Peer-to-Peer Networking and Applications (2020) 13:872-889
https://doi.org/10.1007/s12083-019-00817-0

®

Check for
updates

Novel Distributed Dynamic Backbone-based Flooding
in Unstructured Networks

Saeed Saeedvand’ - Hadi S. Aghdasi' @ - Leili Mohammad Khanli'

Received: 15 March 2019 / Accepted: 9 September 2019 /Published online: 18 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Resource discovery on different unstructured and dynamic networks such as grid, peer-to-peer, and cloud networks is an
inevitable challenging issue. The primary method for resource discovery on the unstructured networks is flooding a query on
the network. All existing flooding algorithms for unstructured networks generate almost high additional duplicated queries. This
high duplication of the unstructured networks causes a lot of network traffic. This paper, therefore, proposes a novel flexible
Distributed Dynamic backbone-based Flooding (DDBF) algorithm for distributed unstructured networks. This paper explores
Grid middleware, Peer-to-Peer (P2P) paradigm, and cloud networks resource discovery requirements and it proposes flooding
algorithm based on the P2P networks using simulation. To evaluate and prove DDBF algorithm we, first, evaluated it on four
fixed network topologies along with two different query flooder distributions, then we evaluated it with one dynamic network
topology. The performance of the proposed DDBF algorithm was assessed with five different metrics. The result showed a
dramatic decrease in the number of engaged flooder nodes, the number of duplicated queries and consequently, network delay
compared with the state-of-the-art algorithms.

Keywords Resource Discovery - Flooding - Unstructured Dynamic Networks - Peer-to-Peer Networks - Distributed Algorithm

1 Introduction mostly based on the wired network resources owned by vari-
ous institutions. These infrastructures are structured in virtual
organizations, which are subjected to specific sharing policies.

Thus, apart from their differences, these networks have many

The ultimate target of any data or resource sharing networks is
to make large sets of resources and make them available to

their deployed applications and users. A fundamental service
in these networks is resource location discovery. In resource
sharing networks, after specifying the existing resources, the
system returns the locations where the required resources cur-
rently exist in [1]. The ultimate goal of Grid middleware, Peer-
to-Peer (P2P) networks, and microdata centers on cloud com-
puting is the use of resources across multiple domains. These
systems evolved from different communities and served dif-
ferent needs. Traditional grid middleware, P2P, and MDCs are

P4 Hadi S. Aghdasi
aghdasi@tabrizu.ac.ir

Saeed Saeedvand
sacedvand @tabrizu.ac.ir

Leili Mohammad Khanli
l-khanli @tabrizu.ac.ir

Faculty of Electrical and Computer Engineering, University of
Tabriz, Tabriz, Iran

@ Springer

common characteristics such as resource discovery, dynamic
behavior, and heterogeneity of the involved components.
Hence, resource location discovery is a key issue for these
kinds of networks in which applications are composed of
hardware and software resources that need to be located [2—4].
Based on the literature, we can categorize described net-
works into two different main architectures including struc-
tured networks and unstructured networks [5—7] as below:

Structured networks: These types of networks have
some central directory servers. It means that the set of
links (connections) between nodes are controlled, and
resources are placed not at random nodes but at specified
locations. These locations make information discovery
easy to satisfy. For information discovery in structured
networks, there is no need to flood a query on the net-
work. Thus, searching for resources and information on
these kinds of cloud networks are informed search [8]. It
is a well-known issue that the structured cloud networks
are required to have up-to-date central directory servers,

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-019-00817-0&domain=pdf
http://orcid.org/0000-0003-1613-7370
mailto:aghdasi@tabrizu.ac.ir

Peer-to-Peer Netw. Appl. (2020) 13:872-889

873

which requires a very high cost. Structured networks are
quite widespread in the research literature based on the
different network structures such as grid middleware or
cloud networks, but because of the dynamic nature
(nodes enter and leave the network rapidly) most of the
networks, it is hard to use such networks widely [9].

Unstructured networks: These types of networks don’t
use centralized directory nor any accurate control over the
network topology or file placement [10]. Searching re-
sources and information in this kind of networks is
known as blind search [7, 11]. In these networks, the
connectivity change and nodes can enter and leave the
network rapidly. Gnutella is an example of such a net-
work [12]. For blind search, the most typical searching
method is flooding, where a query is broadcasting to all
adjacent nodes within a certain radius [13]. Unstructured
networks are extremely resilient to nodes entering and
leaving the network. For instance, platforms such as
MapReduce are increasingly popular for their simplicity,
scalability, and flexibility on unstructured networks.

All of the unstructured networks use resource sharing sys-
tems, where resource discovery is an inevitable challenge.
Thus, due to the lack of an underlying structure in these net-
works, there is no information about the location of files. Thus
the prevailing resource location method is “flooding”.
However, in the unstructured networks the current query
flooding algorithms are generating a high number of duplicat-
ed queries, which causes large loads on the network. In the last
years, for flooding query in unstructured networks, different
algorithms have been proposed. Random Walk [14], Query
Forwarding in geographically distributed search engines
[15], a lightweight information-sharing scheme [4] and some
others in [16, 17] are the most important ones.

The existing flooding algorithms have some drawbacks
such as generating a large amount of redundancy on the net-
work which causes latency. Reducing latency on the unstruc-
tured networks is very important, and researchers repeatedly
worked on this problem [4, 9, 18-20]. So it is necessary to
decrease network load and consequently network latency on
the unstructured networks. Therefore, in this paper, we pro-
pose a Distributed Dynamic backbone-based Flooding
(DDBF) algorithm. DDBF algorithm is aimed at decreasing
the number of engaging nodes in the flooding process to de-
crease load and consequently network latency in comparison
to state-of-the-art flooding algorithms. DDBF algorithm pro-
poses a reliable approach to create a novel flexible backbone
on the dynamic unstructured networks for flooding queries.

In this regard, we focus on the Gnutella-like unstructured
P2P systems. We do so because (1) most of the grid systems
are based on the structured P2P approach [3]. Therefore, by
providing flooding method on P2P systems, we can employ it
on the grid middleware as well as MDCs. (2) measurement

data suggests that P2P applications have a very significant and
rapidly growing impact on internet traffic [21]. (3) P2P net-
works are actively used by a large community of users [7], (4)
existing flooding-based query algorithms for discovery re-
sources in these networks still generate a large amount of
traffic and large systems quickly become overwhelmed by
the query induced load [22]. (5) our proposed algorithm can
be evaluated on P2P network topologies easily, and (6) P2P
networks are very attractive for certain applications of un-
structured networks because it requires no centralized direc-
tories and no precise control over network topology or data
placement [23].

To evaluate and prove the proposed DDBF algorithm we
use four fixed network topologies in our study including (i)
Power-Law Random Graph (PLRG) [24], (ii) Normal
Random Graph (Random) [25], (iii) Gnutella graph
(Gnutella), (iv) Two-Dimensional Grid (Grid), all with fixed
query distributions, and one random dynamic network with
dynamic query distributions.

The rest of this paper is organized as follows. Section 2
presents a literature review for query flooding algorithms
and connected dominating set algorithms. Section 3 concen-
trates on the problem description in the distributed unstruc-
tured networks. Section 4 explains the proposed distributed
dynamic backbone-based flooding (DDBF) algorithm.
Section 5 compares and discusses the results of the perfor-
mance evaluation for DDBF with three flooding algorithms
on five different topologies. Finally, section 6 presents the
conclusion.

2 Literature Review

Resource location discovery is used on three important net-
works, namely Grid, Peer-to-Peer (P2P) networks, and cloud
networks which we describe each briefly below. Grid
middleware on the Grid networks provides important and ba-
sic services for resource discovery, data management, re-
source management, security and communication [26]. In this
regard, grid systems interconnect storage systems, computer
clusters, instruments, and existing share resources, such as
data, storage, software applications, equipment, and CPU
time. Over several decades P2P networks have become an
effective way for distributed resources for communication
and cooperation among nodes [27-29]. One of the most pop-
ular services proposed by P2P is file sharing (e.g., Gnutella).
In P2P networks other applications for real-time data transfer
cycle stealing, or existing collaboration (such as Skype,
SETI@Home, and Groove). In these networks, participation
is dynamic as users can enter, leave, and rejoin the system
totally unpredictably. Cloud computing is a new computing
model that makes use of pools of physical computing re-
sources known as data centers (DCs) [30]. Cloud service

@ Springer

874

Peer-to-Peer Netw. Appl. (2020) 13:872-889

providers are building out geo-distributed networks of
microdata centers (MDCs) [4]. These MDCs, on-demand,
can be organized into some nodes to provide different ser-
vices, in which resource discovery is required [31].

The unstructured network resource discovery is known as
blind search. It’s because not any node is aware of the other’s
information and resources. Therefore, they must flood queries.
It is known that the original Gnutella algorithm [13] uses a
simply constrained flooding approach for search, which gen-
erates too much traffic on the network. To decrease this traffic
on the network, some efforts are analyzed in this section.

In [11], authors purposed research to serve as a review of
the most promising Grid systems that incorporate P2P re-
source location methods in order to perform a qualitative com-
parison of the existing approaches and to draw conclusions
about their advantages and their weaknesses. In [23], the au-
thors clearly show that the flooding-based query algorithm
used in Gnutella does not scale enough and each query gen-
erates a large amount of traffic and large systems quickly
become overwhelmed by the query induced load.

In [32], authors presented an Advanced Probabilistic
Flooding (APF), in which a node decides to broadcast a mes-
sage regarding the popularity of resources and the hop dis-
tance from the initial node. Its main drawback is its probabi-
listic nature. Qin Lv et al. in [7] proposed a query flooding
algorithm based on multiple random walks that resolves
queries almost as quickly as Gnutella’s flooding method while
reducing the network traffic by two orders of magnitude in
many cases. In this work, peers randomly choose only a ratio
of their adjacent peers to forward a query to. This reduces the
average message production, while still creating a large num-
ber of redundant queries. In [33], the authors proposed a mod-
ified Breadth-First-Search (BFS) mechanism, which it was an
extension of the Gnutella protocol. Modified-BFS allowed
searching with keywords and was designed to minimize the
number of messages that are needed to search the network.
The modified-BFS mechanism still contacts a large number of
peers. In [14] the authors proposed a random walk algorithm
with a focus on the statistical properties of sampling per-
formed. They quantified the effectiveness of random walks
for searching and construction of unstructured peer-to-peer
(P2P) networks. Also, they showed experimentally, that
searching by random walks performed better than flooding.
Proposed algorithm achieved a message reduction and load
balancing in comparison to the flooding scheme. But, success
rates greatly depend on network topology. In [34] the authors
added structure to unstructured Gnutella network to improve
search performance in a real-world deployment. This work
shows how the importance of decreasing redundant queries
on latency can be critical, which in practice even creating a
new structure for the network can be affordable. In [35] the
authors proposed a CSO (Capacity Sharing Overlay), as a P2P
management system that enables the sharing of reusable

@ Springer

resources and specifically network capacity. The main objec-
tive of the CSO was to provide a set of services to the inter-
connected networks to enable node sharing. In this research,
the authors tried to address the problem of network workload
fluctuations by changing the network size appropriately.

Boroumand et al. in [16] proposed optimized query
forwarding for resource discovery in unstructured peer-to-
peer grids. They used a genetic algorithm (GA) in which they
considered both of the path length and network traffic.
Boroumand approach reduced the hop numbers and prevented
massive flooding of queries. This approach uses statistical
tables that are obtained from the recorded history of previous
queries. Then a genetic algorithm is applied to these statistical
tables to find the optimum adjacent peers. This method was
compared with a random walk and flooding approaches.
However, it’s known that GA is an evolutionary algorithm
that in unstructured networks if adjacent peers’ changes rap-
idly, the algorithm cannot act real-time enough for flood
queries properly. Also collecting and updating statistical tables
creates high traffic on the network rapidly, which is not con-
sidered in this approach. In addition to mentioned related
works, there exist some other works that proposed almost
the same approaches for flooding improvements in [15, 17,
36]. Hervé Baumanna and et al. in [37] proposed a flooding
technique in dynamic graphs with arbitrary degree sequence.
They established it by analyzing flooding in a sequence of
graphs drawn independently at random according to a model
of random graphs. However, they just focused on flooding
time without considering network traffic and comparing their
work with state-of-the-art works. In [4] the authors proposed a
lightweight information sharing scheme in distributed cloud
networks. This work developed a lightweight path flooding
algorithm to improve existing flooding algorithms using hop
count restriction. Lightweight path flooding algorithm is re-
cently proposed, and its comparisons show the superiority of it
against previous flooding algorithms. Although lightweight
path flooding algorithm improved existing flooding algo-
rithm, it still creates a lot of redundant messages over the
network. In addition, there are some different approaches for
reduction of cloud network latency for different specific pur-
poses at [19].

Constructing Connected Dominating (CDS) algorithms
some approaches that are based on the creation of a backbone
for sending messages. CDS algorithms are mostly used in
wireless sensor networks. Solving minimum CDS is NP-
hard which can be classified as centralized algorithms, and
distributed algorithms based on the network information they
use. The central algorithms need global information of the
network connectivity at one central base station and are aimed
to reduce wireless nodes energy consumptions [38—40]. This
feature makes them unsuitable for dynamic networks as there
is no centralized control of the network. In [41], Wu and Li
proposed a distributed CDS algorithm in which they first

Peer-to-Peer Netw. Appl. (2020) 13:872-889

875

create a trivial CDS, then delete the redundant nodes based on
two sets of pruning rules. In [42] a local algorithm is devel-
oped where any vertex on the network itself decides whether
or not it is part of the dominating set depending just on the
vertices that are in a constant number of hops away from it. In
[43] authors presented a minimum CDS approach for wireless
sensor networks using pseudo dominating set. In this paper
authors through degree-based greedy approximation algo-
rithm reduce the CDS size as much as possible. It is worth
mentioning that the proposed algorithms for CDS problem are
proportional to wireless sensor networks and its hypothesis.
Proposed algorithms don’t ensure connectivity in different
situations; for instance, because of wireless sensor network
nature, they don’t have any strategy to add some new peers
to the network after connected dominating set creation.

In [44] authors presented a protocol for 3D P2P over-
lay over mobile ad hoc networks (MANETSs) in which
each peer runs a distributed algorithm to exploits a 3D-
overlay. This paper considered a scenario of a structured
P2P overlay over a MANET. This algorithm’s main draw-
back is trying to maintaining multi-paths to a destination
peer, which cause higher redundancy and overload on the
networks with lower dynamic nature. In [45] authors pro-
posed a multihop Proximity aware Clustering Scheme for
Mobile peer-to-peer systems (PCSM), which integrated
three factors to select the cluster to join. Availability of
the cluster head, number of physical hops, and the cluster
size are the considered factors that integrated with a main-
tenance process to manage the mobility of peer. In this
paper detection process for more available and stable peers
in high dynamic networks is a big challenge. Then authors
improved their algorithm by adding a global file popular-
ity estimation naming clustering-based replication strategy
(CRS) [46]. While the proposed algorithm has promising
results, it uses global knowledge of all peers of the net-
work which always is useful but it brings different chal-
lenges such as overload in highly dynamic networks. In
[47] authors proposed a churn-resilient system in which
they find alternative routing paths for balancing the query
loads with high workloads. The idea in this research study
is evolving the network into a cluster-like topology
through resource grouping and a rewiring method to spon-
taneously organizing and clustering the peers which have
the same resources. Then authors proposed a collaborative
Q-learning algorithm to balance the query loads among
the intragroup peers. In this paper, authors are used con-
ventional Q-learning algorithm and they are not discussed
the well-known memory problem of this method in which
each node should dedicate a remarkable amount of mem-
ory to build the state-action Q-table in high connectivity
networks.

In Table 1 we summarized the discussed research studies
objectives, techniques, main approaches, and shortcomings.

3 Problem Description

In the distributed unstructured cloud network, if one of the
nodes needs to discover resources on the network, it should
send a new query to all of its adjacent nodes. Also, this query
should be relayed by each node to all other ones on the net-
work. Therefore, a major problem with flooding is that there
are many duplicate messages introduced by flooding, particu-
larly in high connectivity graphs. By duplicate query, we
mean the multiple copies of a query that are sent to a node
by its multiple adjacent nodes. Duplicate queries are pure
overhead, which they incur extra network interrupt processing
at the nodes receiving them but do not increase the chance of
finding the object. Traditional flooding methods cause a lot of
traffic because they have to send data to all the adjacent nodes.
Also, duplication detection mechanisms are always needed in
flooding algorithms in which detected duplicate messages are
not forwarded. However, even with this duplicate suppression,
the number of duplicate messages in flooding algorithms can
be excessive, and the problem worsens as the TTL (Time-To-
Live) increases. Consequently, these problems mean that
flooding incurs considerable message processing overhead
for each query, increase the load on each node as the network
expands, and increase the query rate [48].

To prevent the mentioned flooding algorithms drawbacks,
the flooding-style search method is designed, which discards
redundant messages and does not execute the flooding again.
However, since redundant messages will occur regardless of
flooding style, it causes high traffic on the network. In order to
alleviate that problem, some algorithms such as the random
walks algorithm, restricted flooding algorithms, the light-
weight path flooding scheme, etc. have been proposed in [4,
7, 14-17, 33, 34, 36]. In the latest research which named
lightweight path flooding scheme, one efficient approach for
decreasing the repeated query overhead is proposed in [4]. In
the lightweight flooding scheme, a node does a flooding on
the query that includes the list of the adjacent peers” addresses.
Upon receiving the query, the nodes check if its adjacent
nodes exist in the list of addresses included in the query, and
it will not send the query to the nodes that exist in the address
list. Lightweight path flooding scheme was compared with
earlier state-of-the-art works, and it demonstrated higher per-
formance by decreasing the number of repeated queries sig-
nificantly. However, this solution reduces query duplication at
one hop dramatically, thus by increasing the number of hops
its performance decreases. Therefore, despite it decrease the
redundant messages dramatically, a large number of duplicate
messages is still introduced.

In order to solve this problem, we propose Distributed
Dynamic backbone-based Flooding (DDBF) algorithm. In
DDBF algorithm we present a distributed algorithm to prevent
sending queries by all unnecessary connected nodes. In fact,
we create a flexible backbone of active nodes, which just these

@ Springer

Peer-to-Peer Netw. Appl. (2020) 13:872-889

876

"SYI0MIU
orwreukp AJySIy ur peojIoAO se yons saSuof[eyo
JUQIQMIP S3ULIq 1 Inq [NJAsn ST SAeM[e Yorym
Siomjau Y Jo s102d [re jo o3pajmouy] [eqo[3 Juisn)
"SUONLIYIS JUISYIP
ur AJIAIIOUUO0D AINSUD), USA0P] “sisaypodAy
S)I PUE SYIOMIOU JOSUIS SSOIIM 0) Teuoniodord
*SNIPEI UOISSILISURT)
Sopou oy uo urpuadap pue SoNSLINORIBYD
SHI0M)IU JOSUDS SSA[OIIM T} UO Paseq ST I

“J1omiou o)
I0AO S9BSSOUT JUBPUNPAI JO IoqUINU Y31y B S9JBaI0 [[NS
*SHIOM 1IB-OU[}-JO-0JL)S (M JI0M IOy}
Surredwod pue d1jjen JI0M)AU JULIIPISUOD INOYIM
Suraoxd pue swm Surpoopj uo pasnooy isnf yoeorddy
‘A1pider somou oy
uo dyen Y3y saea1o sa[qe) [eonsne)s Sunepdn pue
Sunoa[oo ‘osyy “Ajrodoid sauanb pooyy 10y ySnouo
Qwm-[eal 108 jouued wipLoT[e ayy ‘Ajpider sofueyd
(5102d JuQdE(pE JI SYI0OMIOU PAININNSUN OTWBUAD U]
'$913010d 0] I0MIOU JUIIQYIP UO
Payen[eAd 9q 0} PISSIUW ST J1 ‘0S[y "dFua[reyd 51q © st
SHOMIQU OrweuAp ATySiy ur o[iym ‘s109d a]qe)s pue
dqe[IeAR dI0W SULIIOP UO PAIAI SI WIPLIOF[. Y],

‘S3urovpoys
119U} Sey)1 Pue SIoy[em-3 pue Surpooyj se yons
sonbruya) yoreas Jgd purq prepuess spoddns vOsD

*$013010d0) JUIAPIP YIIM SHIOMIU JTWRUAD JO
uonen|ead pue suosiredwod sarsusyaIduos jo yoe|

‘A3o10doy y10m)ou uo puadop A[jeaid sojel sso0oNg

's100d Jo Joquunu 931e[€ $)0BIU0D [[NS

‘souonb juepunpar Jo roquunu e[

& 3unealo [[1s pue 0} A1onb e premioj o) s1oad
JuodE(pe 119y JO onel & ATUO 9S00Yd AJUIOPUET SIO9]

*A3010d0} y10M19u 1O puadop
A1ea13 sojel1 $S000NS YOIYM UI dInjeu dnsijiqeqold

anbruyoday
pamqrosip v

wyyLog[e

uonewrxoidde
Apaainy

onbrutooy
pamqrosip v

anbruyooy
pamqrosip v

awn Surpooyy

2y} uo spunoq
Joddn aao1g

wnoge
RJikliels)

wyjLoge
Sunsno
anbruyoy
Surpraoxd
JOIAIIS
panqLusIp v

B[[o)NUL) UO
paseq anbruyooy
pamqLusip v

anbruyogy
pamnqLusip v

WISTUBYIIUL
o1eas [200]

anbruyoay
paNqLIsIp v

A3a1ens
Surpooyy
onsl|iqeqoid

‘uonewnss Auerndod 271y [8qo[3 € Surppy

*AJIATIOSUUOD 10 9FBIOA0D UL SSO| AUB JNOYIM
AJI9AQ]0 sopou S Y} JO dwos Surpnjoxo Aq Joylng

9ZIS $)1 90NPAI UAY) PUE (D) & SUNONNSuod IsIg 1y

*so[n1 Surunid Jo s10s 0m) U0 paseq

SOpOU JUBPUNPAT A} AJA[OP U ‘S [BIAL © 3)ea1)

‘uonowsal junod doy Sursn wyyLiode

Surpooyj Sunsixa daoxdwr o) wyiLoF[e Surpooyy yred

‘syderd wopuel
Jo [9pow & 0} SuIp1odoe wopuel e Apuspuadopur

umelp sydeid jo oouonbas e ur Surpooyy SurzAjeuy

‘souronb Jo Surpoory dAIssewr pajuosald
pue sroqunu doy oy} paonpal yorym dijen

yiompau pue pSuQ] yred a3 Jo yjoq JuLdpIsuo))

109d Jo Aujiqowr ayy oSeuew 0)
$59001d QOUBURIUIEW € [JIM PALISUI Jer]) SI10j08]
POIOPISUOD A1) A1k dZIS 1)sn[d 3y pue sdoyy [eorsAyd

JO Ioquinu ‘peay 1asn[d dy) Jo Aijiqe[ieAr Surjody)

‘Arorerrdodde ozis yromyou o) Suiueyo Aq

SUOTIENION]J PEO[IOM JIomIau Jo we[qoid oty ssaIppy

-oueu1ofsad yoreas aaoxdur

0} SI0MOU B[[S}NUL) PAINIONISUN 0} dIMONNS SuIppy

‘yoeoxdde Surpooyj ueyy 10p0q paurioiod
sy[em wopuel Aq Sumyoreds moys o) pauriojod

Surpdwes jo sonuoedoid [eonsne)s oY) uo pasnoo,f

“WISTURYOAU

[oI1eas JudSI[ouI pue 090301d B[[INUD) O} JO UOISUAIXT

‘sy[em

wopuer a[dnnur uo paseq wiyyLio3[e Jurpooyy A1an)

"opou [enIur
Ay woyj doue)sip doy ayy pue saoanosar jo Arendod

oy Surpredar oFessoul € }SeIpeoIq 0} SIPIOAP IPON

"KOUQIOIO YOIEas O} SAOUBYUS 0} Surwre Aijiqe[reAe
o[y Suraoxduwr pue (NSDJ) SwlsAs 109d-03-100d

QIQOTA] JOJ SWAYOS SuLIeIsn]) dIeme AJNWIXOIJ

"a[qrssod se yonw se 9z1s S0 Y} 99npax
0} urwre jos Suneurwop opnasd 3uisn syI0MOU

JOSUDS ssojaIm J0J yoeoidde gD wNWIUI € SUNUSSaI]

‘syIomjau

SSO[RIIM J0U-PE UI oS SUNBUIIIOP PJOAUU0D Fune[nofed
10} wyjuoge panqusip pue ojduns e uisodoig

‘uonoLYSaI
junoo doy Jursn swyytiod[e Surpooyy Sunsixd aAoxdur

0y unuog[e Surpooyy yred jySromyy3i| e Surdojorsq

-o0uonbas 02130p Areniqre

s syders orwreuAp ur anbruyod) Surpoopy e Sursodolg

‘swyjLogde
Areuonn[oad ygnoay) spud 100d-03-109d parmonnsun

ul A19A09SIp 291n0s21 10j Surpremioj A1onb Surzumdo

‘(JNSDd) SwelsAs 100d-0)-100d

J[IqOJA] 10} dWdYDIS FuLdISn[) dreme AIuIXold

‘Aoedeo
Somiou ‘A[edryioads pue SuLieys dpou 9[qeud 0}

SYIOMJOU POIOSUTOOINUT O} 0} SOITAISS JO 305 & Sursodorg

‘SwyILIog[e uonodde 1adenn pue QourUUILW
‘K1onb Juosard pue JI0MIQU ABJIDAO PaInonys

B JIM SIOA)OU B[[O)NUL) PAIONnsun oy juowisny

‘ssomiou Jgd ur Surjdures jo Aousronge pue somod

uo Juisnooy £q yoeoidde Suryoress paroiduwr ue Sursodorg

ampaooid yoreos
o Jo AIqereos oy dA0IdWI pue JI0MJOU oY) [OIeds

0} PAPadU A1k Jey) SOSESSIW JO JOqUINU O} SZIWIUIW 0}
Surre sspomjou 109d-03-100d arnd ur jeAdLnaI uoRRULIOU]

"d1jjeI) ST0MIOU A1) Suronpal Yim Juofe poyjau
SuIpoO[} S B[[OINUL) Sk ISBJ St SOLIoNb A[0SAI 0 S[em

wopuel ojdnnw oy uo paseq wiyyLiod[e Axonb e Sursodoig

'ss900ns A1anb jo

Aynqeqord ySiy e Sururejurews 9[Iym peayIdA0 a3essout

deorjdnp a1y 2onpar 0) dFessawr A1anb o) s9A191

opou e owm 2y e Ajiqeqoid Suipremioy oy Sunsnlpy

SAD pamquusig

A1anb paziumdo

yoeoxdde puqAH

[#1] srem wopuey

[¢€] sag-pagpoN

wopuel Ioy[em-3

s3uIu0).10ys

s[003 / yorvoaddy

sanbruyday,

2Ap3[qO

sayoeoidde Surpoofy Sunsrxa Jo uonedyIdads PaZIIewunS

pringer

Qs

Peer-to-Peer Netw. Appl. (2020) 13:872-889 877

active nodes are ordered as query senders. Hence the number
of'the query senders and the number of unnecessarily repeated
queries decrease significantly on the network. As mentioned
earlier, we assume that the proposed algorithm runs over the
unstructured network. Therefore, we provide a reliably distrib-
uted algorithm for activating only some of the nodes as a
backbone to decrease the number of the duplicated queries.

4 Proposed Distributed Dynamic
backbone-based Flooding Algorithm

algorithm is not discussed. Thus, each node should
dedicate a remarkable amount of memory to build

the state-action Q-table in high connectivity net-

cause higher redundancy and overload on the
works.

networks with lower dynamic nature.
Well-known memory problem of the Q-learning

Maintaining multi-paths to a destination peer, which

In this section, we describe the proposed Distributed Dynamic
backbone-based Flooding (DDBF) algorithm. In the DDBF
algorithm, the main idea is to activate some of the nodes as

Approach / tools Shortcomings

T o

£ g .

E % 2= query flooders to send queries on the whole network.
2 e % T%) Therefore, we select some of the nodes as active nodes, which
o = I

< o cover all connected nodes on the network. Therefore, when

we talk about an “Active” node, we assume it as a query
flooder. On the other hand, an “Inactive” node is a node that
does not flood any queries. In this regard, we provide some
rules for activating or deactivating nodes. We should note that
when we use NV, notation it means the node that is a target in
descriptions and it runs the rules. In the DDBF algorithm, all
activated nodes never change their active mode to inactive
mode unless they leave the network. If a node is active and
leaves the network, it becomes inactive and only proposed
distributed rules can make it active again.

The proposed DDBF algorithm includes two phases. The
first phase is named new backbone creation, and the second
phase is named query flooding. In the first phase, a flexible
backbone for flooding queries is created for all existing nodes
on the network. This happens by running four proposed dis-
tributed rules. Then, in the second phase when one node needs
to send a query, it uses the created backbone to flood it.
Figure 1 shows total state machine of DDBF algorithm.

As shown in Fig. 1, there are two main phases in the DDBF
algorithm. The first phase (backbone creation phase) includes
two steps which are called activation rules and assurance of
connectivity. At backbone creation phase; first of all, all
existing nodes on the network follow four rules to be in the
active or inactive mode, then assurance of connectivity step
starts to ensure the connectivity. After the backbone creation
phase, the query’s second phase (flooding phase) starts to
work. Consequently, all nodes on the network can forward a
new query but just activated nodes are able to flood queries to
all of its adjacent nodes. In the query flooding phase in order
to preserve flexibility over the network, there are two special
situations. First, when a new node is added to the network, it
follows proposed rules to be in one of the active or inactive
modes (then it enters the query flooding phase). Second, if one
of the activated nodes fails or is disconnected for any reason,
the assurance of connectivity step will run on the network.

collaborative Q-learning method to balance the query

through resource grouping and a rewiring method
loads among the intragroup peers.

3D-overlay to calculate a consecutive logical
with same resources and then applying a

identifier to a peer.

Each peer runs a distributed algorithm that exploits a
Proposing a churn-resilient system aiming to improve the Evolving the network into a cluster-like topology

Techniques

search efficiency with finding alternative routing paths
for balancing the query loads with high workloads.

A protocol for 3D P2P overlay over MANETs.

Objective

Scheme
14 CCLBR [47]

13 3DO [44]

Table 1 (continued)

@ Springer

878

Peer-to-Peer Netw. Appl. (2020) 13:872-889

Fig. 1 The state machine of
DDBF algorithm

Backbone Creation

The following section, first, describes algorithm defini-
tions, then explains both of the phases at two different subsec-
tions in detail.

4.1 DDBF algorithm definitions

To describe the rules, we assume some notations and functions
with an example in Table 2. So, let’s assume a simple network
in Fig. 2 as nodes’ links in a network. Note that all of the
examples in Table 2 is based on this simple network.

In Fig. 2, the nodes {2,4,5} are considered as activated
nodes, and the nodes {1, 3, 6} are considered as inactive ones.

4.2 Backbone creation phase

As mentioned above, the backbone creation phase has two
steps as follows: (i) Activation rules step, (ii) Assurance of
connectivity step. So, in the rest of this section, we describe
both steps in detail.

New Backbone Creation Phase

Query Messages Flooding Phase

New MDC Added

Flooding Flooding

Query
Messages
Flooding

Activation
Rules

Flooding

4.2.1 Activation rules step

In the activation rules step, nodes performing proposed rules
to be in one of the active or inactive modes. The activation
rules are described below (Fig. 3 illustrates a flowchart of
rules). Note that these rules can run concurrently on different
nodes with any different performing starting time at different
nodes.

First of all, each node checks if its mode is active or not. If
not, the following 4 rules should be performed, if yes it re-
mains active until it leaves the network.

Rule 1: The node N; checks its number of links
(NC{Adj(N,)}) If its number of links is lower than
2, (NC{Adj(N;)} <2) so it means the node has just
one adjacent node. Therefore it stays inactive and
sends a message to its single adjacent node to ac-
tivate it (sends AAM(V))); otherwise, it goes to the
second rule.
Rule 2: The node N, checks its number of activated adjacent
nodes (NA{Adj(N;)}) If a number of activated

Table 2 Notations used in the rest of the paper; brackets are examples according to the simple network in Fig. 2

Function Description Example

1 Adj(N;) All adjacent nodes of ; Adi(3)=1{1,5,4}

2 N C{Adj(Ny} Number of links of N; NC{Adj(3)} =NC{1, 5,4} =3

3 N A{Adj(Ny} Number of active adjacent nodes of N; NA{Adj(3)} =NA{1,5,4} =2

4 N D{Adj(Ny} Number of inactive adjacent nodes of N; ND{Adj(3)} =ND{1, 5,4} =1

5 AN Active adjacent nodes of N; AQ3)=1{4,5}
AN) = {a 1Ny, az(Ny, ..., ar(N;)}

6 A(N) One of the active adjacent nodes of N; A(3)={4} or {5}
A1(N) = {a1AN)}

7 D(N;) Inactive adjacent nodes of N; D@3)={1}
D) = {d1{Np, da(N)), ..., dANp}

8 AANy) Active adjacent nodes of one of NV; active adjacent AA1(3))=A({5})={4} or
AAIND) =Aa1dN)}) A({4})=1{5}

9 ADN) Active adjacent nodes of inactive adjacent N; ADQA)=A{1})={2}
A(D(NY) =A({d\{(N)), d2/(N, ..., dg{N)})

10 AAM(Nj) Sending adjacent activation message to node V; -

@ Springer

Peer-to-Peer Netw. Appl. (2020) 13:872-889

879

Fig. 2 An example of nodes links and modes

adjacent is lower than one (NA{Adj(N)} <1) it
means there are not any active adjacent nodes.
Therefore, the N; first collects its adjacent nodes’
number of links, then it compares if it has a greater
number of links in comparison to its adjacent nodes.
If yes it activates itself. Otherwise, it sends an acti-
vation message (AAM(N))) to an adjacent node with
the maximum number of links,(V; = Max {NC{N;},

NC{dy (N}, NCldo(N)}, ..., NCidi(N)})

The node N; checks if its number of activated adja-
cent nodes is equal to two, (NA{Adj(N,)} = =2) If
S0, it requires both activated adjacent nodes and their
activated adjacent nodes identifications (for instance
IP address), then it finds the subscription nodes

Rule 3:

between these two nodes. It’s for finding a link be-
tween its two activated nodes; Now, if a link is
found, the node N; changes its own status to active.
Otherwise, it goes to the final rule.

The node N; checks if the number of its inactive
adjacent count is equal to one (ND{Adj(N;)} = =
1), which means it has just one inactive adjacent.
If so, node N, checks if there are subscription nodes
between its active adjacent nodes and its inactive
adjacent’ active adjacent nodes or not,
(A(D(N;) NA(N;)) = D) If there is no at least one
subscription node, first the node N; becomes active,
then it sends an Adjacent Activation Message
(AAM(N))) to its single inactive adjacent node to
activate it too.

Rule 4:

In the flowchart (Fig. 3), A(N;) means activating itself,
which runs the rules, and D(J;) means activating all of the
inactive adjacents of V..

Communicated messages in the activation rules step To per-
form the proposed rules in the DDBF algorithm, each node
requires some information from its adjacent nodes. Thus,
prior to performing rules, some information messages (IM)
is requested from adjacent nodes by each node. IM contains
each node’s critical situations such as nodes number of links
(connections count) and so on. IM only communicates be-
tween nodes once when a new node enters or leaves the
network. This gathers some information maximum in two

Start If(l.\liis True
active)
‘@ i
Tey| Nisays
inactive

Activate inactive adjacents of N;

D(N) N

False
Y

False
(a7

Fal
+‘ ralse

If (ND{Adj(N)}== 1)

Y
Activate node, which has j
> —> End
Max{NC{Ni}, NC{d;i(N)}, NC{di(N»)}, ..., NC{dki(N:)} } CJ
A
AN) _
I (A(A(N) N A(N) = ©) True> o ate N, >
D(N;)
AN) N Activate N
Activate N; inactive
adjacents of N;

Fig. 3 Flowchart of activation rules steps in DDBF algorithm, which each node should run in the backbone creation phase

@ Springer

880

Peer-to-Peer Netw. Appl. (2020) 13:872-889

NC{Adj(N>)}

L)
L)
s> Jdp
= |4

Fig. 4 The required information between adjacent nodes in the activation
rules step

NC{AMN)}

AAN)

ADN))

hops (adjacent nodes of the node N,, and adjacent to ad-
jacent nodes of the node ;). We should note that right
after changing node N; status from inactive to active, an
information message is sent to all adjacent nodes imme-
diately. This is to update information of the adjacent
nodes of node N; about its status. For each proposed rule
in Fig. 3 the required information for nodes is shown in
Fig. 4.

Critical situation in the activation rules step In the DDBF
algorithm except for one condition, simultaneous execution
of proposed rules on the different nodes is safe. This critical
situation is when node N; replays its own mode as inactive to
its few adjacent nodes, and if at the same time one of its
adjacent nodes sends a message to change its mode to active
mode. In this condition, the node N; is active, whereas its
adjacent nodes have opposite information. Therefore, it may
cause bad decisions in the adjacent nodes (at worse activating
additional unnecessary node), (Fig. 5).

In Fig. 5, one example of the critical situation is shown. In
this example node #1 and node #2 asked node #3 for its mode
and node #3 replied inactive mode to both of them (red ar-
rows). After that, if node #1, decides to activate node #3 due to
the DDBF algorithm rules, (green arrow). Then node #5 will
have the wrong status of node #3. Therefore it causes bad
decisions in node #5. Therefore, to avoid such a bad decision,
we considered one additional rule. This rule checks and con-
siders each of the nodes when the mode of the node is changed
by its adjacent node. The pseudocode of this rule is as follow:

In this pseudocode, the rule shows that by using this sup-
plementary rule, each node is able to update its previously
reported mode to its adjacent nodes. Therefore, according to
this supplementary rule, in the previous example in Fig. 5,
node #3 sends an adjacent update messageAUM(Ns) to node
#5 immediately after changing its state by node #1, (blue
arrow). Thus, the mentioned problem is fixed.

An example of activation rules step In order to understand the
rules better, we show one scenario for performing the rules on
a simple network as an example as follows: Let’s assume the
nodes are linked as in Fig. 6 (a), and they are in the first step of
the backbone creation phase.

In Fig. 6 (a), there are 16 nodes with some links between
them, which want to create their backbone. Due to the Rule 1,
the Nodes #9, #11 and #16 have less than two adjacent nodes.
Therefore they will decide to be inactive, and they activate
their adjacent nodes #8, #10 and #14 respectively (Fig. 6
(b)). Due to the Rule 2, each of nodes #2, #3, #4 and #7
reaches to the Rule 2 first; sends AAM(NVs) to the node #3 to
activate it. This is because of adjacent node numbers, i.c.,
node #3 has the maximum number of adjacent nodes. Also,
node #1 activates node #4 for the same reason in Rule 2 (Fig. 6
(c)). Due to the Rule 3, one of the nodes #5 or #6 changes its
mode to active mode. The reason is that both of them has only
two different active adjacents nodes which are not connected
to each other. Here, we considered node #5 as activated first,
which does not make a difference if node 6 is activated; (a
critical situation could occur here, see section 4.2.1.2). Due to
the Rule 4, nodes #12 and #13 change their mode to active
mode too. The reason is that node #12 has just one inactive
node (node #13), whose activated adjacent nodes are not
linked to node #12, (Fig. 6, d). Finally, none of the nodes
can enter to any of the proposed rules, and the backbone
creation phase rules step finishes. It’s clear in (Fig. 6 (d)),
one optimum backbone for query flooding with a minimum
number of activated nodes is created.

It is worth noting that distributed algorithms cannot
provide a global optimum solution in a large state
space. Thus, in the DDBF algorithm, the created back-
bone may not activate nodes in a global optimum nec-
essarily. But the results are near the optimum. In the

{

If (AAM (N,) received from one adjacent node)

If (N ,is “inactive” and its mode sent to another adjacent before)

Send an adjacent update message AUM to all adjacent nodes
with wrong information to update their information

@ Springer

Peer-to-Peer Netw. Appl. (2020) 13:872-889

881

Fig. 5 An example of the critical situation; red arrows are inactive mode
announcement of node 3, the green arrow is for activating node 3
message, and the blue arrow is an update message

discussed example, there can be some different scenar-
ios of activating too. However, in Fig. 7 we show the
result of some different scenarios of concurrent
performing the rules, which provide suitable
backbones.

As shown in Fig. 7 there are four different instance results
of a different order of performed rules. These results show
different outputs for rules distributed concurrently on the
network.

4.2.2 Assurance of connectivity step

This step is for ensuring the connectivity in the worse situation
between all activated nodes in all topologies with dynamic
nature. This step performs in two situations. The first condi-
tion is after performing proposed rules and just when a new
backbone is created (for the first time after a small time gap w
to allow performing rules by all nodes on the network). The
second condition is when an activated node leaves the net-
work. For assurance of connectivity, we define a
Connectivity Check Message (CCHM). When one of the ac-
tivated nodes is required floods a specific CCHM with its ID
on the network. This node at first condition will be a random
node on the network, and in the second condition will be one
of the adjacent nodes of the activated and leave (we described
it in Sec. 4). Consequently, CCHM floods by created back-
bone to whole nodes on the network. Each node that receives
CCHM follows assurance of connectivity instructions illus-
trated in Fig. 8.

In Fig. 8 the rules run when o, receives the CCHM. Thus, if
N; is inactive it runs the instructions as follows:

* N, waits for € and asks their adjacent nodes for CCHM. If
all of its adjacent nodes receive CCHM, then, the insuring
of the connectivity finishes. But if even one of their adja-
cent nodes has not received CCHM, the related node will

Fig. 6 The example of connected Nodes; subfigures (a), (b), (¢c) and (d) show the activation sequence respectively

@ Springer

882

Peer-to-Peer Netw. Appl. (2020) 13:872-889

(Activation Order with rules:
v'Rule2={6,8}
vRulel={14}
v'Rule2={4}
v'Rule3={5,3}
vRulel={10}

(C Activation Order with rules: (

v'Rule2={4,7}
vRule3={3}
v'Rule2={5,6}
v'Rulel={8,10,
12,13,14}

Activation Order with rules:

®

v'Rule2={6,8}
v'Rulel={14}
v'Rule2={4}

Activation Order with rules:
v'Rulel={8,10,14}
v'Rule2={3,4}
v'Rule3={5}

v'Rule4={12,13

Fig. 7 Different scenarios of performing rules; figures (a), (b), (¢), and (d) show the activated MDs with a different sequence of performed rules. For
instance, in figure (a), Rule 2, activated nodes #6, 8; rule 1 activated node #14 and so on

activate itself and flood a new CCHM just to the nodes
which have not received the CCHM. This CCHM sending
routine continues until every CCHM floods on the net-
work. After that, the connectivity between activated nodes
is insured. (The waiting time € contains a bigger worse
time than a message that takes to flood on the whole net-
work like time to live (TTL)).

Based on this step, proposed DDBF algorithm becomes a
flexible backbone, which is robust in dynamic conditions for
any topology.

CCHM received
If (N;is inactive) False

True

A4
Ask All D(Nj) for
CCHM
. Send a new ()
Fals% Activate NiH CCHM % End

If (Al D(N;) received CCHM)
True T

Fig. 8 Assurance of connectivity step flowchart

@ Springer

4.3 Query forwarding phase

In this phase, the created backbone is ready to use.
Each node which has a query to flood on the network
can use the created backbone. The inactive nodes which
need to send a query only send one query to one of its
active adjacent nodes. So, each active node sends the
query to all of its adjacent nodes. By repeating this
routine, the query is sending to all existing nodes on
the network. As shown and mentioned in Fig. 1, if
some new nodes enter the network, newly entered nodes
follow proposed rules to be in one of the active or
inactive modes. Second, if some of the activated nodes
fail or leave the network, the assurance of connectivity
step will run on the network.

5 Performance evaluation

In this section, we compare DDBF algorithm with the
Traditional Flooding algorithm (TF), Random Walk al-
gorithm (RW) [14], and Lightweight path flooding algo-
rithm (Lightweight) [4]. As mentioned above, TF causes
a lot of traffic because it sends data to all the adjacent
nodes. Well-known Random walk technique, which for-
wards a query message to a randomly chosen neighbor
at each step until the object is found, is mainly depen-
dent on the network topology. Also, lightweight path

Peer-to-Peer Netw. Appl. (2020) 13:872-889

883

flooding algorithm is the most recently presented algo-
rithm, which still generates a large number of redundant
queries on the network.

5.1 Simulation setup

To evaluate and prove the proposed DDBF algorithm,
we use four fixed network topologies and one dynamic
network with dynamic query distributions in our studies.
Key statistics of these network topologies are shown in
Table 3.

In Table 3, the number of nodes and their degree informa-
tion for five graphs has been shown. Details of these topolo-
gies are as follows:

(i) Power-Law Random Graph (PLRG): Many real-life
P2P networks have topologies that are power-law
random graphs [49]. In this graph, the node degrees
follow a power-law distribution in which when
ranked from the most connected to the least con-
nected, the i"™ most connected node has a/i® adja-
cent nodes, where 3 is a constant. Once the node
degrees are chosen, the nodes are connected ran-
domly [24].

(i) Normal Random Graph (Random): A random graph
which is generated by a modified version of the GT-
ITM topology generator [50].

(iii) Gnutella graph (Gnutella): The Gnutella network topol-
ogy node degrees roughly follow a two-segment power-
law distribution.

(iv) Two-Dimensional Grid (Grid): A two-dimension grid
which is a simple graph chosen for comparison pur-
poses. We should note that the chosen fixed networks
are based on the research in [23].

(v) Dynamic graph (Dynamic): The initial structure of
this graph is based on PLRG, and it changes with
entering and leaving random nodes in the graph
dynamically. The reason for selecting PLRG as
the initial graph is that many real-life P2P net-
works have topologies that are like power-law ran-
dom graphs [49]. Based on this dynamic graph,
we can evaluate our proposed algorithm in the

almost real dynamic network. Hence in this graph,
we tried to consider the true dynamics of a node
coming and going on the network. The maximum
and minimum number of nodes and degrees in this
network are shown in Table 3. Node’s entering
and leaving rate from the network is considered
as a static value to show results in the simula-
tions. Note that when a random node is chosen
to leave the network, the whole network connec-
tivity is preserved.

In the flooding process, distribution of the flooder’s nodes
can be important by assuming that » flooder nodes require
discovery resources. Let ¢; be the relative popularity of the
i™ node. The values are normalized:

2 g =1 (1)

We investigated the following distributions for flooder
nodes:

(i) Uniform: All resources are equally popular.

Uniform : q; = 1/n (2)

(ii) Zipf-like: the popularity of flooder nodes follows a Zipf-
like distribution. Studies have shown that Napster,
Gnutella, storage cluster and Web queries follow Zipf-
like distributions [51, 52].

Zipf—like : q;1/i" (3)

For each set of simulations, we first select the topol-
ogy and the query flooder distributions. Then we as-
sume that when a node floods a query, all other existing
nodes on the network must receive the query at least
once. In the networks with static topology simulations, a

Table 3 Key statistics of used

network topologies in the Topology ~ Number of ~ Number of Nodes average ~ STD Maximum Median
simulations nodes total links degree degree degree
1 PLRG 3830 8870 4.81 18.4 270 1
2 Random 3640 7568 4.75 1.50 18 4
3 Gnutella 3823 8907 4.92 9.03 127 3
4 Grid 500-3000 995-5890 3.96 0.2 4 4
5 Dynamic 500-3000 1256-9340 3.21-4.82 L1121 922 2-3

@ Springer

884

Peer-to-Peer Netw. Appl. (2020) 13:872-889

number of flooders are considered 1000, and in dynamic
one 200 for both distribution types. Also, the value of «
parameter is considered as 0.8. Flooder nodes are cho-
sen based on two distribution types described above.
Thus, statistics at simulations show averages. Note that,
we run the simulations for each query independent of
other queries because individual queries do not have
any effect on each other.

5.2 Metrics

Performance issues in real P2P networks can be based on a
variety of items. Therefore, we focus solely on efficiency as-
pects and use the following metrics in our described topolo-
gies in P2P networks. These metrics, though simple, reflect
the fundamental properties of the proposed algorithm in com-
parison to others.

1) A number of the nodes, which are involved in queries
flood in the whole network.

2) A number of the total generated queries in the whole
network.

3) Worse delay (hops) for receiving query by all existing
nodes in the whole network.

4) The average delay in receiving queries from all existing
nodes in the whole network.

5.3 Simulation results for static network topologies

In Fig. 9, we compared DDBF algorithm with TF, RW,
and Lightweight algorithms with six different number of
nodes with respect to grid topology (Fig. 9 (a)), and
PLRG, Random, and Gnutella topologies (Fig. 9 (b)).
In this figure, the number of involved nodes for
flooding on the network has been compared in which
results are flooding averages per both uniform and

3500
S0~ ooa\
3000 oye DD T
A N\Qﬂ
2500 o =5 o
2000 25 2 =

—o

—

=)
1500 N

s = N

500 1000 1500 2000 2500 3000
NODES (GRID)

FLOODER NODES

BTF ORW 0OLightweight CODDBF

(a)

Zipf-like query flooder distributions. By looking at re-
sults, it can be seen that the traditional flooding scheme
used all of the peers for flooding query on the network.
Traditional flooding, random walk, and Lightweight
path flooding algorithm have almost the same results.
However, lightweight is better. In contrast, DDBF algo-
rithm, because of using a dynamic backbone for query
flooding, decreased the number of engaged nodes in
query flooding process significantly. In terms of en-
gaged nodes for query flooding, the average percentage
of decrease in all experiments in comparison with light-
weight is 30.44%.

Figure 10 shows comparisons in terms of a number of
the flooded queries on the network with a different number
of nodes on the grid topology (Fig. 10 (a)), and with dif-
ferent topologies (Fig. 10 (b)). Results were obtained from
flooding query with both uniform and Zipf-like query
flooder distributions. In this figure, it is clear that DDBF
algorithm has dramatic results in decreasing the number of
the redundant queries in all topologies.

DDBF algorithm decreased the number of the redun-
dant queries in a high number of nodes on the network
about 49% compared to flooding scheme and 27% com-
pared to Lightweight path flooding algorithm in all to-
pologies. Based on results of Fig. 10 (a), we should
note that by an increase in the number of the nodes,
the performance of DDBF algorithm increases gradually
compared to all of the other algorithms. It means DDBF
algorithm outperforms that of others for more nodes on
the network.

Figure 11 (a) shows a comparison in terms of worse
queries delay (hops) and a number of the nodes on the
grid topology. Also, Fig. 11 (b), shows a comparison in
terms of worse queries delay (hops) and a number of
the nodes on the three different topologies. Like previ-
ous experiments, results were obtained from flooding
query with both uniform and Zipf-like query flooder

5000
4000

S
23
o
on
<
3000 2
(o\l
2000
1000 H
0

PLRG

FLOODER NODES

RANDOM GNUTELLA
NODES

BTF ©RW OLightweight CDDBF

(b)

Fig. 9 Comparison in terms of the number of engaged nodes for query flooding (a) grid topology, (b) PLRG, Random, and Lightweight topologies

@ Springer

Peer-to-Peer Netw. Appl. (2020) 13:872-889

885

==g==TF ==fl==RW
20000

Lightweight ==g==DDBF

-

~ 15000

=

3

= 10000

=]

=

2 5000

= [/

=

z 0

500 750100012501500175020002250R50027503000
NODES (GRID)
(a)

(:TF ORW ElLi(%htweight ODDBF
o

Ve AN g
e 239 2a
220000 @ S =&
- v -9 =g
515000 2 g Q
[ee] [l
(=X} N
& 10000
~
2 5000
=
S5 o
z PLRG Random Gnutella
NODES

(b)

Fig. 10 Comparison the number of flooded queries on the network (a) grid topology, (b) PLRG, Random, and Lightweight topologies

distributions. TF algorithm engages all nodes on the
network for flooding. Thus its worse delay time is the
best. In contrast to RW and Lightweight path flooding
algorithms, DDBF uses backbone to flood the queries,
which path loops on the path become minimum. Thus,
its worth query delay performance is better than RW,
and Lightweight path flooding algorithms. By looking
at these results, DDBF cannot provide the same worth
delay as TF. However, it is best in comparing to RW
and lightweight algorithms. Also, based on the dramatic
improvements in the other important metrics DDBF pro-
vides a close worth delay to TF.

In Fig. 12, we compared DDBF algorithm with TF,
RW, and Lightweight path flooding algorithms in terms
of query flooding average delay (hops) on the network.
Figure 12 (a) shows the results of query flooding av-
erage delay per deferent number of the peers on the
Grid topology. Also, Fig. 12 (b) shows the results of
query flooding average delay per deferent number of
the peers on the three other topologies (see Table 3).
As it is obvious that the results show DDBF algorithm
results are between Flooding scheme and Lightweight
path flooding algorithm like the previous worse queries
delay comparison. It means DDBF algorithm improves
delay against other state-of-the-art algorithms at all

e TF e=lll=— RW Lightweight ——#=—DDBF

2500

Z 2000

-

=

2 1500

2 1000

3

S 500

172}

g 0

= 5007501000250500752002252502756000

NODES (GRID)
(a)

while it maintains a reasonable delay in comparison
with traditional flooding algorithm (TF), which en-
gages all existed nodes on the network for query
flooding.

5.4 Simulation results for dynamic network topology

To evaluate dynamicity on the proposed algorithm, we
present the results of query flooding on a dynamic to-
pology (see its detail in Sec 5.1). For dynamic network
topology, we propose the results of two important met-
rics as a number of engaged nodes on the flooding and
number of queries on the network. Figure 13 (a) com-
pares the DDBF algorithm with TF, RW, and
Lightweight path flooding algorithms in terms of a
number of engaged nodes. It is worth noting that in
Fig. 13 first, the number of nodes on the network in-
creasing (new nodes adding to the network randomly),
then at the same network number of nodes are decreas-
ing (nodes leaving the network randomly). As men-
tioned in the simulation setups, dynamic network topol-
ogy per each change is 200 query flooding (100 per
each flooder distribution types).

In the results obtained for dynamic network topology,
average improvement percentage in terms of the number

BTF GRW CLightwyeight ©DDBF
el
~

« 3
> 3000 2 N %
< (ST -
= 2500 S & a L
a [A e n 59
= 2000 © < ;\,_l -
& - =
g 1500
< 1000
2 500
&
<) 0
s PLRG Random Gnutella
NODES

(b)

Fig. 11 Comparison the number of the worse queries delay (hops) on the network (a) grid topology, (b) PLRG, Random, and Lightweight topologies

@ Springer

886

Peer-to-Peer Netw. Appl. (2020) 13:872-889

==f==TF === RW
1000

Lightweight ==gr==DDBF

800
600
400

200

AVERAGE QUERY DELAY

0
500 75010001250150017502000225025002751B000

NODES (GRID)

(a)

BTF ©@RW 0OLightweight 0ODDBF
_ 1400 = g =
< 1200 g g
d — = g = —
a 1000 = ® A [30)
=) = a = RN
£ 60 b
=)
S 400
=
o 200
= 0
N PLRG Random Gnutella
< NODES
(b)

Fig. 12 Comparison, the number of the averages, queries delay (hops) on the network (a) grid topology, (b) PLRG, Random, and Lightweight topologies

of engaged nodes for flooding on the network is 42%
for DDBF in comparison to the TF, and in comparison
to the lightweight algorithm is 24%. Also, Average im-
provement percentage in terms of the number of flooded
queries on the network is 67%, for DDBF in compari-
son to the TF and it is 34% in comparison to the light-
weight algorithm. Consequently, in addition to static to-
pologies, the simulation results in the dynamic network
topology prove DDPF superiority.

6 Conclusion

Unstructured networks are becoming a promising plat-
form and have developed rapidly in recent years.
Sending queries to resource discovery in the unstruc-
tured networks such as Grid systems, Peer-to-Peer
(P2P) network, and clouds networks is one of the ne-
cessities in networks. Therefore, networks’ performance
can be influenced by using an efficient algorithm for
flooding queries. Therefore, in this paper, we developed
a distributed dynamic backbone-based flooding (DDBF)
algorithm to improve existing flooding algorithms in

Lightweight

=== DDBF

NUMBER OF FLOODER
NODES

cococoocococcooccoc oo oo
SHMownmSoSUSNONOSNSNSINSINS
NESAUVESANESNNASEINASNWN
- NN N NN NN NN
NODES (DYNAMIC TOPOLOGY)
(@

terms of redundancy and delay. We implemented and
evaluated DDBF in P2P networks, which can be easily
expanded to Grid and cloud networks. In the DDBF
algorithm, we proposed a distributed algorithm whose
nodes are able to create a reliable backbone for flooding
in the cloud network. The DDBF algorithm ensures
connectivity in the created backbone even by
disconnecting and connecting nodes rapidly. Thus, the
reliability of receiving flooded query by all of the in-
volved nodes on the network is ensured. Finally, we
compared the performance of the flooding schemes.
The results of the experimental tests in five different
topologies verify the proposed DDBF algorithm’s im-
provements. Most importantly in the results obtained
for dynamic network topology, in terms of the reduced
engaged nodes at DDBF is 42% in comparison to the
TF, and 24% in comparison to the lightweight algo-
rithm. Also, in terms of the reduced flooded queries at
DDBF in comparison to the TF is 67%, and in compar-
ison to the lightweight algorithm is 34%. In general in
all different topologies DDBF achieves better network
performance in comparison to existing state-of-the-art
algorithms.

e=pr==DDBF

Lightweight

NUMBER OF QUERY

(b)

Fig. 13 Comparison TF, RW, Lightweight path, and DDBF flooding algorithms on the dynamic topology in terms of (a) number of engaged nodes for

query flooding (b) number of flooded queries on the network

@ Springer

Peer-to-Peer Netw. Appl. (2020) 13:872-889

887

In the future work we will focus on the proposing one back-
bone based single solution for load balancing for flooder
nodes on all kinds of the network’s topologies.

References

1. Zarrin J, Aguiar RL, Barraca JP (2018) Resource discovery for
distributed computing systems: A comprehensive survey. J
Parallel Distrib Comput 113:127-166. https://doi.org/10.1016/].
jpdc.2017.11.010

2. Kryukov A, Demichev A (2018) Decentralized Data Storages:
Technologies of Construction. Program Comput Softw 44(5):
303-315. https://doi.org/10.1134/S0361768818050067

3. Trunfio P, Talia D, Papadakis H, Fragopoulou P, Mordacchini M,
Pennanen M, Popov K, Vlassov V, Haridi S (2007) Peer-to-Peer
resource discovery in grids: Models and systems. Futur Gener
Comput Syst 23(7):864—878. https://doi.org/10.1016/j.future.
2006.12.003

4. Kang S, Kim T, Jeon H, Lee W, Kang S (2015) A healthcare infor-
mation sharing scheme in distributed cloud networks. Clust
Comput:1-6. https://doi.org/10.1007/s10586-015-0488-y

5. Hu W-C, Kaabouch N (2012) Sustainable ICTs and management
systems for green computing. IGI Global,

6. Zhou J, Shi Z (2010) Unstructured P2P-enabled service discovery
in the cloud environment. In: Intelligent Information Processing V,
vol 340. Springer Berlin Heidelberg, pp 173—182. doi:https://doi.
org/10.1007/978-3-642-16327-2 23

7. Lv Q, Cao P, Cohen E, Li K, Shenker S (2002) Search and replica-
tion in unstructured peer-to-peer networks. In: ICS, New York, NY,
USA, ACM, pp 84-95

8. Crespo A, Garcia-Molina H (2002) Routing indices for peer-to-peer
systems. Paper presented at the Distributed Computing Systems,
2002. Proceedings. 22nd International Conference on

9. Madan M, Mathur M (2014) Cloud network management model -
A novel approach to manage cloud traffic. Int J Cloud Comput Serv
Archit (IJCCSA) 4(5). https://doi.org/10.5121/ijccsa.2014.4502

10. Daswani S, Fisk A (2002) Gnutella UDP extension for scalable
searches (GUESS)

11. Trunfioa P, Taliaa D, Papadakisb H, Fragopouloub P, Mordacchinic
M, Pennanend M, Popove K, Vlassovf'V, Haridif S (2007) Peer-to-
Peer resource discovery in Grids: Models and systems. Futur Gener
Comput Syst 23(7):864—878. https://doi.org/10.1016/j.future.2006.
12.003

12. Ripeanu M (2001) Peer-to-peer architecture case study: Gnutella
network. In: Peer-to-Peer Computing, 2001. Proceedings. First
International Conference on. IEEE, pp 99—-100. doi:https://doi.org/
10.1109/P2P.2001.990433

13. The gnutella protocol specification v0.4. http://rfc-gnutella.
sourceforge.net/developer/stable. Accessed 01 Apr 2018

14. Gkantsidis C, Mihail M, Saberi A (2004) Random walks in peer-to-
peer networks. Perform Eval P2P comput syst 63(3):241-263.
https://doi.org/10.1016/j.peva.2005.01.002

15. Cambazoglu BB, Varol E, Kayaaslan E, Aykanat C, Baeza-Yates R
(2010) Query forwarding in geographically distributed search en-
gines. In: SIGIR '10 Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information
retrieval New York, NY, USA. ACM, pp 90-97. doi:https://doi.
org/10.1145/1835449.1835467

16. Noghabia HB, Ismaila AS, Ahmeda AA, Khodaeib M (2012)
Optimized query forwarding for resource discovery in unstructured
peer-to-peer grids. Cybern Syst Int J 43(8):687-703. https://doi.org/
10.1080/01969722.2012.717860

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

Lee W, Kim T, Kang S, Kim H (2015) Revised P2P data sharing
scheme over distributed cloud networks. In: Information Science
and Applications. Lecture Notes in Electrical Engineering, vol 339.
Springer Berlin Heidelberg, pp 165-171. doi:https://doi.org/10.
1007/978-3-662-46578-3 20

Cheng L, Wang C-L (2013) Network performance isolation for
latency-sensitive cloud applications. Futur Gener Comput Syst
24(9):1073—1084. https://doi.org/10.1016/j.future.2012.05.025
Wu D (2014) iCloudAccess: Cost-effective streaming of video
games from the cloud with low latency. IEEE Trans Circuits Syst
Video Technol 24(8):1405-1416. https://doi.org/10.1109/TCSVT.
2014.2302543

Shehab A, Elhoseny M, El Aziz MA, Hassanien AE (2018)
Efficient schemes for playout latency reduction in P2P-VoD sys-
tems. In: Advances in Soft Computing and Machine Learning in
Image Processing. Springer, pp 477-495. doi:https://doi.org/10.
1007/978-3-319-63754-9_22

Sen S, Wang J (2002) Analyzing peer-to-peer traffic across large
networks. In: Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet measurment. ACM, pp 137—-150. doi:https://doi.org/10.
1145/637201.637222

Barjini H, Othman M, Ibrahim H, Udzir NI (2012) Shortcoming,
problems and analytical comparison for flooding-based search tech-
niques in unstructured P2P networks. Peer-to-Peer Networking and
Applications 5:1):1-1)13. https://doi.org/10.1016/j.jpdc.2017.11.
010

Lv Q, Cao P, Cohen E, Li K, Shenker S (2002) Search and replica-
tion in unstructured peer-to-peer networks. In: Proceedings of the
16th international conference on Supercomputing. ACM, pp 84-95.
doi:https://doi.org/10.1145/514191.514206

Aiello W, Chung F, Lu L (2000) A random graph model for massive
graphs. In: Proceedings of the thirty-second annual ACM sympo-
sium on Theory of computing. Acm, pp 171-180. doi:https:/doi.
org/10.1145/335305.335326

Calvert KL, Doar MB, Zegura EW (1997) Modeling internet topol-
ogy. IEEE Commun Mag 35(6):160—163. https://doi.org/10.1109/
35.587723

Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid:
Enabling scalable virtual organizations. Int J High Perform Comput
Appl 15(3):200-222. https://doi.org/10.1177/
109434200101500302

Kamvar SD, Schlosser MT, Garcia-Molina H (2003) The eigentrust
algorithm for reputation management in p2p networks. In:
Proceedings of the 12th international conference on World Wide
Web. ACM, pp 640-651. doi:https://doi.org/10.1145/775152.
775242

Darlagiannis V, Mauthe A, Steinmetz R (2004) Overlay design
mechanisms for heterogeneous, large-scale, dynamic P2P systems.
J Netw Syst Manag 12(3):371-395. https://doi.org/10.1023/B:
JONS.0000043686.04679.03

Budhkar S, Tamarapalli V (2018) Delay management in mesh-
based P2P live streaming using a three-stage peer selection strategy.
J Netw Syst Manag 26(2):401-425. https://doi.org/10.1007/
$10922-017-9420-5

Jararweha Y, Al-Ayyouba M, Darabseha A, Benkhelifab E, Voukc
M, Rindos A (2016) Software defined cloud: Survey, system and
evaluation. Futur Gener Comput Syst 58:56—74. https://doi.org/10.
1016/j.future.2015.10.015

Greenberg A, Hamilton J, Maltz DA, Patel P (2008) The cost of a
cloud: Research problems in data center networks. ACM
SIGCOMM Comput Commun Rev 39(1):68-73. https://doi.org/
10.1145/1496091.1496103

Margariti SV, Dimakopoulos VV (2015) On probabilistic flooding
search over unstructured peer-to-peer networks. Peer-to-Peer
Networking and Applications 8(3):447-458. https://doi.org/10.
1007/s12083-014-0267-1

@ Springer

https://doi.org/10.1016/j.jpdc.2017.11.010
https://doi.org/10.1016/j.jpdc.2017.11.010
https://doi.org/10.1134/S0361768818050067
https://doi.org/10.1016/j.future.2006.12.003
https://doi.org/10.1016/j.future.2006.12.003
https://doi.org/10.1007/s10586-015-0488-y
https://doi.org/10.1007/978-3-642-16327-2_23
https://doi.org/10.1007/978-3-642-16327-2_23
https://doi.org/10.5121/ijccsa.2014.4502
https://doi.org/10.1016/j.future.2006.12.003
https://doi.org/10.1016/j.future.2006.12.003
https://doi.org/10.1109/P2P.2001.990433
https://doi.org/10.1109/P2P.2001.990433
http://rfc-gnutella.sourceforge.net/developer/stable
http://rfc-gnutella.sourceforge.net/developer/stable
https://doi.org/10.1016/j.peva.2005.01.002
https://doi.org/10.1145/1835449.1835467
https://doi.org/10.1145/1835449.1835467
https://doi.org/10.1080/01969722.2012.717860
https://doi.org/10.1080/01969722.2012.717860
https://doi.org/10.1007/978-3-662-46578-3_20
https://doi.org/10.1007/978-3-662-46578-3_20
https://doi.org/10.1016/j.future.2012.05.025
https://doi.org/10.1109/TCSVT.2014.2302543
https://doi.org/10.1109/TCSVT.2014.2302543
https://doi.org/10.1007/978-3-319-63754-9_22
https://doi.org/10.1007/978-3-319-63754-9_22
https://doi.org/10.1145/637201.637222
https://doi.org/10.1145/637201.637222
https://doi.org/10.1016/j.jpdc.2017.11.010
https://doi.org/10.1016/j.jpdc.2017.11.010
https://doi.org/10.1145/514191.514206
https://doi.org/10.1145/335305.335326
https://doi.org/10.1145/335305.335326
https://doi.org/10.1109/35.587723
https://doi.org/10.1109/35.587723
https://doi.org/10.1177/109434200101500302
https://doi.org/10.1177/109434200101500302
https://doi.org/10.1145/775152.775242
https://doi.org/10.1145/775152.775242
https://doi.org/10.1023/B:JONS.0000043686.04679.03
https://doi.org/10.1023/B:JONS.0000043686.04679.03
https://doi.org/10.1007/s10922-017-9420-5
https://doi.org/10.1007/s10922-017-9420-5
https://doi.org/10.1016/j.future.2015.10.015
https://doi.org/10.1016/j.future.2015.10.015
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1007/s12083-014-0267-1
https://doi.org/10.1007/s12083-014-0267-1

888 Peer-to-Peer Netw. Appl. (2020) 13:872-889

33. Kalogeraki V, Gunopulos D, ZeinalipourYazti D (2002) A local 50. Zegura E (1996) GT-ITM: Georgia tech internetwork topology
search mechanism for PeertoPeer networks. In: CIKM '02 models (software). Georgia Tech,” http://www.cc.gatech.edu/
Proceedings of the eleventh international conference on projects/gtitm. Accessed 01 May 2018
Information and knowledge management, New York, NY, USA. 51. Breslau L, Cao P, Fan L, Phillips G, Shenker S (1999) Web caching
ACM, pp 300-307. doi:https://doi.org/10.1145/584792.584842 and Zipf-like distributions: Evidence and implications. In:

34. Mark K, Manfred H (2006) Adding structure to Gnutella to improve INFOCOM'99. Eighteenth Annual Joint Conference of the IEEE
search performance in a real-world deployment. Distributed Computer and Communications Societies. Proceedings. IEEE,
Information Systems Laboratory IEEE, pp 126-134. doi:10.1109/INFCOM.1999.749260

35. Exarchakos G, Antonopoulos N (2007) Resource sharing architec- 52. Zhang L, Deng Y, Zhu W, Zhou J, Wang F (2015) Skewly replicat-

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

ture for cooperative heterogeneous P2P overlays. J Netw Syst
Manag 15(3):311-334. https://doi.org/10.1007/s10922-007-9069-6
Kim H, Kim Y, Kim K, Kang S (2008) Restricted path flooding
scheme in distributed P2P overlay networks. Paper presented at the
International Conference on Information Science and Security,
Seoul, 10-12 Jan

Baumann H, Crescenzi P, Fraigniaud P (2014) Flooding in dynamic
graphs with arbitrary degree sequence. J Parallel Distrib Comput
74(5):2433-2437. https://doi.org/10.1016/j.jpdc.2014.01.007
Purohit GN, Sharma U (2010) Constructing minimum connected
dominating set: Algorithmic approach. International journal on ap-
plications of graph theory in wireless ad hoc networks and sensor
networks (GRAPH-HOC) 2 (3). doi:https://doi.org/10.5121/
jeraphoc.2010.2305

Zhang Z, Zhou J, Mo Y, Du D-Z (2016) Performance-guaranteed
approximation algorithm for fault-tolerant connected dominating
set in wireless networks. Paper presented at the The 35th Annual
IEEE International Conference on Computer Communications, San
Francisco, CA, USA, 10-14 April 2016

Guha S, Khuller S (1998) Approximation algorithms for connected
dominating sets. Algorithmica 20(4):374-387. https://doi.org/10.
1007/PL00009201

Wu J, Li H (1999) On calculating connected dominating set for
efficient routing in ad hoc wireless networks. Paper presented at
the Proceedings of the 3rd In ternational Workshop on Discrete
Algorithms and Methods for Mobile Computing and
Communications,

Nieberg T, Hurink J (2006) A ptas for the minimum dominating set
problem in unit disk graphs. In: Approximation and Online
Algorithms, vol 3879. Springer, pp 296-306. doi:https://doi.org/
10.1007/11671411 23

Mohanty JP, Mandal C, Reade C, Das A (2016) Construction of
minimum connected dominating set in wireless sensor networks
using pseudo dominating set. Ad Hoc Netw 42:61-73. https://doi.
org/10.1016/j.adhoc.2016.02.003

Abid SA, Othman M, Shah N (2014) 3D P2P overlay over
MANETs. Comput Netw 64:89—111. https://doi.org/10.1016/].
comnet.2014.02.006

Rahmani M, Benchaiba M (2018) PCSM: an efficient multihop
proximity aware clustering scheme for mobile peer-to-peer sys-
tems. J Ambient Intell Humaniz Comput:1-18. https://doi.org/10.
1007/512652-018-0808-1

Rahmani M, Benchaba M, Seddiki M A Clustering-based
Replication Strategy for Mobile P2P networks. In: 2018
International Conference on Applied Smart Systems (ICASS),
2018. IEEE, pp 1-6. doi:https://doi.org/10.1109/ICASS.2018.
8651946

Shen X-J, Chang Q, Liu L, Panneerselvam J, Zha Z-J (2016)
CCLBR: Congestion control-based load balanced routing in un-
structured P2P systems. IEEE Syst J 12(1):802—813. https://doi.
org/10.1109/JSYST.2016.2558515

Hughes D, Coulson G, Walkerdine J (2005) Free riding on Gnutella
revisited: the bell tolls? IEEE distrib syst online 6(6). https:/doi.
org/10.1109/MDS0.2005.31

Zang C, Cui P, Faloutsos C, Zhu W (2018) On power law growth of
social networks. IEEE Trans Knowl Data Eng. https://doi.org/10.
1109/TKDE.2018.2801844

@ Springer

ing hot data to construct a power-efficient storage cluster. J Netw
Comput Appl 50:168-179. https://doi.org/10.1016/j.jnca.2014.06.
005

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Saeed Saeedvand received his
B.S. (2011) and M.S. (2014) de-
grees in Computer Engineering.
Currently, he is Ph.D. candidate
in Departement of Information
Technology, Faculty of Electrical
and Computer Engineering,
University of Tabriz
(5166616471), Tabriz, Iran. He
has been worked on the humanoid
adult-size, and kid-size robots
since 2009. He is a member of
the technical committee of
IranOpen robotic competitions
since 2016. His current researchs

includes artificial intelligence, robotics, machine learning, and computer
vision.

Hadi S. Aghdasi received his
B.S. (2006) from Sadjad
University of Technology,
Mashhad, Iran, M.S. (2008) and
Ph.D. (2013) degrees From
Shahid Beheshti University,
Tehran, Iran. All are in
Computer Engineering. He is cur-
rently assistant professor in the
Department of Computer
Engineering, Faculty of
Electrical and Computer
Engineering, University of
Tabriz (5166616471), Tabriz,
Iran. His current researches focus

on routing and medium access control, topology models, image and video
transmission in Wireless Networks. He is director of the both Wireless Ad
hoc and Sensor networks research Laboratory and Humanoid Robots and
Cognitive Technology research laboratory in University of Tabriz.

https://doi.org/10.1145/584792.584842
https://doi.org/10.1007/s10922-007-9069-6
https://doi.org/10.1016/j.jpdc.2014.01.007
https://doi.org/10.5121/jgraphoc.2010.2305
https://doi.org/10.5121/jgraphoc.2010.2305
https://doi.org/10.1007/PL00009201
https://doi.org/10.1007/PL00009201
https://doi.org/10.1007/11671411_23
https://doi.org/10.1007/11671411_23
https://doi.org/10.1016/j.adhoc.2016.02.003
https://doi.org/10.1016/j.adhoc.2016.02.003
https://doi.org/10.1016/j.comnet.2014.02.006
https://doi.org/10.1016/j.comnet.2014.02.006
https://doi.org/10.1007/s12652-018-0808-1
https://doi.org/10.1007/s12652-018-0808-1
https://doi.org/10.1109/ICASS.2018.8651946
https://doi.org/10.1109/ICASS.2018.8651946
https://doi.org/10.1109/JSYST.2016.2558515
https://doi.org/10.1109/JSYST.2016.2558515
https://doi.org/10.1109/MDSO.2005.31
https://doi.org/10.1109/MDSO.2005.31
https://doi.org/10.1109/TKDE.2018.2801844
https://doi.org/10.1109/TKDE.2018.2801844
http://www.cc.gatech.edu/projects/gtitm
http://www.cc.gatech.edu/projects/gtitm
https://doi.org/10.1016/j.jnca.2014.06.005
https://doi.org/10.1016/j.jnca.2014.06.005

Peer-to-Peer Netw. Appl. (2020) 13:872-889

889

Leili Mohammad Khanli re-
ceived her B.S. (1995) from
Shahid Beheshti University,
Tehran, Iran, M.S. (2000) and
Ph.D. degrees (2007) from Iran
University of Science and
Technology, Tehran, Iran. All are
in Computer Engineering. She is
currently associate professor in
the Department of Computer
Engineering, Faculty of
Electrical and Computer
Engineering, University of
Tabriz (5166616471), Tabriz,
Iran. Her research interests in-
clude Cloud computing, and Quality of Service management. She is
director of Cloud Computing research laboratory in University of Tabriz.

@ Springer

	Novel Distributed Dynamic Backbone-based Flooding in Unstructured Networks
	Abstract
	Introduction
	Literature Review
	Problem Description
	Proposed Distributed Dynamic backbone-based Flooding Algorithm
	DDBF algorithm definitions
	Backbone creation phase
	Activation rules step
	Assurance of connectivity step

	Query forwarding phase

	Performance evaluation
	Simulation setup
	Metrics
	Simulation results for static network topologies
	Simulation results for dynamic network topology

	Conclusion
	References

