. (2020) 13:825–849 841

In the denominator part of the first and second expressions
of Eq. (17), we put the maximum value of score and
usefulness parameters among responded neighbor Pi of DN-
Table, respectively. This is done to normalize these parameters
as their values are from different ranges. These values are
calculated via Eq. (21) and Eq. (22).

Max Score ¼ max∀m∈Responded neighborP Score Pm; rrð Þ ð21Þ
Max Useful ness

¼ max∀m∈Responded neighbor P Useful ness Pmð Þ ð22Þ

Finally, the query receiver node sends the query to the
nodes with the highest ranks given by Eq. (23), namely H1

utility function that calculates the nodes’ utilities. In Eq. (23),
we try to select the nodes with the most responding ability
based on two factors including dynamic score and the proba-
bility of candidate nodes not to become overloaded i.e.,
Overloading_Prob.

H1 ¼ W1*
DynamicScore Pi; rrð Þ
Max DynamicScore

þW2* 1−
Overloading Prob Pið Þ
Max Overloading Prob

� �
ð23Þ

In the second expression of Eq. (23), the Overloading_Prob
variable estimates the probability of a node to be overloaded.
When the workload of a node is more than its capacity, the
response time of forwarded queries to this node will significantly
increase; this node is considered as an overloaded node. In other

words, if any node gets overloaded, it cannot handle any received
query (i.e., it cannot process the query and response to download
connections); so, in order to prevent sudden system performance
drop, we should not send the query to overloaded nodes.

Therefore, we consider overloading states of responded
neighbor nodes to select the neighbor nodes that can respond to
the query. In this way, we want to avoid forwarding a query to an
overloaded node. Calculation of the Overloading_Prob value is
done using Eq. (24), and the estimation of node load is done in
the numerator part of Eq. (24); in Eq. (24), the current load of
node is defined based on two parameters; The first parameter is
the first expression in the numerator part of Eq. (24), and it is
shown by downloading_Overhead that indicates the overhead of
downloading when other nodes download this node’s files. The
second parameter is covered by the second and third expressions
in the numerator part of Eq. (24) i.e., Overflow_Prob_Queues
and Pop_Current_Query; these paramteres indicate the imposed
load of incoming message rate and the probability of node’s
queues (i.e., query queue and query-hit queue) being full, respec-
tively. We divide the mentioned estimated load value in the nu-
merator part of Eq. (24) by nodes’ capacities to take into account
heterogeneity in nodes’ capacities; hence, we can select the node
with the most responsiveness ability. In the dominator part of Eq.
(24), nodes’ capacities are considered that are estimated based on
nodes’ bandwidth, disk speed, and their processing power [50].
Each query receiver node calculates the Overloading_Prob pa-
rameter for each of its neighbor node Pi (i.e., the responder of
each of the k most similar queries to current query) besides the
dynamic score parameter as follows.

OverloadingProb Pið Þ ¼
downloading Overhead

Max downloading Overhead
þ Overflow Prob Queues

Max Overflow Prob Queues
þ Pop Current Query

Max Pop Current Query

� �

Node Capacity Pið Þ ð24Þ

Because there are variant sized files in the system, their
retrieval overheads are different. The first parameter of the
numerator part of Eq. (24) that is itself calculated by Eq.
(25) estimates the imposed load to each candidate neighbor
node Pi (i.e., owner of files) when other nodes download its
files. As is shown in Eq. (25), this parameter is estimated for
each node Pi by multiplying the value of each file’s size in Pi
node i.e., size_filei, to the temporal popularity value of each
filej i.e., Temp Popularityfilei . Next, we calculate the summa-

tion of different values of these multiplication results for all
files owned by Pi. In Eq. (25), both files’ sizes (i.e., retrieval
overhead of file) and the number of neighbors’ files can be
found via pong messages. Moreover, the name of neighbors’
files can be found by asking neighbors about the names of
their files via messages. In addition, files’ popularities are
calculated via Eq. (9) or Eq. (10) as we previously explained

in Section 3. In brief, if each of Pi’s file name is between
queries names in the DN-Table of query receiver node, the
popularity of this file will be calculated by Eq. (9). If the file
name is not in the DN-Table, the file popularity will be esti-
mated using Eq. (10) by selecting kmost similar query rows to
this file name.

Downloading Overhead

¼ ∑∀filei owned byPi
size filei*Temp Popularityfilei

h i
ð25Þ

Generally, the number of forwarded queries to a node is relat-
ed to the node’s degree, search process frequency (i.e., the pop-
ularity of requested resources), and the rank of that node (i.e., the
node’s previous responses to the queries). In the numerator of Eq.
(24), the second parameter namely Overflow_Prob_Queues

842 Peer-to-Peer Netw. Appl. (2020) 13:825–849

shows the probability of any node’s query and response message
queues getting full that can lead to node become overloaded. In
this case, later incoming messages are thrown out. When a node
is overloaded, it drops the received query/query-hit messages so
these queries are not spread between other nodes; moreover, the
query-hit messages do not reach the destination. As a result, the
success-rates of search processes, and consequently the whole
system performance drops rapidly.

We calculated theOverflow_Prob_Queues parameter using
Eq. (26) by estimating the average number of forwarded
queries, and consequently a number of forwarded response
messages to each candidate neighbor node Pi. This is done
based on each resource’s popularity level and the rank of each
candidate neighbor node for that resource. By resource we
mean the responded queries rrg (0 < =g < =last_row) in each
query receiver node’s DN-Table, because each query receiver
node sends the received query based on query massage and
information in the DN-Table. In addition, each node can get
aware of its neighbors’ degrees and capacities by asking them
for this information.

Overflow Prob Queues ¼

∑∀rrgTemp Popularityrrg*DynamicScore Pi; rrgð Þ

 �

*degreePi

ð26Þ

In Equation (26), the Temp Popularityrrg parameter that is

calculated by Equation (9) indicates the popularity level of
each responded query rrg in each row of the current query
receiver node’s DN-Table. In Equation (26), we show the rank
of each candidate node Pi based on the DynamisScore(Pi, rrg)
parameter for each responded query rrg stored in the query
receiver node’s DN-Table. Concepts and calculations of
DynamisScore(Pi, rrg) are similar to Equation (17). But here
there are two differences; the first difference is that instead of
using rrj in Equations (18), (19) and (20) as a similar query to
current query, we use rrg when calculating DynamisScore in
Equation (26) to show each responded query in rows of table
answered by Pi. In addition, here the value of expression
Qsim(rrj, rr)α shown in Equation (18), is equal to one because
we want to calculate the parameters for responded queries rrg
existing in the table.

Briefly, the rank of a node is high if the node has returned
responses that are more recent and has lower penalty values.
The more the rank and the degree of a node are, the more
forwarded query and response messages to this node are;
this leads to rapid overloading of that node. As mentioned
earlier, the rank of a node is also increased if this node is
placed near nodes with high rank and popular resources. In
Equation (26), we multiply the summation of calculated pa-
rameters for each query row rrg, and for node Pi to the
candidate node Pi’s degree i.e., the degreePi

parameter.

This way, we involve the probability of forwarding mes-
sages from other neighbors of Pi to it.

The third parameter in the numerator of Equation (24) is
calculated by Equation (27). In Equation (27), we estimate the
popularity of currently requested resource and then the prob-
ability of forwarding query/query-hit messages for this cur-
rently requested resource from other neighbors of each candi-
date node Pi to it. Forwarding the query/query-hit messages
for the currently requested resource has a direct effect on the
related candidate node Pi to become overloaded and its queues
to become fully populated.

Pop Current Query

¼ Temp Popularityrr*DynamicScore Pi; rrð Þ*degreePi
ð27Þ

In Equation (27), the Temp _Popularityrr parameter shows
the popularity of current query rr that is calculated based on
the information stored in the query receiver node’s DN-Table
using Equations (9) or (10) explained earlier. Concepts and cal-
culation of the DynamisScore(Pi, rr) parameter in Equation (27)
are similar to Equation (18) explained in subsection 3.2.2.
However, here there is one difference that is the value of expres-
sion Qsim(rrj, rr)α that is calculated in Equation (19), here is set
to one only if the current query rr is in the table; this is because in
this case, rrj in Equations (18), (19) and (20) is itself the current
query rr. If the current query rr is not in the table, we select the k
most similar queries rrj (0 < j < k) to current query rr from the
query receiver node’s DN-Table, and calculations are performed
based on Equation (18). If the current received query rr exists in
the DN-Table, we do not consider it in the calculations of
Equation (26).

It is worth noting that before calculating the utility function

H1 for nodes, we first calculated 1— OverloadingProb Pið Þ
MaxOverloadingProb

 �
for

each of the nodes that has responded to the k similar queries
rrj; if this result is less than the specified Buffer_Threshold
value, the node is omitted from candidate nodes list. This
threshold has been considered in order to avoid selecting can-
didate nodes that are going to be overloaded. In the next step,
we select nodes with the maximum responsiveness abilities
from the remainder nodes via Equation (23). In Equation (23),
more weight is given to W1 in comparison with W2. That is
because we aim to select the nodes that are more probable to
respond to the current query based on their recent responses;
in the meantime, we want to consider nodes’ states in terms of
their loads. Simulation results show that setting the
Buffer_Threshold parameter to 0.103 and W1 and W2 to
0.713 and 0.287 respectively produce the best results. In ad-
dition, we dynamically change the value of W1 and W2 when
their related parameter values get close to their maximum
values to prevent system performance drop.

In order to consider high dynamicity of P2P systems and
the possibility of new nodes entrances or resources insertion,
each node periodically forwards each t-th received a query to

Peer-to-Peer Netw. Appl. (2020) 13:825–849 843

another neighbor using a smart selection process in addition to
the previous selection mechanism. This smart selection pro-
cess chooses the best neighbor node based on two factors of
neighbor nodes, namely their degrees and the number of their
shared resources. This mentioned process also helps to deal
with the partial coverage problem in the search path and pre-
vents from reducing the range of query coverage. The t value
is defined based on the nodes’ entrance rate in the system.

4 Experimental results

To evaluate our proposed DPAS mechanism, we have simu-
lated a P2P networked system based on Gnutella graph in a
pure structure in Java programming language in Netbeans
IDE—coming up with a discrete-event simulator. We emulat-
ed as well as mapped each entity with one class, and stored
resources per node by using HashMap structure, the second
item of which is a list of DynamicNeighborTable class as well.
Moreover, in PeerNode class, for emulating node capacity in
terms of both processing and storing messages from one as-
pect; we allocated two distinct ArrayLists for received queries
and response messages.

The simulated network graph had 10,000 nodes with an
average degree of 21. Nodes had different capacities, process-
ing powers, degrees, bandwidth, uptimes, and the different
number of resources. As stated in [32, 51], if a peer has a
resource for query q, it has the resources for other similar
queries with high probability. Therefore, we have simulated
this designed network in a way that peers focus on specific
kinds of resources. Each search is for 25 results. Resources
were distributed with different replication rates among nodes.
Resources had different popularities to influence the number
of replicas and received queries for each resource. We
modeled the query distribution and replication distribution
by using a zipfian distribution with parameter α = 0.82 to
obtain comparable results with [3]. By query distribution,
we mean the number of queries generated for each resource.
It is clear that popular resources receive higher number of
queries compared to rare resources. By replication distribu-
tion, we mean the pattern of distribution of replicas of each
resource on nodes.

The 10% top ranked resources caused approximately 50%
of the total number of stored resources and received approxi-
mately 50% of all queries. Considering the way we defined
the default value of parameters, the most popular resources
were stored in more than 10% of the nodes, whilst the least
popular resources were stored only in 0.25% of the nodes.

The results we report in this section are derived from 100
simulation runs and each data point in the figures to follow
represents the average of these runs. To cover dynamic situa-
tions, we changed the topology of the network graph more
than 200 times at each run. These changes included nodes

leaving and joining the network, as well as resources added
or removed from the network.We got the best results whenwe
set the value of x to 3 and the value of t to 4-time units. We
have thus set the weight in Equation (11) toWd = 0.618 and in
Equation (8) and Equation (9) to Wc = 0.382.

Table 1 summarizes our simulation parameters accompa-
nied by their default values.

We extensively ran and compared the performance of our
proposed DPAS mechanism with those of ISM, IACO, and
MBFS mechanisms. We have used the following metrics to
compare the performance of these mechanisms:

1) Success Rate: This rate is the ratio of the number of suc-
cessful searches to the total number of searches in the
system.

2) Response Time: This metric is the interval between the
time a user has sent the query and the time the result has
been returned to that user.

3) Average Query Cost per Result: This metric is the ratio of
the total number of generated query messages to the total
number of returned results in the system.

4) AverageMessage Cost per Result: This metric is the ratio of
the total number of generated messages (any kind of mes-
sages) to the total number of returned results in the system.

The first two metrics are quality of service parameters and
the rest show the cost of the searching mechanism.

Table 1 Simulation
parameters and their
default values

Simulation Parameters Default Values

Number of Nodes 10,000

P2P Model Pure

Average Node Degree 21

no_Needed_Results 25

TTL 10

Replication Distribution Zipf(α = 0.82)

Query Distribution Zipf(α = 0.82)

x 3

t 4

n 4

Wd 0.618

Wc 0.3802

Wp 0.5

l 2

Buffer_Threshold 0.103

W1 0.713

W2 0.287

Initial_Score 100

Upper_Threshold 10

Lower_Threshold = l 2

TTL_limit 12

844 Peer-to-Peer Netw. Appl. (2020) 13:825–849

We have simulated DPAS, ISM, IACO, and MBFS mech-
anisms extensively in a dynamically changing system. Here
we use the results of these simulations to compare the perfor-
mance of these mechanisms with respect to the four metrics,
namely, Success Rate, Response Time, Average Query Cost
per Result, and Average Message Cost per Result.

4.1 Success rate analysis

Figure 4 shows a higher rate of success for DPAS compared to
ISM, IACO, andMBFS especially when the number of queries
rises more than 50. This is because DPAS considers nodes with
different responsiveness abilities and candidate nodes states in
terms of their loads; this trend prevents from sending a query to
the overloaded nodes that cannot answer the query. The
updating mechanism and temporal penalties it uses contribute
to its robustness against system dynamicity while achieving the
maximum success rate of 92.7%. Another effective parameter
in achieving such a high success rate is the adaptation of the
number of forwarded queries and queries’ TTL values at each
step with the popularity of requested resources and the number
of returned results; this avoids excessive query forwarding in
the system. Excessive query forwarding creates huge traffic
overhead and unnecessarily overloads the nodes who are in-
volved in the search process.

In the ISM mechanism, each query is forwarded to three
neighbors that have previously responded to queries most
similar to the current query. The low success rate of ISM is
due to the lack of any updating mechanism that has made it
only applicable to static systems. ISM forwards three queries
with a fixed TTL value at each step without considering the
popularities of resources and the number of returned results;
hence, this brings about both high network traffic and system
performance shrinking. This leads to system overloading, and
thus overloaded nodes throw out their received query and
response messages–system overall performance drops

dramatically. As shown in Fig. 4, ISM and DPAS have nearly
equal success rates at the beginning. This is because they both
select nodes randomly in initial steps.

In the IACO mechanism [7]—relevant parameters derived
as mentioned in this work [7], queries have masqueraded as
ants in the search of food; the search process stops when either
TTL is equal to zero or the ant finds the resource. Meanwhile,
IACO modifies the conventional update function of ACO to
lessen the impact of pheromone value for the sake of load
balancing. Nevertheless, it has been outshone by DPAS, as it
employs a few numbers of ants without concerning about
popularity of the requested resource or the number of
already-found resources;it has failed to learn from their previ-
ous searches intelligently as well as in a near-online fashion.
In fact, it takes some time for ants to update their knowledge
regarding updating the previous-seen search paths. What’s
more, DPAS rather than IACO uses similarity function to
opt for the best candidate neighbors—which is of paramount
importance in its superiority. More importantly, DPAS has
outdone IACO, as the nature of DPAS is to well adapt to
dynamicity of system conditions; take dynamically estimating
values for both TTL and the number of queries at each search
step, for instance. However, IACO has deployed a fixed num-
ber of ants for search process at each step, and due to its
evolutionary nature, it has lagged behind DPAS in terms of
performance.

In theMBFSmechanism, every node forwards the query to
a randomly chosen subset of its neighbors, so no informed
decision is made; as a result, the success rate of MBFS be-
comes lower than the other two mechanisms. The blind selec-
tion of neighbors by nodes to forward queries to them results
in system congestion sinceMBFS produces excessive number
of messages; hence, nodes’ queues get fully populated soon
and nodes become overloaded. Like ISM, MBFS uses a con-
stant value for TTL and forwards the queries to half of the
neighbors of a query receiver node at each step; this process is

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500

DPAS

IACO

ISM

MBFS

Number of Queries

Su
cc

es
s-

ra
te

Fig. 4 Success rates of ISM,
MBFS, IACO and DPAS
mechanisms

Peer-to-Peer Netw. Appl. (2020) 13:825–849 845

done without considering either the popularities of resources
or the number of returned results, leading to the low success-
rate of MBFS.

4.2 Response time analysis

As Fig. 5 shows, DPAS has a lower (i.e., better) response time
than the other two mechanisms. This success is due to the differ-
ent effective mechanisms that are deployed in our mechanism
and because of high success rate, which itself is due to the more
appropriate selection of candidate nodes to which queries are
forwarded. Our mechanism uses system feedbacks to adapt itself
to variant system conditions in terms of nodes join/leave and
insert/delete their resources. This predicts future events in the
system via dynamic investigation of previous results, thereby
forwarding queries to nodes more capable of responding.
Response time is increased in ISM because this mechanism nei-
ther applies any updating mechanisms nor considers candidate
nodes states. At first, ISM and DPAS work similarly.

IACO mechanism has higher response-time in comparison
to DPAS since it neglects the popularity of requested resource;
with this in mind, it uses more ants—leading to more traffic
and overloaded nodes. Moreover, its updating mechanism
lags far behind DPAS, as DPAS reaps the benefits of
already-searched items swiftly by updating many contributing
parameters in search selection process; DPAS tries to move
with the times by introducing temporal parameter concept as
well; however, IACO has failed to apply such considerations,
and thus it lays extra overhead on the system.

MBFS suffers from the high amount of query forwarding,
so if system state changes to a congestion state, response time
increases. It is worth mentioning that in all simulations we
consider latencies due to request processing and query
forwarding.

4.3 Average query Cost per Result

It may be imagined that compared to ISM, updating flow in
DPAS results in higher traffic volume. However, if we have a

more general look, it can be seen that because of lower
success-rate of ISM, repeated searches should start in it to
compensate for the previous unsuccessful searches. This leads
to a growing hike in both generated messages and bandwidth
consumption.

DPAS mechanism adapts itself to requested resource pop-
ularity and dynamically specifies TTL and number of
forwarding queries based on the mentioned popularity. The
number of forwarding queries in ISM is a constant number
at each step. Also it continuous searching until TTL = 0 is
achieved; it is done even in cases where sufficient results have
been already received. The two mentioned operations cause
bandwidth consumption and an increment in message
production.

Search cost is high in MBFS due to forward lots of queries
blindly. In other words, MBFS involves many nodes while
searching to improve system performance, but on the other
hand, it causes bandwidth consumption and imposes a high
amount of load on involved nodes. DPAS mechanism im-
proves overall system performance by decreasing response
time and bandwidth consumption and increasing success-rate.

Figure 6 shows the search cost as the average query cost
per result. This cost in DPAS is lower than the three other
mechanisms as DPAS has increased success-rate and forwards
queries by considering resources popularities and variant sys-
tem conditions. This cost is defined as the number of generat-
ing query messages per returned result. IACO creates more
search cost in comparison with DPAS since it ignores any
calculation regarding the number of forwarded queried and
TTL value; moreover, it does not pay attention to select the
best neighbors to steer search process scrupulously.

4.4 Average message cost per result

In Fig. 7, the average message cost per result is shown for the
four mechanisms. This cost is defined as the number of gen-
erating messages (including query, query-hit, rank setting and
updating messages) per returned result. DPAS search cost is
lower than ISM, IACO, and MBFS which is due to its high

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

MBFS

DPAS

ISM

IACO

R
es

po
ns

e
T

Im
e

Number of Queries

Fig. 5 Search response times of
ISM, MBFS, IACO and DPAS
mechanisms

846 Peer-to-Peer Netw. Appl. (2020) 13:825–849

success-rate. We mean that because our mechanism does not
forward the query to the irrelevant nodes; i.e., nodes without
the requested resource, the overloaded nodes, or any knowl-
edge about the location of the requested resource, the average
aggregate cost is decreased. In addition, the overall commu-
nication and processing cost are reduced.

DPAS decreases the need for repeating searches and the
number of generatingmessages by suitable estimation of more
probable responder nodes and well adaptation to different sys-
tem conditions. In so doing, the requested resource is found in
an accurate and speedy manner. Additionally, DPAS termi-
nates the search process when the expected numbers of results
have been received, thus diminishing the search cost. ISM
mechanism does not apply negative query feedbacks, somany
query messages may be forwarded incorrectly to the nodes
who have previously left the system, or they have deleted their
requested resource. On the other hand, DPAS aims to reduce
system traffic and make the system more scalable. MBFS
mechanism forwards the query to lots of nodes and as a result,
its search cost is high. IACO ends up with more generated
traffic in comparison with DPAS, in that it does not consider
any estimation with regard to the number of forwarded que-
ried and TTL value. Moreover, due mainly to the lack of both
informed decision making for electing the best candidate

nodes and similarity of searched-keywords between queries,
it produces more traffic and overhead.

5 Future work

For the subsequent works, we intend to apply word2vec [52]
and other NLP methods to prophesy the correlation between
the different requested resource and their corresponding topics
so much so that we can appraise the popularity of alike re-
sources falling into an identical topic beforehand. In light of
this, not only can we recommend a group of pertinent re-
sources to the user—maybe request them in the future, but
this approach also makes our strategy more efficient and fu-
turistic in a case of ushering search process. Meanwhile, we
intend to employ a similar-customized P2P-based RD mech-
anism in today’s big data container-based resource manage-
ment units, including YARN and Mesos; furthermore, we can
entertain Cobb-Douglas utility function in decision-making
process to boost both system performance and in turn preci-
sion of our formulas. Furthermore, we would like to shift our
focus from similar types of resources, files, to manifold types
of distributed resources. One improvement to the DPAS
mechanism will be involving another factor, namely nodes’
uptimes in selecting candidate nodes in Equation (23).
Another improvement to our mechanism is the initialization
of DN-Table for a newly arrived node. This can be done by
sending queries to the neighbors of the newly arrived node
and wanting them to send their relevant information after tak-
ing them from their neighbors. Moreover, our work can be
extended and exploited in E-healthcare as well as IoT systems
when it comes to search issue [53–55].

6 Conclusion

Efficient resource searching is one of the main debilitating
challenges in unstructured peer-to-peer systems. In this paper,
we proposed a new resource search mechanism called
Dynamic Popularity-Aware (DPAS) that tried to select the best
candidate nodes at each step of the search process while also
adapting to system dynamic environments. To this end, DPAS
introduced many effective parameters including a temporal
number of hits, temporal penalties, temporal dynamic re-
sources popularities, dynamic estimation of nodes states in
terms of nodes’ load and their dynamic ranking. These param-
eters were used to intelligently proceed the search process.
DPAS adjusted the search scope at each hop by considering
the estimated popularity of a requested resource and number
of returned results. Simulation results demonstrated the supe-
riority of our mechanism compared to other well-known
existing mechanisms in terms of success-rate, response time
and bandwidth consumptionmetrics. For future work, we plan

0

0.5

1

1.5

2

PDAS ISM IACO MBFS

A
ve

ra
ge

 R
eq

ue
st

 C
os

t p
er

 R
es

ul
t

Fig. 6 Average request cost per results of ISM, MBFS, IACO and DPAS
mechanisms

0

2

4

6

8

10

12

14

16

IACO

DPAS

ISM

MBFS

A
ve

ra
ge

 M
es

sa
ge

 C
os

t p
er

 R
es

ul
t

Fig. 7 Average message cost per results of ISM, MBFS, IACO and
DPAS mechanisms

Peer-to-Peer Netw. Appl. (2020) 13:825–849 847

to consider other factors such as a load of a node in selecting
candidate nodes when forwarding the query. We also plan to
deploy some user profiles to guide the search selection process
under user guidelines.

References

1. Buford J, Yu H (2010) Peer-to-peer networking and applications:
synopsis and research directions, Boston: Springer. FORMAT

2. Masood S, Shahid M, Sharif M (2018) Comparative analysis of
peer to peer networks. International Journal of Advanced
Networking and Applications (IJANA) 9(4):3477–3491

3. Shojafar M, Abawajy J, Delkhah Z, Ahmadi A (2015) An
efficient and distributed file search in unstructured peer-to-
peer networks. Peer-to-Peer Networking and Applications
(PPNA) 8(1):120–136

4. Shamshirband S, Soleimani S (2018) LAAPS: an efficient file-
based search in unstructured peer-to-peer networks using reinforce-
ment algorithm. Int J Comput Appl:1–8

5. Schmidt C, Parashar M (2004) A peer-to-peer approach to web
service discovery. World Wide Web (WWW) 7(2):211–229

6. Ed-daoui I, Hami AE, Itmi M, Hmina N (2018) Unstructured peer-
to-peer systems: towards swift routing. International Journal of
Engineering & Technology (IJET) 7(2.3):33–36

7. Asghari S, Navimipour N (2019) Resource discovery in the peer to
peer networks using an inverted ant colony optimization algorithm.
Peer-to-Peer Networking and Applications (PPNA) 12(1):129–142

8. Zarrin J, Aguiar R, Barraca J (2018) Resource discovery for distrib-
uted computing systems: a comprehensive survey. Journal of
Parallel and Distributed Computing (JPDC) 113(1):127–166

9. Zhen-Wan Z, Peng K, Ren-Jie S (2015) A Survey of Resource
Discovery in Mobile Peer-to-Peer Networks, in International
Conference on Communication Systems and Network
Technologies, Gwalior, India

10. Sharifkhani F, Pakravan M (2013) A review of new advances in
resource discovery approaches in unstructured P2P networks, in
International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Mysore, India

11. Arunachalam A, Sornil O (2015) An Analysis of the Overhead and
Energy Consumption in Flooding, RandomWalk andGossip Based
Resource Discovery Protocols in MP2P Networks. In International
Conference on Advanced Computing & Communication
Technologies (ACCT), Haryana, India

12. Lazaro D, Marques J, Jorba J (2013) Decentralized resource dis-
covery mechanisms for distributed computing in peer-to-peer envi-
ronments. ACM Computing Surveys (CSUR) 45(4):1–40

13. Meshkova E, Riihijärvi J, Petrova M, Mähönen P (2008) A survey
on resource discovery mechanisms, peer-to-peer and service dis-
covery frameworks. Comput Netw 52(11):2097–2128

14. Kapoor H, Mehta K, Puri D (2013) Survey of various search mech-
anisms in unstructured peer-to-peer networks. Int J Comput Appl
(IJCA) 68(6):21–25

15. Thampi S (2010) Survey of search and replication schemes in un-
structured p2p networks, arXiv preprint arXiv, vol. 2, no. 1

16. Ding G (2013) A control theoretic approach to analyzing peer-to-
peer searching, in 8th International Workshop on Feedback
Computing, San Jose

17. Navimipour N, Milani F (2015) A comprehensive study of the
resource discovery techniques in peer-to-peer networks. Peer-to-
Peer Networking and Applications (PPNA) 8(3):474–492

18. Palmieri F (2017) Bayesian resource discovery in infrastructure-
less networks. Inf Sci 376:95–109

19. Gunopulos D, Zeinalipour-Yazti D (2002) A local search mecha-
nism for peer-to-peer networks, in Proceedings of the eleventh in-
ternational conference on Information and knowledgemanagement,
ACM, McLean, Virginia, USA

20. Fox G (2001) Peer-to-peer networks, Computing in Science &
Engineering (CiSE) 3(3):75

21. Li Z (2017) A hybrid peer-to-peer framework for supply chain
visibility, Purdue University, West Lafayette: Doctoral dissertation

22. Wu K, Wu C (2013) State-based search strategy in unstructured
P2P. Futur Gener Comput Syst (FGCS) 29(1):381–386

23. Mirtaheri S, Sharifi M (2014) An efficient resource discovery
framework for pure unstructured peer-to-peer systems. Comput
Netw 59:213–226

24. Al-Aaridhi R, Dlikman I, Masinde N (2018) Search Algorithms for
Distributed Data Structures in P2P Networks, in International
Symposium on Networks, Computers and Communications
(ISNCC), Rome, Italy

25. Gaeta R, Sereno M (2011) Generalized probabilistic flooding in
unstructured peer-to-peer networks. IEEE Transactions on Parallel
and Distributed Systems (TPDS) 22(12):2055–2062

26. Song S, Zeng X, HuW, Chen Y (2010) Resource search in peer-to-
peer network based on power law distribution. In Second
International Conference on Networks Security, Wireless
Communications and Trusted Computing (Nswctc), Wuhan,
Hubei, China

27. Dorrigiv R, Lopez-Ortiz A (2007) Search algorithms for unstruc-
tured peer-to-peer networks, in 32nd IEEE Conference on Local
Computer Networks (LCN 2007), Dublin, Ireland

28. Jamal A, Teahan W (2017) Alpha multipliers breadth-first search
technique for resource discovery in unstructured peer-to-peer net-
works. Int J Adv Sci Eng Inf Technol 7(4):1403–1412

29. Margariti S, Dimakopoulos V (2015) On probabilistic flooding
search over unstructured. Peer-to-Peer Networking and
Applications (PPNA) 8(3):447–458

30. Bisnik N, Abouzeid A (2007) Optimizing random walk search al-
gorithms in P2P networks. Comput Netw 51(6):1499–1514

31. Zhang H, Zhang L, Shan X (2007) Probabilistic search in p2p
networks with high node degree variation, in IEEE International
Conference on Communications, Glasgow, UK

32. Ogino N, Kitahara T (2017) An efficient content search method
based on local link replacement in unstructured peer-to-peer net-
works. IEICE Trans Commun 101(3):740–749

33. Kalogeraki V, Gunopulos D (2002) A local search mechanism for
peer-to-peer networks, in Proceedings of the eleventh international
conference on Information and knowledge management. ACM,
McLean, Virginia, USA

34. Bashmal L, Almulifi A, Kurdi H (2017) Hybrid resource discovery
algorithms for unstructured peer-to-peer networks. Procedia
Computer Science (PCS) 109:289–296

35. Navimipour N, Rahmani A, Navin A (2014) Resource discovery
mechanisms in grid systems: a survey. J Netw Comput Appl 1(41):
389–410

36. Qu W, Zhou W, Kitsuregawa M (2010) Sharable file searching in
unstructured Peer-to-peer systems, vol. 51, no. 2, pp. 149–166

37. Hidayanto A, Bressan S (2011) Adaptive routing algorithms in
unstructured peer-to-peer(P 2 P) systems. Int J Comput Sci Eng
3(2):487–505

848 Peer-to-Peer Netw. Appl. (2020) 13:825–849

38. Wu L, Akavipat R, Menczer F (2005) 6S: Distributing Crawling
and Searching Across Web Peers., in Web Technologies,
Applications, and Services, Calgary, Canada

39. Zhu Y, Hu Y (2006) Enhancing search performance on Gnutella-
like P2P systems. IEEE Transactions on Parallel and Distributed
Systems (TPDS) 17(12). https://doi.org/10.1109/TPDS.2006.173

40. Guo Y, Liu L, Wu Y, Hardy J (2018) Interest-aware content discov-
ery in peer-to-peer social networks. ACM Transactions on Internet
Technology (TOIT) 18(3):39–60

41. YangM, Yang Y (2009) An efficient hybrid peer-to-peer system for
distributed data sharing. IEEE Trans Comput 59(9):1158–1171

42. Loo B, Huebsch R, Stoica I, Hellerstein J (2004) The case for a
hybrid P2P search infrastructure, in International workshop on
Peer-To-Peer Systems, Berlin

43. Zaharia M, Keshav S (2008) Gossip-based search selection in hy-
brid peer-to-peer networks. Concurrency and Computation:
Practice and Experience (CCPE) 20(2):139–153

44. Šešum-Čavić V, Kuehn E, Zischka S (2018) Swarm-inspired
routing algorithms for unstructured P2P networks. International
Journal of Swarm Intelligence Research (IJSIR) 9(3):23–63

45. Šešum-Čavić V, Kühn E, Kanev D (2016) Bio-inspired search al-
gorithms for unstructured P2P overlay networks. Swarm and
Evolutionary Computation (SEC) 29(1):73–93

46. Guan Z, Cao Y, Hou X, Zhu D (2007) A novel efficient search
algorithm in unstructured P2P networks," in Second Workshop on
Digital Media and its Application in Museum & Heritages
(DMAMH 2007), IEEE, Chongqing, China

47. Krynicki K, Jaén Martínez F (2014) Ant colony optimization for
resource searching in dynamic peer-to-peer grids. International
Journal of Bio-Inspired Computation (IJBIC) 3(6):153–165

48. Krynicki K, Jaen J, Mocholi J (2013) On the performance of ACO-
based methods in p2p resource discovery. Appl Soft Comput
13(12):4813–4831

49. Khatibi E, Mirtaheri S, Khaneghah E, Sharifi M (2012) Dynamic
multilevel feedback-based searching strategy in unstructured peer-
to-peer systems, in IEEE International Conference on Green
Computing and Communications, Besancon, France

50. Chawathe Y, Ratnasamy S, Breslau L (2003) "Making gnutella-like
p2p systems scalable," in conference onApplications, technologies,
architectures, and protocols for computer communications,
Karlsruhe, Germany

51. ChenH, Jin H, Liu Y, Ni L (2008) Difficulty-aware hybrid search in
peer-to-peer networks. IEEE Transactions on Parallel and
Distributed Systems (TPDS) 20(1):71–82

52. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation
of word representations in vector space, in ICLRWorkshop

53. Hamza R, Yan Z, Muhammad K, Bellavista P (2019) A privacy-
preserving cryptosystem for IoT E-healthcare, Information Sciences

54. Hamza R, Muhammad K, Lv Z, Titouna F (2017) Secure video
summarization framework for personalized wireless capsule endos-
copy. Pervasive and Mobile Computing (PMC) 1(41):436–450

55. Riad K, Hamza R, Yan H (2019) Sensitive and energetic IoTaccess
control for managing cloud electronic health records. IEEE Access
(IEEEAccess) 7:86384–86393

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Ms. Elahe Khatibi She has re-
ceived her M.Sc. degree in
Computer Software Engineering
from the School of Computer
Engineering of Iran University of
Science and Technology; her re-
search interests are in the areas
of resource discovery, and peer-
to-peer systems.

Mohsen Shari f i is a Full-
Professor of System Software
Engineering in the School of
Computer Engineering of Iran
Univers i ty of Science and
Technology. He directs a distribut-
ed system software research group
and laboratory. His main research
interest is in the development of
distributed systems, solutions, and
applications, particularly for use in
various fields of science. The de-
velopment of a true distributed op-
erating system is on top of his wish
list. He received his B.Sc., M.Sc.

and Ph.D. in Computer Science from the Victoria University ofManchester
in the United Kingdom in 1982, 1986, and 1990, respectively.

Seyedeh Leili Mirtaheri is cur-
rently an assistant professor in the
E l e c t r i c a l a nd Compu t e r
Engineering Department of
Kharazmi University. Her research
interests are in the areas of distribut-
ed and parallel systems, peer-to-
peer computing, cluster computing,
mathematics and scientific comput-
ing. She received her Ph.D. and
M.Sc. in Computer Engineering
(Software) from the School of
Computer Engineering of Iran
Universi ty of Science and
Technology in 2013 and 2008, re-

spectively. The research work reported in this paper is the result of her coop-
eration with other authors of the paper during her Ph.D. studies in Iran
University of Science and Technology.

Peer-to-Peer Netw. Appl. (2020) 13:825–849 849

https://doi.org/10.1109/TPDS.2006.173

	DPAS: A dynamic popularity-aware search mechanism for unstructured P2P systems
	Abstract
	Introduction
	Related work
	Blind search mechanisms
	Informed search mechanisms
	Group-based search mechanisms
	Hybrid search mechanisms
	Bio-inspired meta-heuristic search mechanisms

	DPAS mechanism
	Dynamic neighbor table scheme
	Adaptive replacement mechanism
	Dynamic updating mechanism

	Search scheme
	Dynamic estimation mechanism at each step
	Dynamic status-aware search mechanism

	Experimental results
	Success rate analysis
	Response time analysis
	Average query Cost per Result
	Average message cost per result

	Future work
	Conclusion
	References

