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Abstract
Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the
collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based
mission-critical applications. Scheduling algorithms such as Time Division Multiple Access (TDMA) are extensively used
for data delivery with the aim of minimizing the time duration for transporting data to the sink. To minimize the average
latency and the average normalized latency in TDMA, we propose a new efficient scheduling algorithm (ETDMA-GA)
based on Genetic Algorithm(GA). ETDMA-GA minimizes the latency of communication where two dimensional encoding
representations are designed to allocate slots and minimizes the total network latency using a proposed fitness function. The
simulation results show that the performance of the proposed algorithm outperforms the existing state-of-the-art approaches
such as Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, and IDeg-LO in terms of average latency, average normalized
latency, and average schedule length.

Keywords Genetic algorithm · Routing tree · Time division multiple access · Two dimensional encoding representation ·
Tree traversal · Wireless sensor networks

1 Introduction

WSN consists of a huge number of deployed devices in an
area of interest to sense various physical information from
the surrounding environment. The information collected
by these devices are periodically transmitted to the sink
and will be processed depending on the application
requirements [1–4]. The limitations of communication
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makes the far away nodes from the sink to send their data to
the sink through multi-hop using intermediary nodes over a
tree-based routing topology.

To access communication media, two main protocols
are commonly used: contention-based and schedule-based.
Contention-based protocols such as Carrier-Sense Multi-
ple Access (CSMA) are inefficient and may fail if the
communication media are highly utilized or when the num-
ber of sensors is large due to high probability of colli-
sions causing re-transmissions. While, in schedule-based or
contention-free medium access such as Time Division Mul-
tiple Access (TDMA), sensors have to communicate using
distinct time slots to avoid collisions. TDMA offers consid-
erable improvements for data collection as it allows sensor
nodes to enter into sleep mode during inactive time, which
implies: attaining low duty cycles, reducing energy con-
sumption, eliminating conflicts, overhearing, and idle listen-
ing which are the major sources of consumption of energy in
WSNs [5–7]. Furthermore, TDMA-based communications
are robust during peak loads and can supply a demonstra-
ble accomplishment time of collecting data, for example, in
timely detection of events [8]. Also, in TDMA when nodes
are not in the transmission or reception mode, they fall into
sleep mode to reduce energy consumption. In TDMA, when
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a node is transmitting, its conflict nodes cannot transmit.
The main types of conflicts are: primary conflict and sec-
ondary conflict. The principal strife happens when a sensor
receives more than one destined transmissions or transmits
and receives at the same time. The secondary strife occurs
when the intended receiver of a specific transmission is
within the range of another transmission proposed for other
nodes.

TDMA scheduling protocols are classified as follows:
pure MAC layer, hybrid and Cross-layer. In TDMA
based MAC, time is split into a set of frames and
every frame is split into fixed time slots and then every
sensor node is designated to particular time slot in which
transmission occurs. Hybrid algorithms integrate TDMA
with other protocols, e.g., CSMA, etc. However, Cross-
Layer algorithms utilize other layers in order to gain
preferable schedules [9].

Minimizing latency in collecting data is essential for
critical applications that take definite actions based on
deadlines. In spite of the fact that minimizing the schedule
length may minimize the latency under certain conditions,
most of the existing protocls do not theorize the average
latency experienced at each hop by individual packets [8].
Furthermore, some algorithms minimize the length of the
schedule by maximizing the re-utilization of time slots,
which does not necessarily result in schedules with minimal
delay in some topologies. For example, a linear topology
may permit higher spatial reuse, but due to larger number
of hops from the sources to the sink, it may incur high
latency. Therefore, minimizing the data collection latency
may enforce more constraints along with minimizing the
schedule length.

In the proposed work, WSN is composed of a finite set
of sensor nodes and a sink. The sensors send their sensed
data to the sink via a multi-hop path over the routing tree.
Our contribution can be summarized as follows: Using the
cross-layer aspect, we have used routing information tree
based WSN. A new GA based approach is proposed that
utilizes information from routing tree protocol to define
communication time slots and reduces communication
latency. Latency is expressed as the fitness function of GA
and a two-dimensional chromosome matrix is employed
to define TDMA schedule. Evaluation results demonstrate
that the performance of the proposed approach exceeds
several existing baseline tree based cross-layer approaches.
Our main contribution can be summarized in the following
points:

1. A new Genetic algorithm (GA) based ordering method
is proposed where two-dimensional encoding represen-
tations are designed to allocate slots and minimizes the
total network latency by using average time latency as
the fitness function.

2. Extensive simulation results to prove the performance
of the proposed technique are given. The comparison
results with substantial approaches such as Rand-LO,
Depth-LO, DepthRe-LO, IDegRe-LO and IDeg-LO
using different routing trees and different locations of
the sink show the following differences between our
proposed ETDMA-GA and the existing algorithms.

• ETDMA-GA has minimum average latency, min-
imum average schedule length and minimum nor-
malized latency compared with the existing five
substantial approaches in cases of DFSA tree, Min
hop tree, even for three different sink locations

• The duty cycle of ETDMA-GA has diminutive
increase compared with the existing algorithms,
while ETDMA-GA has remarkable gain in the
average latency reduction.

The rest of this paper is tabulated as follows: the related
research of the proposed approach is described in Section 2.
In Section 3, the description of the proposed problem is
given. In Section 4, we present the details of our proposed
approach. The simulation results including the comparison
with the existing baseline approaches are presented in
Section 5. The work is concluded in Section 6,

2 Related research

WSN protocol stack typically contains the following layers:
application, transport, network, data link, and physical,
with each layer having its own responsibility. For example,
the network layer has the responsibility to route the
data supplied by the transport layer, and the transport
layer assists in preserving the data flow. Data link layer
responsibilities are multiplexing of data streams, data frame
detection, medium access control (MAC) and error control
[10]. The main function of the data link layer is MAC, where
the main objective is to equitably and efficiently share the
shared communication resources among all sensor nodes in
order to accomplish enhanced performance of the network
in terms of energy consumption, network throughput, and
delivery latency.

The layered model works on the principle of separation
which is neither effective nor guarantees optimal perfor-
mance for WSNs as other features must also be taken into
account, such as limited resources, e.g., energy, memory,
radio interference or mobility and topology changes. These
characteristics generate additional constraints while design-
ing protocols in the layered model for an adaptive WSN.
Therefore, cross-layer protocols are preferable as the depen-
dencies between protocols from different layers can be
exploited to overcome the limitations of each protocol and
achieve an overall gain in performance [11].
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Cross-layer protocols that allow flexibility betweenMAC
sublayer and Network layer can be divided into three
classes [12]: (a) Joining the functionality of MAC protocol
and routing protocol (Joint MAC & Routing) (b) Routing
protocols that use MAC protocol information (MAC-
AWARE routing), and (c) MAC protocols that use routing
protocol information (Routing-AWARE MAC). The block
diagram of cross-layer approaches, along with the location
of our proposed approach among these categories is given
in Fig. 1.

In Joint MAC and Routing, the information and
functionality of the Network and Data Link layers are
grouped together and combined into a single layer. Address-
Light Integrated MAC and Routing Protocol (AIMRP) [13],
RSSI-Based Forwarding (RBF) [14], State-free Implicit
Forwarding (SIf) [15] and IDeg-Routing & MAC [12] are
examples of JOINT MAC & ROUTING. AIMRP, RBF and
SIf are very similar and use the same principle by arranging
the sensor nodes around the sink. The routing of data to the
sink is also done by the same way, even if the names given
to packages and messages are different. On the other hand,
IDeg-Routing & MAC [12] is an approach that combines a
contention-free MAC protocol with routing. IDeg-Routing
&MAC is based on BFS traversal of the graph network. The
contention-free schedule for the communications between
sensor nodes and the geographic routing tree is obtained
from IDeg-Routing & MAC.

In the MAC-AWARE ROUTING, the MAC protocol
sends information time to the routing protocol and then
the routing protocol finds the next hop for each sensor
node such as ORW [16] (Opportunistic Routing in WSNs)
and MAR-WSN (MAC-aware routing in WSNs) [17].
In the ROUTING-AWARE MAC category, the data link
layer and more particularly the protocol MAC waits for

Fig. 1 Cross-Layer approaches between data link and network layers

routing protocol information to establish an order of
communications for the sensor nodes. In this paper, we are
concerned with the ROUTING-AWARE MAC protocol in a
contention-free environment.

As with conventional MAC protocols, MAC cross-
layer approaches can have two forms: contention-based
approaches and contention-free approaches. MAC-CROSS
[18], RMAC [19], CL-MAC [20] and AreaCast [21] are
examples of contention–based approaches. While CoLaNet
[22], Rand-LO, Depth-LO, DepthRe-LO [23], IDeg-LO,
and IDegRe-LO [24] are examples of contention-free
approaches.

The main objective of MAC-CROSS [18] is to minimize
the consumption of energy by decreasing the number of
sensor nodes that need to remain awake to participate
in the data transmission, where control packets: Request
To Send (RTS) and Clear To Send (CTS) are slightly
modified by adding a new field to each packet. RMAC
(Routing enhanced MAC protocol) [19] is also a cross-
layer MAC protocol with contention. It reduces end-to-end
communication latency using a single control packet called
PION that plays the role of RTS and CTS at the same
time. Cross-Layer MAC protocol (CL-MAC) proposed in
[20] efficiently manages multi-stream traffic and reduces
communication latency. The communication in CL-MAC
is performed using Flow Setup Packet (FSP) package
which contains the transmitter address, the final destination
address and the addresses of next hops. FSP serves as
RTS message for the receiver node and at the same time
as CTS message for the transmitter node. It also has the
particularity to address several recipients at the same time.
In [21], AreaCast is presented to improve the robustness of
routing protocols and the rate of delivery of packages, while
ensuring less energy consumption.

Unlike MAC-CROSS [18], RMAC [19], CL-MAC [20]
and AreaCast [21] almost operate by the same way
(based on RTS/CTS message exchange). CoLaNet [22], is
a centralized contention-free approach that aims to save
energy from sensors by building a routing tree called
MinDegree; then, it uses a coloring algorithm on this
tree to establish a TDMA for each sensor node. CoLaNet
is a TDMA without contention and has two limitations:
the sensor node with the largest number of neighbors
in MinDegree routing tree can have any position in the
tree and all neighbors of an already colored knot do
not reflect the direction of communications. Moreover,
CoLaNet is not oriented to optimize the communication
latency.

Based on cross-layer decisions, communication latency
is reduced [23] by the three proposed different slot
allocation methods: Rand-LO, Depth-LO and DepthRe-LO.
Rand-LO randomly schedules the leaves of the routing
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tree, then it schedules the others while ascending the tree.
Depth-LO improves the Rand-LO by giving privilege to the
faraway leaves from the sink to be scheduled earlier. In
DepthRe-LO, scheduling priority is given to the sensors on
the long paths in the routing tree.

In [24], the authors proposed two TDMA scheduling
techniques called IDeg-LO and IDegRe-LO which use
routing tree information and interference degree of each
sensor. In IDeg-LO, according to interference degree,
the leaf nodes and then internal nodes are scheduled in
descending order. Each sensor is scheduled as close as to
its children slots. In IDegRe-LO, based on the interference
degree, the scheduled leaf is removed from the routing
tree and the process is continued with other sensor nodes,
which gives a chance to internal sensor nodes with greater
interference degree to be scheduled earlier.

As in [24] and [23], our target is to determine the
efficient and best design for TDMA schedule, correlated
with information from routing protocol, to allocate a slot
for every sensor node. However, the proposed ETDMA-
GA is based on GA to efficiently schedule all sensor
nodes and reduce communication latency for tree-based
WSNs. ETDMA-GA uses a heuristic search, that randomly
enumerates some possible solutions and generates other
solutions which increases the search space for finding the
best schedule in terms of reduced latency better than Rand-
LO, Depth-LO, DepthRe-LO, IDeg-LO, and IDegRe-LO
algorithms which use the traditional blind search methods
to generate only one solution and improve it to get the
final solution, i.e., the generated solution is always based
on the starting point whether the start point is good or
bad. However, ETDMA-GA can start from many points
and evaluate every solution to select the best candidates.
ETDMA-GA repeats these steps until it finds the best
solution.

Other approaches are based on metaheuristics techniques
such as [25–31]. In [26], a hybrid algorithm called HPSO
is proposed that combines Particle Swarm Optimization
(PSO) with simulated annealing (SA). HPSO finds the
global optimal slot allocation by using the benefit of SA and
PSO. A multi-objective optimization framework for TDMA
scheduling is proposed in [27], where PSO is embedded
with GA and it is used to enhance the searching ability.
The PSO part avoids empty slots during scheduling, while
the GA part ensures a powerful search ability to determine
the optimal slot allocation. PSO-based scheduling algorithm
called PSOSA which benefits from the search capability of
PSO is proposed in [28]. In [25] a multi-objective immune
algorithm is introduced for finding an optimal solution to
TDMA scheduling problems. A hybrid algorithm is utilized
in [29] by comparing both the evolutionary algorithm (EA)
and PSO. In [30], the authors proposed two scheduling
algorithms: level based and node-based. In node-based,

the sensor nodes of the color corresponding to each slot
with at least one packet are selected first and more sensor
nodes are included afterwards. However, in level-based
scheduling, the original network is first transformed to a
linear network and the schedule of the original network
is then obtained based on the coloring of the linear
network.

GAs have been utilized to solve many problems in
WSN. The most common utilization of GAs in WSN is
to attain an energy-aware network under specific routing
conditions as in [32, 33], improve localization accuracy
as in [34] and deploy nodes to provide k-coverage and
m-connectivity as in [35]. All previous works [25–31]
are based on metaheuristics techniques and the routing
information is not considered during the generation of
TDMA scheduling, i.e., TDMA scheduling is generated
without using any information from the routing protocol.
Therefore, their schedules could be deficient in terms
of latency reduction because the path is not selected
by the routing protocol [23]. Moreover, algorithms such
as CoLaNet do not optimize communication latency. In
contention-free MAC approaches, TDMA communication
latency is affected by non-correlation spatial decisions made
in the routing protocols. In addition, TDMA is important
because it allows for an explicit estimate of the end-to-end
routing time by accurately calculating the delay of a packet
sent by a node and transferred by its parent into the routing
tree.

3 TDMA scheduling problem description

In our proposed approach, WSN is represented as a graph
G = (V , E), where V is the set of deployed sensor
nodes and E is the set of communication links between
nodes. There exist an edge between two nodes i and j ,
if i is within the communication range of j . Let sensor
node Sroot ∈ V is the root such that all data traffic from
every sensor node i ∈ V is routed through Sroot using
routing path. We assume that all sensor nodes have the
same communication range, i.e., the links between nodes
are symmetric. Moreover, each node cannot transmit and
receive simultaneously and cannot hear two messages at the
same time (half-duplex radio transceiver). Figure 2 shows
an example of a WSN graph and its routing tree rooted
at node 1.

In TDMA scheduling, the time frame is divided into
equal intervals called time slots. Each time slot is intended
to receive or transmit a single packet from/to a neighboring
sensor node. The main objective of TDMA scheduling is
to assign different transmission and reception time slots
to sensor nodes without collisions while using minimum
energy consumption and minimum total number of slots
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Fig. 2 Example: A WSN graph
with its minimum hop routing
tree

for transmission and reception. According to the work in
[36], TDMA scheduling constraints can be summarized as
follows:

1. Transmission and reception of a sensor node at the same
time slot are not allowed.

2. Simultaneous reception between several 1-hop neigh-
bors are prohibited.

Moreover, the immediate neighborhood of a sensor node s

and its 2-hop neighborhood sensor nodes should guarantee
that no interference occurs during the transmissions by a
sensor node.

A WSN of N sensor nodes can be represented by a
symmetric connectivity matrix CN×N , which is defined as
C[i][j ] = 1, if eij = 1; else C[i][j ] = 0, where eij

is the minimum number of edges between sensor node i

and sensor node j and i �= j . In addition, the conflict
relationship in the network can be represented by an
interference matrix IN×N , where if eij ≤ 2, I [i][j ] = 1;
else I [i][j ] = 0, where i �= j . As a result, sensor nodes
i and j can transmit data at the same time if eij is larger
than 2. For example the corresponding connection matrix
and interference matrix for the network in Fig. 2 is given
below in Eqs. 1 and 2:

C[10][10] =

0 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0
1 1 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0

(1)

I [10][10] =

0 1 1 1 1 1 0 0 1 0
1 0 1 1 1 1 0 0 1 0
1 1 0 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1 0 1
1 1 1 0 0 1 1 0 1 0
1 1 1 1 1 0 1 1 1 0
0 0 1 1 1 1 0 1 0 1
0 0 1 1 0 1 1 0 0 1
1 1 1 0 1 1 0 0 0 0
0 0 1 1 0 0 1 1 0 0

(2)

The TDMA scheduling problem in tree-based WSN can be
formulated as follows: Sensor nodes generate data packets
and they need to transfer these packets to the root node
along the routing tree. The main objective is to schedule a
time for each node, i.e., to allocate a slot for every sensor
node without collision during transmission, minimize data
delivery time and the total number of slots and maximize
the network lifetime.

Optimal scheduling can be obtained by enumerating all
valid schedules. But the complexity of such a solution
will be exponential and hence heuristic solution within a
reasonable time is desirable [24]. In this paper, GA is used
as a heuristic approach to get the best schedule for sensor
nodes in a WSN.

4 TDMA scheduling based on genetic
algorithm

This section describes our proposed technique for schedul-
ing the sensor nodes in a WSN. The algorithm is divided
into two phases: initialization and TDMA schedule con-
struction. In the initialization phase, the sink generates
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Fig. 3 TDMA scheduling
example for the WSN in Fig. 2

the routing tree using sensor nodes information such as
Min Hop tree [37] or Depth First tree [38]. In TDMA
schedule construction phase, the sink constructs the routing
tree traversal, calculates the TDMA schedule and broad-
casts the routes and the TDMA to all sensor nodes in the
WSN. The used definitions and notations in the algorithm
are provided first, and then we provide full description of
each phase.

Definition 1 (Collision between nodes j and i) The message
of sensor node j collides with the message of sensor node i

if the value of I [i][j ] is 1, which means that sensor nodes i

and j cannot transmit data at the same time. For example, in
Eq. 2, I[1][2]=1, i.e., sensor nodes 1 and 2 cannot transmit
at the same time.

Definition 2 (Free slot for node i) A slot x is said to be free
for node i, if its allocation won’t create a collision with node
j , i.e., I [i][j ] �= 1. For example, in Fig. 3, slot 2 is assigned
to node 6 and it is free for node 10, because I [6][10] �= 1
(see Eq. 2).

Definition 3 (Traversal List (TL)) TL list contains the
traversal order of the sensor nodes in the routing tree. For
example, T L1=7, 6, 10, 8, 4, 3, 9, 5, 2, 1 is the traversal for
the tree in Fig. 2.

Definition 4 (Transmit/Receive slot) Schedule
Slot[i][j ] = k means that slot i is allocated for node j and
it can be used for transmitting if j = k, for receiving if
j �= k, and otherwise if Slot[i][j ] = 0, i.e., k = 0, node
j cannot communicate in this slot. For example, in Fig. 3,
node 5 can transmit using slot 3 and nodes 2 and 6 can
receive using slot 3.

In the next section, the description of each phase of the
proposed algorithm is given.

4.1 Initialization phase

In the initialization phase, using the information of sensor
nodes, the sinkgenerates the routing tree such asMinHop tree
[37] orDepth First tree [38]. Then, the sink constructs the tra-
versal of the routing tree and calculates the TDMA schedule
and broadcasts the routes and the TDMA in the WSN.

4.2 TDMA schedule construction phase

Using GA, a new scheduling algorithm called ETDMA-
GA is proposed. ETDMA-GA finds the best routing tree
traversal ordering and the corresponding TDMA schedule.
The flow chart of GA-Schedule process is shown in
Fig. 4, where the population of candidate solutions to an

Fig. 4 Flowchart of GA
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optimization problem is evolved towards better solution.
Each candidate solution is based on a set of properties
that can be mutated and altered; traditionally, solutions are
represented in binary as strings of 0s and 1s. But other
encodings are also possible.

GA is an iterative process and the population in each
iteration is called a generation. It starts from randomly
generated individuals as initial population and in every
generation, the fitness will be estimated for each individual.
Fitness is usually the value of the objective function when
the problem is being optimized. Fit individuals will be
selected from the ongoing population, and each individual’s
genome is modified to create a new generation. The
new generation of candidate solutions is used in the next
iteration. The algorithm terminates when either a maximum
number of generations has been generated or a satisfactory
fitness level has been reached. Modeling GA needs Genetic
representation of the solution and Fitness function to
evaluate the generated solution. In the next subsections, the
adaptation of GA stages to schedule slots for sensor nodes
are presented.

4.2.1 Representation of TDMA slots using GA

In a given GA, integer representation is used to encode
the chromosome. Each gene in the chromosome is mapped
into a time slot vector and the gene’s value indicates a
single slot number of sensor nodes that are included to form
a TDMA schedule. Each chromosome can be represented
by a two-dimensional matrix with R rows where R is the
number of slots. The number of slots is computed as the
maximum interference degree (IDegree) in the network,
where IDegree = arg max1≤i≤n(

∑n
j=1 I [i][j ]) and W

columns (the number of sensor nodes).

4.2.2 Initial population

The first step in the GA process is the generation of an
initial population. The initial population will be randomly
generated as a predefined number of chromosomes in the

population. Each chromosome is generated by executing the
following slot allocation algorithm (see Algorithm 1):

1. Generate random routing tree traversal list (TL)
ordering.

2. For the first node j in TL, allocate the first slot in the
scheduling to j (Slots[i][j ] = j , i = 1).

3. For each node k that has connection with j , i.e.,
C[j ][k] = 1, allocate the current slot to k, i.e.,
Slots[1][k] = j as a receiving slot.

4. For each next node l in TL do the following:

• Starting from the first slot of the scheduling, search
for a free slot ( find the slot that does not have a
collision node with l).

• If no free slot is found, then allocate a new slot for
l at the end of the scheduling (Slots[i + 1][l] = l).

• For each node k that has connection with l, i.e.,
C[l][k] = 1, allocate the current slot for k, i.e.,
Slots[i + 1][k] = l as a receiving slot for k.

5. Repeat Step 4 till all nodes in TL are scheduled.

Note that the generated scheduling matrix Slots[m][n]
with m slots and n sensor nodes are considered as the
chromosome and if m is less than the chromosome length,
zeros are added to the end of the chromosome matrix
(padding slot).

For clarification, consider a randomly generated TL
lists T L1={7, 6, 10, 8, 4, 3, 9, 5, 2, 1} and T L2={10,
9, 8, 7, 5, 2, 4, 6, 3, 1}, respectively for the networks
in Fig. 2.

Considering T L1, the algorithm starts by generating a
new transmitting slot for node 7, i.e., Slots[1][7] = 7.
Then, we find the list of nodes that are in connection with
node 7 from matrix C in Eq. 1 which is Clist = 8, 6
(row 7, the column that has 1 value). Assign the current
slot as a receiving slot for nodes 8 and 6 for node 7, i.e.,
Slots[1][6] = 7 and Slots[1][8] = 7. After the first sensor
node in T L1 is allocated in the schedule, the next node
(node 6) in T L1 is allocated in the schedule as follows:
search Slots matrix for free slot for node 6. Slot 1 in the

Fig. 5 Generated chromosomes:
Two different TDMA schedules
for the WSN example in Fig. 2 a
for T L1 b for T L2

a b
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Slots matrix is transmitting slot for sensor node 7 and since
sensor node 7 is a collision node with sensor node 6; we
cannot allocate slot 1 for node 6 (since from I matrix in
Eq. 2, I [6][7] = 1). Therefore, the new slot will be allocated
for node 6 (Slot 2), i.e., Slots[2][6] = 6. As before, the
list of nodes that have connection with node 6 will be
Clist = 3, 5, 7 and so Slot 2 will be allocated as receiving
slot for nodes 3, 5, and 7. The same processes are repeated
for nodes 10, 8, 4, 3, 9, 5, 2 and 1. The generated slots
matrix is assigned to chromosome and padding slots are
added to the chromosome matrix if the generated matrix
length is less than the chromosome length. Figure 5a shows
the chromosome obtained for T L1 and Fig. 5b shows the
chromosome obtained for T L2. Note that slots 8 and 9 are
padding slots (padding slots are removed before latency
calculations).

4.2.3 Selection

The chromosomes with good fitness rates have higher
opportunity to be chosen in the next population. The
selection process decides which chromosomes of the current
population will be transferred to the next population without
change. To differentiate proper individuals, the selection
method is adapted based on the principle of elitism where
the best chromosomes (a few) in the current population
are copied as they will be included in the next population,
i.e., the individual with the highest fitness succeeds and
will be added in the next population. Such individuals can
otherwise be lost if they are not chosen to reproduce; or the
crossover or mutation may destroy them. This elitist strategy
of selection remarkably enhances the performance of the
GA [39].

4.2.4 Crossover

Crossover is a process to generate the next population
from the previous one. This process takes more than
one parent from the current population to create a new
child for the next population. For the two-dimensional
representation, the crossover operation must be modified
[40]. The crossover operation could be horizontal or
vertical. In this work, the selection method is adapted
based on the principle of Tournament [41], where k is
the number of individuals randomly chosen from the
population to form a group, then the best individual
from this group is selected for further processing. The
selection process from the population will be repeated
until k groups are obtained and the best individual will
be selected from each group. Finally, the individual with
the highest fitness succeeds and will be added in the next
generation.

After parents selection, to generate the two children
chromosomes gchild1 and gchild2 from the selected two
parents gparent1 and gparent2; the crossover is performed
horizontally over the rows of the parent chromosomes by
generating a random integer r in range [1, R]where,R is the
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chromosome length. Then the following steps are executed:

• If row i ≤ r (1 ≤ i ≤ R) then copy from gene 1 to
gene i, i.e., from gparent1 to gchild1 and from gparent2

to gchild2
• Otherwise, if row i > r (1 ≤ i ≤ R), then copy from

gene i to gene R, i.e., from gparent2 to gchild1 and from
gparent1 to gchild2

Figure 6 shows the generated children Child1, Child2
after crossover operation using the two parent chromosomes
Parent1 and Parent2.

4.2.5 Mutation

Mutation is used to preserve the genetic diversity of
the population from inter-generational chromosomes [40].
A common mutation operator for permutation represents
interchanges in the contents of two randomly selected
genes, i.e., one or more parts of a chromosome are
changed [39]. In mutation, the important parameter is the
mutation probability which determines the frequency of
mutation of the parts of the chromosome. If there is no
mutation, the offsprings are generated immediately after
crossover or directly copied without any changes. The
proposed mutation operation is performed horizontally over
the rows of the chromosome by executing the following
steps:

• Generate a random number r ∈ [0, 1].
• If r > mutation rate, then stop; otherwise,

– Generate two random integers r1, r2 (1 ≤
r1, r2 ≤ R)

– If r1 = r2, go to the previous step,
– Otherwise, swap the two rows r1 and r2.

Figure 7 shows the generated modified children Child1,
Child2 after executing mutation operation over the two
children chromosomes Child1, Child2.

4.2.6 Fitness function

The probability of an individual to reproduce is computed
using fitness function. The higher the fitness of an
individual, the higher the opportunities to reproduce and
mutate. In the proposed technique, the fitness function is
used to represent the performance. The aim is to discover
an arrangement for sensor nodes to be scheduled and to
assign slot for each sensor node without collisions during
data transmission while minimizing the data delivery time.
The average latency for WSN with n sensor nodes is given
by:

Laverage =
∑n

i Li

n − 1
, (3)

Here, Li is the latency of sensor node i which is computed
as the total number of waited slots of i till its data reaches
the root node.

For clarification, consider the schedule in Fig. 3, the
latency of sensor node 9 is 6 slots since node 9 has no
waiting slots before starting transmission, plus 4 waiting
slots for sensor node 2 (the parent of node 9) before
transmission plus 1 slot for sensor node 2 to send. Similarly,
L2 = 6, L3 =5, L4 =5, L5 =6, L6 =5, L7 =5, L8 =5, L9 =6,
and L10 =5. According to Eq. 4, this schedule has average
latency Laverage=(6+5+5+6+5+5+5+6+5)/9= 5.33
The objective is to minimize average latency for WSN
(minimizing Eq. 4). The fitness of each chromosome is
evaluated by setting 1

1+Laverage
for valid chromosome and set

to a very small number for invalid chromosomes.

Fig. 6 Crossover operations
Example
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Fig. 7 Mutation operations

4.3 Example scenario

Figure 8 shows a network example with 8 sensor nodes and
its routing tree with node 1 as a sink [24].

In the case of Rand-LO allocation, first leaves in a
random order of the routing tree will be scheduled. Then, it
schedules sensor nodes in the ascending order of the routing
tree. As a result, the traversal order of the routing tree in
Fig. 8 will be 6-8-3-7-2-4-1-5. The resulting schedule is
presented in Fig. 9a, with an average latency of 5.71. Depth-
LO algorithm improves Rand-LO by assigning scheduling
priority to the leaves that are far from the sink than the
other leaves. Using Depth-LO, the traversal order of the
routing tree in Fig. 8 will be 8-6-7-3-4-2-5-1. The Depth-
LO’s schedule is presented in Fig. 9b, with average latency
5.57.

Fig. 8 A WSN graph with its routing tree [24]

In DepthRe-LO, sensor nodes on long paths in the
routing tree are privileged and scheduled earlier than other
sensor nodes. Using DepthRe-LO, the traversal order of
the routing tree in Fig. 8 will be 8-6-7-4-3-5-2-1. The
DepthRe-LO’ schedule is presented in Fig. 10a with average
latency 5.43. In IDeg-LO the order of the allocation is
based on the interference degree of the sensor nodes, by
considering leaves to be scheduled in the descending order
of the interference degree and a random node is chosen if
interference degrees are equal. Using IDeg-LO, the traversal
order of the routing tree in Fig. 8 will be 8-6-7-4-3-2-5-1.
The IDeg-LO’s schedule is presented in Fig. 10b, with an
average latency 5.57.

a b

Fig. 9 TDMA schedule for WSN in Fig. 8 using a Rand-LO b
Depth-LO

Peer-to-Peer Netw. Appl. (2020) 13:796–815 805



a b

Fig. 10 TDMA schedule for WSN in Fig. 8 using a DepthRe-LO b
IDeg-LO

In IDegRe-LO, the order of the allocation is based on
the interference degree of leaf sensor nodes, then the leaves
removed from the routing tree and the allocation process is
repeated over new leaves. Using IDegRe-LO, the traversal
order of the routing tree in Fig. 8 will be 8-6-7-3-2-4-5-1.
The resulting schedule is presented in Fig. 11a, with average
latency 5.14. Using the proposed ETDMA-GA, the traversal
order of the routing tree in Fig. 8 will be 8-6-3-2-7-4-5-1.
The ETDMA-GA’ schedule is presented in Fig. 11b with an
average latency 4.71.

5 Simulation results and performance
analysis

Here, the simulation setup, the performance metrics and the
simulation results along with discussions of the proposed
ETDMA-GA and comparison of its results with the baseline
algorithms such as Rand-LO, Depth-LO, DepthRe-LO,
IDegRe-LO, and IDeg-LO are presented.

a b

Fig. 11 TDMA schedule for WSN in Fig. 8 using a IDegRe-LO b
proposed algorithm

5.1 Simulation setup

The used WSN simulator is designed by David J. Stein and
Esq [42]. The simulation consists of two stages: deploying
the network and running simulations. The simulator is
written in C# using Microsoft Visual Studio.NET. The
simulator is modified to cope with our desired mission such
as adding the identification number for each sensor node
to easily control and identify the position of each sensor
and its status. For deployment method, we adopt MAX −
DPA algorithm [43] to generate random networks. In our
simulation we have the following:

• 100 sensor nodes are deployed randomly on a 2D plane
with sink placed at the corner of the deployment area.

• The communication range rc is fixed as 30 m.
• Different network densities are simulated from 5 to

20 with increment of 5 by changing the network area
size. The network density can be roughly calculated as
ρ = (π × r2c × n)/A, where rc is the communication
range, n is the number of nodes, and A is the deployed
area [23, 24].

• The parameters of GA are as follows: population
size=25, maximum generation=4000, crossover proba-
bility = 0.8, and mutation probability = 0.05.

The performance of the proposed ETDMA-GA is evalu-
ated using minimum hop routing tree [37] and Depth-First
Search Aggregation tree (DFSA) [38]. Then the perfor-
mances results are compared with DepthRe-LO, Depth-LO,
Rand-LO [24], IDeg-LO, and IDegRe-LO [23]. For confi-
dence, the results are averaged using 100 different randomly
generated networks using MAX − DPA algorithm [43].
Figure 12 shows examples of used generated graphs with
different densities 5, 10, 15, and 20.

5.2 Performancemetrics

The used performance metrics as in [23, 24] to compare the
performances of different approaches are as follows:

• Average Latency is computed as the sum of the latency
of each sensor averaged by the total number of sensors
and it is calculated as follows:

Laverage =
∑n

i Li

n − 1
, (4)

where, Li is the latency for sensor i.
• Schedule Length is the number of slots used in the

schedule.
• Average Normalized Latency is the average per link

latency for all sensors in the network and it is computed
as follows:

Lnormalized =
∑n

i Li/hi

n − 1
(5)
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Fig. 12 Examples: Randomly generated graphs with densities 5, 10, 15 and 20

where Li is the latency, hi is the number of hops to sink
for sensor node i.

• Duty Cycle is calculated as the ratio of the number of
used slots in transmission or reception to the schedule
length.

5.3 Simulation results and discussion

5.3.1 The overhead and convergence

Overhead of ETDMA-GA: As in CoLaNet [22], Rand-
LO, Depth-LO, DepthRe-LO [23], IDeg-LO, and
IDegRe-LO [24] approaches, ETDMA-GA is a central-
ized contention-free approach which will be executed by
the sink. As we discussed above, the network is brought
to a stable state without collisions by finding the best
routing tree traversal order and the best TDMA sched-
ule using suitable mapping to GA. The chromosomes
are generated by executing the proposed slot allocation
algorithm, which successfully finds the best scheduling
matrix using the GA operations. The routing tree gener-
ated using sensor nodes information such asMin Hop tree
[37] or Depth First tree [38] in the initialization phase
will be used in the TDMA schedule construction phase
to determine the best traversal order by the sink, which
will then be used to create the best TDMA scheduling
matrix. Finally, the sink will broadcast the best TDMA
schedule to all sensor nodes in the network. At this stage,

the nodes will be able to transmit messages without col-
lisions making use of the best scheduling found by the
ETDMA-GA. We measure the quality of our TDMA
scheduling in terms of the number of control messages
exchanged. The overall message complexity of ETDMA-
GA will be O(n) since it requires n messages to inform
the generated scheduling to n nodes. This is the same as
that of the overhead complexity of existing algorithms.

Convergence Time: It is crucial to identify whether the
algorithm can reach the solution or not. The convergence
time of GA based procedures is very important to be
estimated to know for how long the procedure will
run to get results. This time is surely dependent on
the complexity of the algorithm, the defined fitness
function and the GA parameters. When convergence
occurs the difference between fitness functions is very
small, meaning that there is no further progress to be
gained, which in turn denotes the convergence of the
algorithm.

However, the prediction is complicated to be computed
because of its dependence on the application domain.
Uniting fitness prediction with hamming distance prediction
[44] provides an idea on this, where the predicted average
fitness denotes the possible progress using GA and the
predicted hamming average that denotes the remaining
work. The average hamming distance (hamming average)
is used as a measure of population diversity in GA to
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express convergence. The convergence rate has been used
to determine the population size in micro GA [45]. The
authors used an experimental approach primarily because
of the complexity of the problem under consideration. It
is mathematically difficult to identify the characteristics of
the best solution. They reached a conclusion that micro GA
could be converged in reasonable time. The convergence
rate of GA has been discussed using the minorization
condition in the Markov chain theory in [46]. They
classified genetic algorithms into two cases: time-invariant
genetic operators and time-variant genetic operators. For
the former case, they have obtained the bound on its
convergence rate on the general state space; for the latter
case, they have bounded its convergence rate on the finite
state space, i.e., the convergence in GA could be occurred
and predicted.

In this paper, we use an experimental approach to
determine the convergence time because of the complexity
of the problem under consideration (NP-hard [47]) and the
difficulty to identify the characteristics of its best solution
[47]. In the first test, we run the programs with different
network density, observing the best fitness reached with
each density, see Fig. 13, where sufficient number of
generations have been run such that convergence to near-
optimal values was apparent. Figure 13 shows that the
average latency (objective function) becomes converged in
different densities 5, 10, 15, 20 at generation 1500, 3000,
2000, and 2300 respectively. It shows the values to which
the proposed algorithm converged, as well as the time
needed.

The algorithm stops when the number of generations
reaches a specific value which satisfies a specific condition
such as stability of average latency etc. Determining
stopping criteria is an important factor in the design of GA.
The experiment is performed to determine stopping criteria
for the proposed algorithm. Different network densities are
simulated from 5 to 20 in increment of 5 by changing the

network area size with fixed deployment of 100 nodes. The
sink is placed at the corner of the network field (0, 0)
and the average latency is taken as a decision criterion. To
determine the criteria for stopping the GA, the experiment
is performed by varying the number of generations for a
given population (25). Figure 13 shows the relationship
between the objective value (i.e, average latency) and the
number of generations for different densities. The graph
is obtained by plotting the average latency of the best
chromosome of each generation for the same experiment.
As the number of generations increase, the value of the
average latency decreases. In fact, the weak chromosomes
of each generation will be filtered by the fitness function.
Thus, the average latency will be improved over successive
generations. We can observe that the average latency
becomes stable towards the generation 4000 and increases
slightly with the increase in the number of generations, i.e.,
the chances of making significant changes in the future
generations are considerably low.

5.3.2 The average latency and the average normalized
latency computing

In the second test, we compute the average latency and the
Average normalized latency for the proposed ETDMA-GA
and compare the results with the algorithms IDegRe-LO,
DepthRe-LO, Depth-LO, Rand-LO, and IDeg-LO.

Figures 14 and 15 show that the proposed ETDMA-
GA has the best reduction in average latency and average
normalized latency among the others regardless of the
routing tree type. Where, in case of DFSA tree, the best
reduction in average latency is of the proposed ETDMA-GA
followed by IDegRe-LO, DepthRe-LO, Depth-LO, Rand-
LO, and then IDeg-LO. While in case of Min-Hop tree, also
the proposed algorithm has the best latency reduction in
average, followed by IDegRe-LO, DepthRe-LO, Depth-LO,
IDeg-LO, and then Rand-LO. Because IDeg-LO prioritizes

Fig. 13 Effect of number of
generations on objective value
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Fig. 14 Average latency of Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, IDeg-LO, and proposed ETDMA-GA algorithms based on the
information of DFSA and Min-Hop routing trees

the leaves of the routing tree with much interference while
IDegRe-LO privileges internal sensor nodes with a lot
of interference which shows that IDegRe-LO has better
latency reduction than IDeg-LO. Moreover, with DFSA tree
and Min-Hop tree, IDegRe-LO is better than DepthRe-LO,
Rand-LO, IDeg-LO and Depth-LO because IDegRe-LO
prefers to schedule first the critical sensors and sensors that
are far from the sink which creates a lot of interference in the
network. DepthRe-LO has better performance than Depth-
LO as it allocates the first slots of TDMA to nodes with long
paths.

In the third test, the average schedule length for the
proposed ETDMA-GA is computed and the result is
compared with the algorithms IDegRe-LO, DepthRe-LO,
Depth-LO, Rand-LO and IDeg-LO. Figure 16 shows that
the proposed ETDMA-GA has longer TDMA length than
IDeg-LO by 0.2% in average for Min-Hop tree, and than
IDegRe-LO by 3% in average for DFSA tree. The proposed
ETDMA-GA has these additional slots due to the latency
minimization.

In the fourth test, the Average latency for ETDMA-
GA for different densities is computed and the comparison
with the baselines algorithms is performed in the case of
Min-Hop and DFSA trees. Figure 17 shows the Average
gain in latency reduction by the proposed ETDMA-GA
with different densities compared with Depth-LO, IDeg-
LO, Rand-LO, IDegRe-LO and DepthRe-LO. It shows for
Min-Hop tree that, for all densities, the latency average of
the proposed algorithm is improved by 26.47%, 27.19%,
28.27%, 15.01%, 21.14% as compared to the latency of
Depth-LO, IDeg-LO, Rand-LO, IDegRe-LO, DepthRe-LO,
while for DFSA tree, the latency average of the proposed
ETDMA-GA is improved by 33.55%, 35.61% , 35.04%,
25.22%, 30.81% as compared with the latency of Depth-LO,
IDeg-LO, Rand-LO, IDegRe-LO and DepthRe-LO.

Figure 18 shows the standard deviation for latency with
different densities for proposed ETDMA-GA, IDegRe-
LO, DepthRe-LO, Depth-LO, Rand-LO and IDeg-LO
algorithms. It is clear from Fig. 18 that the proposed

Fig. 15 Average normalized latency of DepthRe-LO, Depth-LO, Rand-LO, IDeg-LO, IDegRe-LO, and proposed ETDMA-GA algorithms based
on the information of DFSA and Min-Hop routing trees
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Fig. 16 Average schedule length of DepthRe-LO, Depth-LO, Rand-LO, IDeg-LO, IDegRe-LO, and proposed algorithms based on the information
of DFSA and Min-Hop routing trees

a b

Fig. 17 Average gain in latency reduction with different densities by proposed ETDMA-GA, IDegRe-LO, DepthRe-LO, Depth-LO, Rand-LO,
and IDeg-LO algorithms

a b

Fig. 18 Standard deviation for latency with different densities of proposed ETDMA-GA, IDegRe-LO, DepthRe-LO, Depth-LO, Rand-LO, and
IDeg-LO algorithms
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Fig. 19 Average latency of
proposed ETDMA-GA,
DepthRe-LO, Depth-LO, Rand-
LO, IDeg-LO and IDegRe-LO
algorithms in case of DFSA and
Min-Hop routing trees with
three different locations of sink

approach has less standard deviation than the other
approaches.

5.3.3 Effect of sink placement

In the fifth test, our target is to show the effect of moving
the sink to different placements on the performance of
proposed ETDMA-GA, DepthRe-LO, Depth-LO, Rand-
LO, IDeg-LO, and IDegRe-LO algorithms. In this test, 100
sensor nodes with communication range fixed at 30 m are
deployed randomly in 150 m× 150 m area. The sink is
located at the following different places: the corner of the
network (Location1), the middle of one edge of the network
(Location2) and the center of the network (Location3).
The performance is evaluated using Min-hop and DFSA
routing trees. Figures 19, 20, and 21 show the average
latency, average normalized latency and average schedule
length of proposed ETDMA-GA, DepthRe-LO, Depth-LO,
Rand-LO, IDeg-LO and IDegRe-LO algorithms in case
of DFSA and Min-Hop routing trees with three different
locations of the sink.

In Fig. 19, the latency is improved at Location2 by
21.80%, 22.59%, 22.74%, 22.89%, 23.46%, 17.74% for
Depth-LO, IDeg-LO, Rand-LO, IDegRe-LO, DepthRe-LO,
and the proposed ETDMA-GA, respectively as compared

to Location1 in case of using Min-Hop tree. However, in
case of DFSA tree, the latency is improved at Location2
by 18.09%, 15.54%, 18.51%, 22.38%, 24.93%, 9.33% for
Depth-LO, IDeg-LO, Rand-LO, IDegRe-LO, DepthRe-LO,
and the proposed ETDMA-GA, respectively compared to
Location1.

Moreover, the latency is improved at Location3 by
41.04%, 42.77%, 42.08%, 39.96%, 39.61%, 33.92% for
Depth-LO, IDeg-LO, Rand-LO, IDegRe-LO, DepthRe-LO,
and proposed ETDMA-GA, respectively as compared to
Location1 in case of Min-Hop tree. However, in case
of DFSA tree, the latency is improved at Location3 by
21.82%, 17.28%, 20.80%, 30.05%, 34.55%, 11.48% for
Depth-LO, IDeg-LO, Rand-LO, IDegRe-LO, DepthRe-LO,
and the proposed ETDMA-GA, respectively compared to
Location1.

Figures 19, 20, and 21 show that when the sink location
is moved to the network center (Location3); the latency is
minimized for all algorithms for both cases of routing trees
because the paths from nodes to the sink is decreased.

5.3.4 Duty cycle

In the sixth test, the duty cycle of the proposed ETDMA-GA
as the ratio of the active period (estimated by the number

Fig. 20 Average normalized
latency of proposed
ETDMA-GA, DepthRe-LO,
Depth-LO, Rand-LO, IDeg-LO
and IDegRe-LO algorithms in
case of DFSA and Min-Hop
routing trees with three different
locations of sink
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Fig. 21 Average schedule length
of proposed ETDMA-GA,
DepthRe-LO, Depth-LO, Rand-
LO, IDeg-LO and IDegRe-LO
algorithms in case of DFSA and
Min-Hop routing trees with
three different locations of sink

of slots used either in transmission or in reception) to the
total period (the schedule length) is computed. The results
are compared with the existing algorithms such as DepthRe-
LO, Depth-LO, Rand-LO, IDeg-LO, IDegRe-LO. A lower
duty cycle results in a lower energy consumption [48].
Figure 22 shows that for Min-Hop and DFSA trees, Rand-
LO and Depth-LO have the best duty cycle due to their
longer schedule length and then followed by DepthRe-LO,
proposed ETDMA-GA, IDegRe-LO and IDeg-LO because
their schedule lengths are smaller than those of Rand-LO
and Depth-LO.

Moreover, Fig. 22 shows that in case of Min-Hop tree, the
average percentages overall densities of duty gain of Depth-
LO, Rand-LO, DepthRe-LO compared to the proposed
ETDMA-GA are 3.3%, 3.4%,3.2%, respectively. While
the average percentages overall densities of duty gain of
proposed ETDMA-GA compared to IDeg-LO and IDegRe-
LO are 0.7 % and 0.2%, respectively. In case of DFSA
tree, the average percentages of duty gain of Depth-LO,
IDeg-LO, Rand-LO, DepthRe-LO compared to proposed
ETDMA-GA are 6.2%, 0.8%,6%, 1.5%, respectively. While
the duty gain overall average percentages of proposed
ETDMA-GA compared to IDegRe-LO is 3.3%. The main

conclusion of this test is that the duty cycle of the proposed
ETDMA-GA shows diminutive increase compared to
other existing algorithms while the proposed ETDMA-GA
achieves remarkable gain in average latency.

In summary, the proposed heuristic TDMA based genetic
technique (ETDMA-GA) enumerates some of the possible
solutions randomly and then generates other possible
solutions by crossover and mutation operations. This makes
the proposed algorithm to search better than existing blind
search algorithms which start from initial point (may be bad
point) and generate a solution. Such solution is based on this
bad/good starting point. However, the proposed ETDMA-
GA can start from many points, then evaluate each point and
select the best and improve the worst. ETDMA-GA repeats
these steps until it finds the final best solution.

6 Conclusion

In this work, a new TDMA scheduling based on genetic
algorithm using latency as fitness function in order to reduce
the latency of communications in tree basedWSN have been
proposed. Two dimensional chromosome matrix is designed

Fig. 22 Duty Cycle of the proposed ETDMA-GA, DepthRe-LO, Depth-LO, Rand-LO, IDeg-LO, and IDegRe-LO algorithms in case of DFSA
and Min-Hop routing trees
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to represent TDMA schedule and the required genetic
operations are provided. The proposed algorithm utilizes the
information that comes from routing protocol in order to
find the best design for TDMA schedule. Simulation results
show that the proposed algorithm has better performance
than existing state-of-the-art approaches such as Rand-
LO, Depth-LO, DepthRe-LO, IDegRe-LO and IDeg-LO in
terms of average latency, average normalized latency and
average schedule length.
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