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Abstract
With the rapid advancement of heterogeneous wireless technologies and their proliferation in ambient connected objects, the
Internet of Things (IoT) is a paradigm that revolutionizes communication between people/objects. Communication between
connected objects is achieved via various communication modes, including Machine-to-Machine (M2M) and Machine-to-
Cloud (M2C). In the medical field, monitoring devices help to collect, exchange and process patient health parameters,
and are employed in open and unprotected environments, which expose them to various attacks. For this reason, providing
high levels of security and privacy become crucial, and a first requirement to ensure this is authentication. In this paper, we
propose three new lightweight, efficient authentication protocols for IoT-based healthcare applications. We formally verify
them using AVISPA and ProVerif automated tools. For each protocol, we provide a security analysis and a performance
evaluation that we compare to related existing proposals.

Keywords IoT · M2C · M2M · Authentication protocol · Healthcare

1 Introduction

Connected objects are increasingly invading our everyday
life. These intelligent objects are equipped with sensing
capacities (temperature, pressure, vibration, luminosity,
humidity, voltage, etc.) and are able to communicate
through various communication technologies (including
RFID, NFC, Bluetooth, Wi-Fi and LoRa). Thanks to these
communication technologies, smart objects can interact in
real time, cooperate and anticipate some actions to achieve
common goals (such as environmental monitoring, urban
traffic control, and responses to natural disasters.). Together,
these smart objects are the base of the Internet of Things
(IoT) paradigm [1], which allows people and objects to be
connected anytime and anywhere [2]. The IoT involves the
inclusion of smart devices into almost any physical objects
to form smart objects (hereafter referred to as connected
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devices or connected objects) to enable them communicate
and share with each other via the network and to collect data
from any location in the world. The IoT is characterized
by heterogeneous technologies that collaborate to provide
innovative services in various fields of application [3, 4].
It aims to provide advanced communication between smart
objects and systems to facilitate human interaction with the
virtual world. Communication between connected objects
is achieved with various types of communication modes
including Machine-to-Machine (M2M) and Machine-to-
Cloud (M2C). In an M2M communication mode, smart
objects can exchange and share data in a decentralized
manner, without involving a centralized system [5–7]. In
contrast, M2C communication mode provides centralized
communication between smart objects and the cloud.

The IoT has numerous application domains including
smart transport, smart home, smart cities, and smart
healthcare. In the medical field, patients use smart objects
that offer medical services the possibility of diagnosing
and determining the causes of certain pathologies. The
proliferation of smart objects through home automation
solutions can also bring many advantages to people with
reduced mobility, such as the elderly or disabled people,
by allowing them greater autonomy and improving their
well-being in the context of Ambient Assisted Living
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(AAL) [8]. To convince users to adopt IoT-based solutions,
security is a key challenge to address. Therefore, to
secure communication between different objects, security
protocols must be proposed. Generally, smart objects have
energy, memory and computational constraints, which make
the use of traditional security protocols unsuitable and
require the development of new and appropriate security
protocols.

To counter threats and attacks to which IoT infrastruc-
ture communications are exposed, a set of security services
should be guaranteed. An authentication service ensures,
through authentication protocols, that communicating enti-
ties are who they claim to be. In the IoT context, authen-
tication protocols are often based on lighter cryptographic
algorithms adapted to constrained devices, such as Ellip-
tic Curve Cryptography (ECC). This authentication phase
is often a prerequisite mandatory step to enable parties to
securely communicate; therefore the aim of this paper is
to propose efficient authentication protocols that can be
applied in various IoT-based healthcare applications.

1.1 Contribution

The main purpose of this paper is to propose efficient M2C
and M2M mutual authentication protocols and to compare
their security and performance with several other existing
protocols for IoT-based healthcare applications.

The salient contributions of this paper are as follows:

1. Adding two main improvements (at both sides) of a
recent M2Cmutual authentication protocol proposal for
a healthcare RFID system.

2. Proposing a new, more efficient and scalable M2C
mutual authentication protocol, which is mainly hash-
based.

3. Proposing a new M2M mutual authentication protocol
using ECC.

4. Validating the proposed protocols with AVISPA and
ProVerif automated formal verification tools and
conducting performance evaluations on IoT devices.

1.2 Structure of the paper

Section 2 presents an overview of an IoT-based architecture
for healthcare applications and the related security and func-
tional requirements. Section 3 provides a brief summary of
related work on authentication protocols in M2C and M2M
communication modes from a general IoT perspective. In
section 4, two M2C and one M2M authentication protocols
that fulfill our requirements are proposed and for each an
informal security analysis is provided, complemented with
formal analysis using AVISPA and ProVerif automated ver-
ification tools. A comparative analysis of the features and

performances of these proposals with the current state-of-
the-art is provided in Section 5. Section 6 concludes the
paper.

2 Overview of an IoT-based architecture
for healthcare applications

By definition, healthcare has different areas, including
disease prevention, health maintenance and restoration, and
taking care of patients’ overall well-being. To illustrate
how an IoT-based architecture can be helpful for various
healthcare applications, Fig. 1 depicts a smart home
scenario using the two communication modes (M2M and
M2C).

Smart homes offer users an increased level of indepen-
dence and improve their quality of life. Generally speaking,
a Home Area Network (HAN) consists of various smart
objects such as smart lights, smart clocks, and temperature
sensors. These objects can communicate directly without
human intervention in various ways. For instance, a light
sensor can detect the absence of sunlight and send a message
to switch on a smart light without any human intervention,
in aM2M communication mode. In anM2C communication
mode, a smart thermostat can connect to the weather fore-
cast service available on the cloud to determine whether it
needs to modify the temperature (by sending M2M requests
to relevant appliances such as heaters or air conditioning
units) as requested by the user.

In the healthcare example illustrated in Fig. 1, several
smart objects are present in the smart home: a) medical
devices worn by the patient; b) environmental devices
(sensors and actuators); and c) appliances and multimedia
devices. They collaborate and communicate in different
ways. For instance, wearable devices on the human body
form a Body Area Network (BAN) and they are generally
connected using an M2M communication mode to a single
access point, which can be an external access point such as
a home gateway, or a Body Central Unit (BCU), a patient-
carried device to collect the patient’s data from the various
body sensors. Then, the data are transmitted either to a local
management device such as the patient’s phone or directly to
remote servers in the cloud. The M2C communication mode
is used to enable medical officers to monitor the health
status of the patient and retrieve his/her medical records as
needed.

2.1 Security requirements

Because the communication channels between two smart
objects (M2M) or a smart object and a remote server in
the cloud (M2C) are prone to various attacks, and because
medical applications require that data related to patients’
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Fig. 1 Healthcare applications in a smart home scenario

health must be handled to ensure their confidentiality,
integrity and privacy, authentication is a requirement in
order to establish session keys that will be used in future
communications to protect data exchanges.

• (SR1) Authentication: Two communicating entities
(smart objects in M2M communication mode or a smart
object and the cloud in M2C communication mode)
should mutually authenticate themselves before any
further interaction. Each party should provide a proof of
its identity.

• (SR2) Confidentiality, integrity and privacy: To ensure
the confidentiality, integrity and privacy of exchanged
data between communicating parties, a fresh session
key is required.

2.2 Functional requirements

• (FR1) Efficiency:

– (FR1a) Authentication Processing Time and
Scalability: In M2C communication mode,
since the cloud servers have to maintain
information for a huge number of smart objects
in their databases, it is essential to perform
authentication as fast as possible and in a
period of time not related to the number
of smart objects in the system. In an M2M

communication mode, it is also necessary to
have an authentication time that does not
depend of the number of smart objects in the
system.

– (FR1b) Minimize Exchanged Messages: To
ensure efficiency of communications, the num-
ber of messages and the quantity of data
exchanged between parties during authentica-
tion must be minimized.

• (FR2) Lightweight: Due to the resource limitations
of smart objects, an authentication protocol must be
lightweight.

– (FR2a) Computation: Cryptographic primi-
tives used on smart objects must have a lower
computational cost than traditional crypto-
graphic algorithms (e.g., RSA and AES).

– (FR2b) Storage: Data storage on smart objects
must be minimized.

• (FR3) Resilience: To protect the system against Denial-
of-Service (DoS) and desynchronization attacks,
authentication protocols must be stateless-designed:
i.e. communicating parties do not need to retain session
information to ensure correct execution of the run.

An additional functional requirement for M2M commu-
nication modes is:
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• (FR4) A distributed scheme: smart objects should be
able to communicate directly and should not require
the support of an on-line central server to execute the
authentication phase.

3 Related work

In the literature, there are several authentication protocols
for smart objects that can be classified according to M2C
and M2M communication modes. They differ according
to the type of communicating objects, the cryptographic
methods used, the communication distances, and the
application scope. Some authentication protocols for M2C
and M2M communication models are discussed below.

3.1 Authentication in M2C communicationmode

In M2C communication mode, the smart object can use
proxies; entities with more resources that can carry out
costly operations on their behalf, or can exchange directly
with the cloud.

In [9], a proxy-based authentication and session key
establishment in the context of IoT-enabled Ambient
Assisted Living (AAL) is proposed. The authors use the
Diffie-Hellman (DH) key exchange algorithm to establish
a mutual authentication between a low-resource patient
device in a smart home and a remote server. For
communication, a (K, N) threshold scheme is used: the
sender splits messages into N different pieces given to
different proxies according the Lagrange formula [10] to
enable receivers receiving at least K pieces to compute the
original message (the scheme is resistant to K −1 colluding
proxies but if K proxies collude the attacker can retrieve
the original information). In [11], a Proxy Re-Encryption
(PRE) technique is used to provide an authenticated key
exchange to secure each communication between a smart
object and an external powerful entity (e.g., a server in
the cloud) or between two smart objects, without pre-
sharing of a secret key between entities. In a basic way, in
PRE, the proxy translates data encrypted by a key (initiator
key) to data encrypted by another key (the receiver’s key)
without being able to access the unencrypted data. However,
Nuñez et al. [12] have demonstrated that this protocol
is vulnerable to break forward security, leading to key
compromise impersonation and length-extension attacks.
While such proxy-based proposals are interesting, because
our M2C authentication protocols are designed for a direct
connection, it is more relevant to present similar work.
Contrary to proxy-based proposals, since all computations
are done by resource-constrained smart objects, proposals
often rely on lightweight cryptography algorithms such as
ECC. In [13], Jin et al. present a mutual authentication

protocol to improve safety in hospital drug delivery systems
for patients. This protocol provides a mutual authentication
between RFID tags (RFID bracelets worn by patients,
RFID-labeled drug packaging) and the server (i.e. the
cloud), while assuming that the communication channel
between the tag and the RFID reader is not secure (whereas
the one between reader and server is secure). To secure
future exchanges over the wireless RFID communication
channel, a session key is built during the authentication
process between the two entities. This protocol is described
in detail in Section 4.3.1 since one of our contributions is to
propose two improvements. In recent years, several authors
have proposed mutual authentication protocols between
RFID tags and servers to establish a session key in order to
efficiently secure communications: e.g. Zhao et al. in [14]
for healthcare environments, Alamr et al. in [15], Liao et
al. in [16] and Dinarvand et al. in [17] for any specific
environment. During the setup phase the server generates
a pair of ECC public-private keys for each party and/or a
shared secret that will be used for mutual authentication
during the authentication phase.

In addition to authentication protocols, it is worth mention-
ing another trend to secure data transmission from restricted
devices to servers in the cloud, using Attribute Based
Encryption (ABE) mechanisms. In [18], Sharma et al. pro-
pose a security platform for IoT infrastructure centralized
data on the network layer. The purpose of this approach is to
efficiently use the data available on the central server. The
general idea is to collect data from several resources (such
as medical devices and computers), encrypt these data and
then add them to the central server. Access to the server to
display data or perform a function on the data is achieved
according to a set of attributes. To present their approach
they use a real IoT application; an e-health system that col-
lects data and records them in a centralized system. They
combine both approaches, using Ciphertext-Policy Attribute
Based Encryption (CP-ABE) to define the rules to access
data and Functional Encryption (FE) to perform various
functions on encrypted data. In [19], Li et al. propose a
Lightweight Data Sharing Scheme (LDSS) for mobile cloud
computing, to ensure secure data access while respecting the
constraints imposed by mobile devices in terms of cryptog-
raphy. They have adapted the CP-ABE technique of classic
cloud computing to the mobile cloud environment by suit-
ably modifying the structure of the access control tree and
by outsourcing a large portion of the computational inten-
sive access control tree transformation of CP-ABE from
mobile devices to external proxy servers.

3.2 Authentication in M2M communicationmode

As for the M2C communication mode, proxy-based
authentication has been proposed. In [20], Porambage et al.
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propose a scheme similar to [9] (presented above in M2C)
to establish secure End-to-End (E2E) communication in
the IoT between smart objects using the DH key exchange
algorithm. In [21], another proxy-based authentication
protocol for healthcare has been proposed by Amin et al. to
preserve anonymity during a mutual authentication protocol
in a Wireless Medical Sensor Network (WMSN). In the
proposed architecture, authentication takes place between
the medical staff’s mobile devices and medical sensors
through the proxy. However, in [22], Jiang et al. revised
this protocol, which was vulnerable to stolen mobile device
attack, desynchronization attack and sensor key exposure,
to propose an improved E2E authentication protocol still
using a proxy. Although such proxy-based proposals are
interesting, because our M2M authentication protocol is
designed for a direct connection, it is more relevant to
present more closely related work.

However, after a careful analysis of the literature and
examination of recent surveys on security for M2M [23],
authentication protocols for IoT [24], and one on authenti-
cation protocols for the IoT but with a dedicated section for
M2M [25], no M2M authentication protocol with a direct
connection was identified.

4 Our proposals of M2C andM2M
authentication protocols

This section contains the core contributions of this paper.
To illustrate our two M2C authentication protocols and
the M2M authentication protocol proposed, all notations
used are introduced. Then, the attacker model and the
automated verification tools used to validate the proposals
are described. The first M2C authentication proposal is an
improved version of that developed by Jin et al. [13] cited
in Section 3, but for consistency it is presented with the
same notation as that used for the other protocols. For each
of our proposed protocols, an informal analysis is provided
and a validation is conducted using two formal verification
tools. All our proposed authentication protocols use a direct
connection (i.e. without proxy) and are three-stage mutual
authentication protocols comprising two phases:

– a setup phase: this first phase can be considered as
off-line and is normally done once in the life of smart
objects (e.g. at the initialization or personalization step).
It mainly consists of a credentials provisioning step for
all presented protocols.

– an authentication phase: this phase usually consists of
three exchanges to achieve a mutual authentication of

legitimate parties and is done each time authentication
is required.

4.1 Protocol notations

Notations used to describe the different authentication
protocols presented in the paper are summarized in Table 1.

4.2 Attacker model and formal verification tools

The considered attacker model and the formal verification
tools used to validate the proposals are presented in the
following sections.

4.2.1 Attacker model

The attacker model considered for our protocol is the
widely used Dolev-Yao model [26]. Thus, the attacker
can overhear, intercept and synthesize any message in a
network. However, it cannot break the secure cryptographic
primitives used in the construction of the protocol.

4.2.2 Formal verification tools

To formally validate the authentication protocols proposed,
the AVISPA [27] and ProVerif [28] verification tools were
used. Both use the Dolev-Yao attacker model.

AVISPA AVISPA, which stands for Automated Validation
of Internet Protocols and Applications, provides a modular
and expressive formal language for specifying protocols
and their security properties. It integrates different back-
ends that implement a variety of state-of-the-art automatic
analysis techniques.

With AVISPA, the High-Level Protocol Specification
Language (HLPSL) allows the writing of security protocol
specifications using different roles. Some roles, called basic
roles, serve to describe the actions of a single agent in a
run of a protocol or sub-protocol. Others, called composed
roles, instantiate these basic roles to model an entire
protocol run, a session of the protocol between multiple
agents, or the protocol model itself.

ProVerif ProVerif is an automatic cryptographic protocol
verifier based on the Horn theory approach for intruders
and protocol representation. Cryptographic protocols and
associated security objectives are encoded in a formal
manner, which is a variant of the applied pi calculus.
This extension of the pi calculus with cryptography and
support of types allows ProVerif to automatically verify user
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Table 1 Notations used in protocols description

Notation Signification

n Number of smart objects in the system

S Denotes a server

SO Denotes generically smart object

Ti Denotes a particular smart object Ti where i ∈ [1, n]
q, p Two large prime numbers

Z
∗
p A finite field

E An elliptic curve defined over a finite field Fq by the equation y2 = x3 + ax + b, where a, b ∈ Fq

P A generator of E with order p

(q, a, b, p, P ) Denote the domain parameters defining E

N Denote the size in bits of a private key using curve E ; N = log2(p)

H Denotes a secure and collision resistant hash function

Hj Denotes a secure and collision resistant hash function named Hj (used only in Jin et al.’s protocol)

r
$← Z

∗
p Denotes that r is a random number ∈ Z

∗
p

A + B According to the context, denotes the point addition between two points A and B or two scalars A and B

A · B According to the context, denotes the point multiplication between
a scalar A and a point B or the scalar multiplication between two
scalars A and B

A ⊕ B Denotes the XOR operation between values A and B

A||B Denotes the concatenation operation of values A and B

A
?= B Denotes the verification of equality between A and B

A = B Denotes variable A receives value of expression B

IdTi
Identity of Ti

HIdTi
Key of hash entry related to the identity of Ti in database

xS, PS Denote respectively private and public keys of Server S, where PS = xS · P

xi, Pi Denote respectively private and public keys of Ti , where Pi = xi · P

σi = (P̄i , zi ) Denotes the Schnorr signature of the public key, Pi , of Ti by the server: the server picks a random value
si ∈ Z

∗
p and computes P̄i = si · P and zi = si + H(Pi, P̄i ) · xS . The resulting signature is σi

cryptographic protocols specified either as rewrite rules or
as equations theory.

4.3 M2C authentication protocols

In this section, two direct M2C authentication protocols are
proposed and validated. The first improves Jin et al.’s ECC-
based authentication protocol [13]. The second, which is
mainly based on the use of hash functions, is introduced
because it reduces both the storage and computational
costs on smart objects as well as the computational costs
on the server. In addition, this protocol is more scalable
and flexible than the first one since it enables mutual
authentication of smart objects and multiple servers as long
as the latter know the identities of the smart objects and
related keys for their hash entry in the database.

4.3.1 Improvements of Jin et al.’s authentication protocol

Before explaining our improvements to Jin et al.’s protocol,
the original version is presented.

Jin et al.’s original authentication protocol As previously
mentioned, Jin et al.’s authentication protocol [13] is ECC-
based since it was designed for resource-constrained devices
such as RFID tags. This protocol can be viewed as an M2C
protocol, as the server can be hosted in the cloud and RFID
tags can be viewed as smart objects.

Setup phase First, the server S generates and shares with
other entities the system parameters (q, a, b, p, P ) to use
for an elliptic curve, E. The server then picks a random
value xS ∈ Z

∗
p as its private key and computes its public key
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as PS = xS ·P . Then, each smart object Ti receives from the
server a unique identifier (named XT in original paper and
named here IdTi

), which is a point on E, and the server’s
public key PS .

Authentication phase This phase is composed of the three
exchanges depicted in Fig. 2.

At the end of the authentication phase, the server S

and the smart object Ti share a session key e that can be
used to ensure the confidentiality, integrity and privacy of
subsequent exchanges.

Security analysis The protocol being secure, we do not
provide a security analysis, but interested readers can refer
to that provided below for our improved version, since it is
closely related. It is worth noting that in Jin et al.’s original
protocol, the server S somehow implicitly authenticates
the smart object Ti based on the existence of IdTi

in the
database. It is not a huge problem, since an attacker should
not be able to compute the shared key e used for subsequent
exchanges, but this issue does not exist in our proposal.
Also, Jin et al. do not use the property that IdTi

is a point
on E. It may have been any string of bits with the same size.
In fact, it is even more of a constraint for them since they
need two hash functions, one whose output data size is that
of the point on the curve (since to compute Authi its output
is used to mask a point) and one whose size of output is that
of a scalar (since to compute AuthS its output is used in
modular operation)

Two main improvements: reducing search complexity on
the server side and computation on the smart object side
In the original protocol presented in the previous section,
since the server S stores all identifiers of smart objects

in a database, to implicitly authenticate a smart object
Ti , after having received Authi and computed the smart
object identifier, IdTi

, the server has to check whether the
smart object Ti exists in its database (Search IdTi

step in
Fig. 2). In terms of complexity that means that for n smart
objects in the system, there may be at most n accesses
to the server database if the identifier is stored at the last
position. To reduce this linear complexity from O(n) to
a constant complexity, i.e. O(1), inspired by Bonnefoi et
al.’s protocol [29], our first improvement was to modify
the protocol to add to the memory of smart object Ti at its
enrollment in the setup phase, the value HIdTi

, which is
the key of the hash entry in the database to access the related
IdTi

. In terms of memory consumption on the smart object,
this is the same since the individual sizes of IdTi

and HIdTi

are chosen to be half of the size of a point of E. With the
addition of these two values our protocol runs faster on the
server side and it has an explicit authentication (see security
analysis below). It is worth noting that the message 2 (Ri ,
Authi , M) size is the same as that of message 2 in Jin et
al.’s protocol.

A second improvement was to lighten the complex
computations that smart objects have to achieve by
modifying the message AuthS sent by the server: S now
does the scalar multiplication that the smart object Ti had to
do to authenticate the server. Thus one scalar multiplication
is saved on the smart object but the message size is increased
compared to that in the protocol designed by Jin et al.

A third minor improvement was to change the two
hash functions used in the original version to only one,
since having both was useless for security and they were
consuming space in memory because of the code required
to implement them, or Integrated Chip Circuit (ICC) space,
if they were hardware-implemented.

Fig. 2 Authentication phase for
Jin et al.’s M2C protocol
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Fig. 3 Our improvements of the
M2C Jin et al.’s authentication
protocol

The improved version of the authentication protocol is
depicted in Fig. 3.

Setup phase Similar to the setup phase in the original
protocol, the server generates and shares with other entities
the system parameters (q, a, b, p, P ) to use for the elliptic
curve, E. It then picks a random value xS ∈ Z

∗
p as its private

key and computes its public key as PS = xS · P . Then, for
each smart object Ti , S generates a random IdTi

as a smart
object identifier and sends it along with HIdTi

= H(IdTi
),

the key of the database (hash table used to store smart
objects’ identifiers) and the server’s public key PS . It is
worth noting that if there is a memory space constraint on
Ti , HIdTi

does not need to be stored and can be computed
by Ti itself at each authentication request, but it slows the
authentication process.

Authentication phase In the following steps, we describe
the interaction between the server S and a specific smart
object Ti :

1. The server S picks a random value rS ∈ Z
∗
p, computes

RS = rS · P and sends RS to Ti .
2. Upon reception, the smart object Ti first generates a

random value ri ∈ Z
∗
n, computes Ri = ri · P , Mask =

ri ·PS that is used to hide IdTi
and HIdTi

in Authi =
IdTi

⊕ H(RS, Mask) and M = HIdTi
⊕ H(Mask).

Then it sends (Ri, Authi, M) to the server.
3. The server S computes Mask = xS · Ri , which is used

to find HId ′
Ti

= M ⊕ H(Mask). Then, it looks for

Id ′
Ti
in its database thanks to HId ′

Ti
.

If Id ′
Ti

is not found, i.e. the entry does not exist, the
server does not stop the session immediately to avoid
leaking information to an attacker and it thus stops the
session after a delay (i.e. in other words it should be

programmed to answer within a fixed time for the three
operations that are looking for Id ′

Ti
, computing IdTi

and comparing it with Id ′
Ti
). Otherwise, it computes

IdTi
= Authi ⊕H(RS, Mask) and then compares IdTi

with Id ′
Ti
. If the values are not equal, the server stops

the session. Otherwise, the device is authenticated.
The server then computes e = H(RS, Ri, IdTi

) and
AuthS = (xS · e + rS) · P . It sends AuthS to the smart
object Ti .

4. The smart object Ti computes e = H(RS, Ri, IdTi
) and

compares the received AuthS with e · PS + RS . If the
values are not equal, it stops the session. Otherwise the
server is authenticated by the smart object and mutual
authentication is achieved.

As in the original version, at the end of the authentication
phase, the server S and the smart object Ti share a session
key, e, that can be used to ensure the confidentiality,
integrity and privacy of subsequent exchanges.

Before providing the security analysis of this protocol, it
is worth mentioning that some optimization can be done on
the smart object side between messages 2 and 3 (i.e. when
the server S is verifying it is a legitimate smart object) since
Ti can precompute e = H(RS, Ri, IdTi

) and e · PS + RS ,
which accelerates the authentication of S on reception of
message 3, i.e. AuthS , since there is only a comparison to
achieve. This trick can also be used with Jin et al.’s protocol
but it was not mentioned (only very recently, in the RFID
area, the primary scope of Jin et al., have protocol designers
used the fact that the RFID tag is powered when it is in the
field of the reader to perform precomputations [30]).

Security analysis In the following section, the protocol is
analysed with regard to security requirements and some
additional properties.
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• Mutual authentication:

– Smart object authentication: The adversary
cannot generate, from the smart object Ti , a
legitimate message (Ri, Authi, M), since it is
not able to obtain the coupled smart object
identifier, IdTi

, the related key, HIdTi
, and the

random value ri , which are used to compute
both Authi and M . However, the server S can
on its side compute Mask (since xS · Ri is
equal to ri · PS) to obtain HId ′

Ti
and check

whether the entry exists. It is worth noting that
the server S must not yet stop the session if the
entry does not exist; it must respond within a
fixed time in order to not leak information to an
attacker. To maintain the same level of security
as in Jin et al.’s protocol, since we decided not
to increase data storage on the smart object
(sizes for our IdTi

and HIdTi
were chosen to

be the same as that for IdTi
in Jin et al.), if the

entry does not exist, S must wait as if it had
achieved the matching of Id ′

Ti
and IdTi

. If the
entry exists, S receives the Id ′

Ti
and compares

it with IdTi
. If it does not match, the S stops

the session. Otherwise, the smart object, Ti , is
authenticated.

– Server authentication: The adversary cannot
generate a legitimate message from S, AuthS ,
since it is not able to obtain the e that results
from using a smart object identifier IdTi

.
Indeed a passive adversary can obtain RS ,
and PS is known; thus the strength of server
authentication relies on e. The smart object Ti

has to compute e to then check whether the
AuthS received matches e ·PS +RS ; if it does,
the smart object authenticates S. It is worth
noting that moving the scalar multiplication
from (e · PS + RS) · P from the smart object
to the server (i.e. in AuthS) to strengthen
our authentication only relies on the ability
to compute e, instead of that plus knowledge
of xS as in Jin et al.’s protocol. This is a
choice and implementers of our protocol can
decide not to use this improvement, although
the strength is similar.

• Confidentiality, integrity and privacy: At the end of the
protocol, both parties, S and Ti , share a fresh session
key, e, to which both have contributed, since it is
based on random values rS , ri for each session and
IdTi

. S and Ti can use it to derive keys to ensure

the confidentiality, integrity and privacy of subsequent
exchanges.

• Availability:

– Desynchronization attack resistance: In the
proposed protocol, since there is no key
update step and the protocol has a stateless
design, keys cannot be desynchronized and the
protocol can be resumed from scratch at any
step of the authentication.

– DoS attack resistance: The proposed protocol
being stateless, each transaction is considered
as a new one. On the smart object side, a new
authentication transaction does not consume
more memory space than the previous one.
It uses computational resources but this is
unavoidable. The worst case on the smart
object side depends on the implementation
and type of memory used: if the smart object
uses non-volatile memory technology like
Flash or EEPROM to store its intermediate
computations, the memory cells may be
dead after 105 writing cycles; however, if
it uses FRAM it will last 1012 cycles and
if it is RAM only the number of cycles is
infinite. On the server side, since the server
must be able to handle authentications from
several smart objects at the same time, each
new authentication transaction consumes some
memory resources, but in the case of a
DoS attack, our efficient searching mechanism
limits much of the impact since the server does
not spend its time making computations and
querying the database for fake HId ′

Ti
.

• Scalability: Thanks to our more efficient searching
mechanism, the server S computes the Mask, then
checks the existence of HId ′

Ti
and potentially verifies

the matching of Id ′
Ti

and IdTi
in a constant time, i.e.

O(1).
• Smart object’s anonymity: In the proposed protocol, the

coupled smart object identifier, IdTi
, and the related

key, HIdTi
are hidden with a function using Mask.

While an adversary can obtain RS and PS is known, it
cannot compute Mask without the random value ri and
thus it cannot compute IdTi

or HIdTi
. In addition, in

each new session, the server S and the smart object Ti

generate separate new random values, rS and ri . Thus
the adversary cannot trace the smart object’s location
and our protocol provides anonymity.
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• Formal analysis with AVISPA
In the following paragraphs, important points of the

protocol specification and the results are highlighted.

– Protocol specification
The HLPSL script of our proposed protocol

is shown in Appendix A.1.1. There are two
basic roles, S and T, which explain the activity
of Server and Ti . The fundamental concept of
the protocol is to keep the values IdTi

, HIdTi
,

xS , rS and ri secret through the protocol
authentication phase between S and T. Mutual
authentication is achieved via witness and
request goals. Details are provided in the
Appendix.

– Verification results
The results after running our protocol coded

in HLPSL are given in Table 2.

In Table 2, AVISPA outputs SAFE from two of its four
back-ends On-the-Fly Model-Checker (OFMC) and CL-
based Model-Checker (CL-AtSe), while SAT-based Model-
Checker (SATMC) and Tree Automata, based on Automatic
Approximations for the Analysis of Security Protocols
(TA4SP) give INCONCLUSIVE results due to unsupported
operations, which means that AVISPA cannot find any
attack on our protocol.

• Formal analysis with ProVerif
In the following paragraphs, important points of the

protocol specification and the results are highlighted.

– Protocol specification
The applied pi calculus scripts are shown

in Appendix A.2.1. As for AVISPA, there
are two basic roles SERVERS and SOI,
which explain the activity of Server and
Ti . Secret values are checked using queries.
Mutual authentication between Ti and Server

is modeled using events that are mapped in the
SOI and SERVERS subprocesses and queries.
Details are provided in the Appendix.

– Verification results
The results available in Appendix A.2.2

show that the secrecy of idt, hidt, xs, ri,
rs are preserved by the protocol and mutual

Table 2 AVISPA validation results

AVISPA Engine Result

OFMC SAFE

CL − AtSe SAFE

SAT MC INCONCLUSIVE

T A4SP INCONCLUSIVE

authentication between SERVERS and SOI is
achieved.

4.3.2 Hash-based authentication protocol

In this section, we present another authentication protocol,
also using ECC, but which is more hash-based. The
proposed protocol consists of two phases, i.e., the setup
phase and the authentication phase. The main advantage of
this is to be more scalable and flexible than the previous
protocol since it enables mutual authentication of smart
objects and multiple servers as long as the latter know the
identities of the smart objects. It means that if a server
crashes, authentication can be done by another server if it
knows the smart object identity and its related key of hash
entry.

The authentication phase of the proposed protocol is
presented in Fig. 4.

Setup phase In this phase, the server generates and shares
with other entities the system parameters (q, a, b, p, P )
to use for the elliptic curve, E. At this stage, for each
smart object Ti , S generates a random IdTi

as smart object
identifier and sends along with it HIdTi

= H(IdTi
), the

key of the database (hash table used to store smart objects’
identifiers). If there is memory space constraint on Ti ,
HIdTi

does not need to be stored and can be computed by
Ti itself at each authentication request, but this slows the
authentication process.

Authentication phase

1. The server S picks a random value rS ∈ Z
∗
p, computes

RS = rS · P and sends RS to Ti .
2. Upon reception, the smart object Ti first generates a

random value ri ∈ Z
∗
n, computes Ri = ri ·P and K =

ri ·RS , which is used to hide HIdTi
in M = HIdTi

⊕K

(where in fact only the x coordinate of point K is used
to mask – we might have also used H(K) instead but it
would require an additional call to the hash function). It
also computes Authi = H(IdTi

‖2‖K) and then sends
it to (Ri, Authi, M) to the server.

3. The server, S, first computes K = rS ·Ri , which is used
to find HId ′

Ti
= M ⊕ K . Then, it looks for Id ′

Ti
in its

database using HId ′
Ti
.

If Id ′
Ti

is not found, i.e. the entry does not exist,
the server S does not stop the session immediately to
avoid leaking information to an attacker; it thus stops
the session after a delay (i.e. in other words it should
be programmed to answer within a fixed time for the
three operations that are looking for Id ′

Ti
, computing

Auth′
i and comparing it with Authi). Otherwise, it

computes Auth′
i = H(Id ′

Ti
‖2‖K) and then compares
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Fig. 4 Hash-based M2C
authentication protocol

Authi with Auth′
i . If the values are not equal, the

server stops the session. Otherwise, the smart object is
authenticated.

The server S computes AuthS = H(IdTi
‖1‖K) and

sends it to the smart object Ti .
4. Upon reception, the smart object Ti computes Auth′

S =
H(IdTi

‖1‖K) and compares AuthS and Auth′
S . If the

values are not equal, it stops the session. Otherwise, the
server S is authenticated and mutual authentication is
achieved.

At the end of the authentication phase, the server S and
the smart object Ti share a session key, K , which can be
used to ensure the confidentiality, integrity and privacy of
subsequent exchanges.

Security analysis In the following, the protocol is analysed
with regard to the security requirements and some additional
properties.

• Mutual authentication:

– Smart object authentication: The adversary
cannot generate a legitimate message from
a smart object Ti (Ri, Authi, M) since it is
not able to obtain the coupled smart object
identifier, IdTi

, related key, HIdTi
, and the

random value ri , which are used to compute
both Authi and M . However the server S

can on its side compute K (since rS · Ri is
equal to ri · RS) to obtain HId ′

Ti
and check

whether the entry exists. The server S must
not yet stop the session if the entry does not
exist; it must respond within a fixed time in
order to not leak information to attacker. If the
entry exists, S obtains Id ′

Ti
and compares it

with IdTi
. If it does not match, the S stops

the session. Otherwise, the smart object, Ti is
authenticated.

– Server authentication: The adversary cannot
generate a legitimate message from S AuthS

since it is not able to obtain the smart object
identifier IdTi

and K . To authenticate the
server S, the smart object Ti has to compute
Auth′

S to then check whether the AuthS

received matches or not.

• Confidentiality, integrity and privacy: At the end of the
protocol, both parties S and Ti share a fresh session key,
K , to which both have contributed, since it is based on
random values rS , ri for each session. S and Ti will be
able to use it to derive keys to ensure the confidentiality,
integrity and privacy of subsequent exchanges.

• Availability:

– Desynchronization attack resistance: In the
proposed protocol since there is no key
update step and the protocol has a stateless
design, keys cannot be desynchronized and the
protocol can be resumed from scratch at any
step of the authentication.

– DoS attack resistance: The proposed protocol
being stateless, each transaction is considered
as a new one. On smart object side, a new
authentication transaction does not consume
more memory space than the previous one.
It uses computational resources but this is
unavoidable. The worst case on the smart
object side depends on the implementation
and the type of memory used: if the smart
object uses non-volatile memory technology
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like Flash or EEPROM to store its intermediate
computations, the memory cells may be dead
after 105 writing cycles; however if it uses
FRAM it will last 1012 cycles and if it is RAM
only the number of cycles is infinite. On server
side, since the server must be able to handle
authentication from several smart objects at the
same time, each new authentication transaction
consumes some memory resources, but in the
case of a DoS attack, our efficient searching
mechanism limits much of the impact since
the server does not spend its time making
computations and querying the database for
fake HId ′

Ti
.

• Scalability: Thank to the introduced efficient searching
mechanism, the server S computes the K , then checks
the existence of HId ′

Ti
, and potentially verifies the

matching of Id ′
Ti

and IdTi
within a fixed time,

i.e. O(1). In addition, this protocol enables mutual
authentication of smart objects and multiple servers
as long as the latter know the identities of the smart
objects. It means that if a server crashes, authentication
can be done by another server if it knows the smart
object’s identity and its related key of hash entry.

• Smart object’s anonymity: In the proposed protocol,
while the coupled smart object identifier, IdTi

and the
related key, HIdTi

are hidden with a function using K

and a hash function, an active adversary can compute
theK (using the rS generated and theRi received). Thus
he can compute HId ′

Ti
. However, he cannot compute

IdTi
. Thus the adversary can trace the smart object’s

location but cannot obtain its identity.

• Formal analysis with AVISPA
In the following paragraphs, important points of the

protocol specification and the results are highlighted.

– Protocol specification
The HLPSL script of our proposed protocol

is shown in Appendix A.1.2. There are two
basic roles, S and T, which explain the activity
of Server and Ti . The fundamental concept of
the protocol is to keep the values IdTi

, HIdTi
,

rS and ri secret through the protocol
authentication phase between S and T. Mutual
authentication is achieved via witness and
request goals. Details are provided in the
Appendix.

– Verification results
The results after running our protocol coded

in HLPSL are given in Table 3.

Table 3 AVISPA validation results

AVISPA Engine Result

OFMC SAFE

CL − AtSe SAFE

SAT MC INCONCLUSIVE

T A4SP INCONCLUSIVE

In Table 3, AVISPA outputs SAFE from two of its
four back-ends On-the-Fly Model-Checker (OFMC) and
CL-based Model-Checker (CL-AtSe), while SAT-based
Model-Checker (SATMC) and Tree Automata, based on
Automatic Approximations for the Analysis of Security
Protocols (TA4SP) give an INCONCLUSIVE result due to
unsupported operations, which means that AVISPA cannot
find any attack on our protocol.

• Formal analysis with ProVerif
In the following paragraphs, important points of the

protocol specification and the results are highlighted.

– Protocol specification
The applied pi calculus scripts are shown

in Appendix A.2.3. As for AVISPA, there
are two basic roles SERVERS and SOI,
which explain the activity of Server and
Ti . Secret values are checked using queries.
Mutual authentication between Ti and Server

is modeled using events that are mapped in the
SOI and SERVERS subprocesses and queries.
Details are provided in the Appendix.

– Verification results
The results available in Appendix A.2.4

show that the secrecy of idt, hidt, ri,
rs are preserved by the protocol and mutual
authentication between SERVERS and SOI is
achieved.

4.4 M2M authentication protocol: our ECC-based
authentication protocol

In this section, our new M2M authentication protocol based
on ECC is proposed and validated. Like the previous
protocols, it comprises two phases; a setup phase and an
authentication phase.

Setup phase In this phase, the certification authority
server generates and shares with other entities the system
parameters (q, a, b, p, P ), to use for the elliptic curve, E.
Then, each smart object Ti computes its private/public keys
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(xi, Pi) and the certification authority server S does the
same for its private/public keys (xS, PS).

Next, each smart object Ti requests the server to certify
its public key using a Schnorr signature [31]: i.e., the server
picks a random value si ∈ Z

∗
p and computes P̄i = si · P

and zi = si +H(Pi, P̄i) ·xS . The resulting signature, which
is σi = (P̄i , zi) is then provided to the smart object Ti .

Finally, at the end of this phase, the smart object Ti stores
the system parameters, its keys pair (xi, Pi), the signed
public key σi and the server public key PS in its memory.

Authentication phase The proposed M2M authentication
protocol enables authentication between any smart objects
that want to communicate. In the following, the steps
to achieve two smart objects’ mutual authentication, as
depicted in Fig. 5, are described.

1. The first smart object Ti picks a random value ri ∈ Z
∗
p,

and computes Ri = ri · Pi . Then, Ti sends (Ri, Pi, σi)
to the second smart object Tj .

2. Upon reception, Tj first checks the Schnorr signature to
validate the received public key, Pi . If validation fails,
Tj stops the session. Otherwise, Tj picks a random
value rj ∈ Z

∗
p and computes Rj = rj ·Pj andAuthj =

xj ·Rj . Tj then sends the message (Rj , Authj , Pj , σj )
to Ti .

3. Ti verifies the received Schnorr signature of Tj ’s public
key. If the verification fails, Ti stops the session.
Otherwise, Ti computes Auth′

j = ri · xi · Pj and
checks whether the received Authj matches. If they
are not equal, Ti stops the session; otherwise, Tj is
authenticated to Ti . Finally, Ti computes Authi =
xi · Rj and sends it to Tj .

4. Upon reception, Tj computes Auth′
i = rj · xj · Pi and

checks whether the received Authi matches.
If they are not equal, Tj stops the session. Otherwise,

Ti is authenticated to Tj and mutual authentication is
achieved.

To obtain a shared session key, K , each smart object, Ti

and Tj , needs to compute it as follows: ri · Rj and rj · Ri

respectively. This process costs each smart object one more
scalar multiplication.

Security analysis In the following, the protocol is analysed
with regard to security requirements and some additional
properties.

• Mutual authentication:

– Tj authentication: The adversary cannot gen-
erate a legitimate message from a smart object
Tj (Rj , Authj , Pj , σj ) since it cannot obtain
xj , the private key belonging to Tj , used in
the computation of Authj . Although obtaining
legitimate Rj , Pj and σj is easy, when Ti com-
putes Auth′

j and compares it to the received
value Authj , it cannot match if the correct pri-
vate key xj has not been used, since Auth′

j =
ri ·xi ·Pj = ri ·xi · (xj ·P) = ri ·xj · (xi ·P) =
ri ·xj ·Pi = xj ·(ri ·Pi) = xj ·Ri = Authj . Thus
if Authj and Auth′

j match, the smart object
Tj is authenticated.

– Ti authentication: Similar explanations apply
to Ti authentication.

• Confidentiality, integrity and privacy: At the end of
the protocol, both parties, Ti and Tj , can share a fresh
session key, K , by respectively computing ri · Rj and

Fig. 5 ECC-based M2M
authentication protocol
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rj ·Ri), which both have contributed to, since it is based
on random values ri , rj for each session. Ti and Tj

can use this to derive keys to ensure the confidentiality,
integrity and privacy of subsequent exchanges.

• Availability:

– Desynchronization attack resistance: In the
proposed protocol, since there is no key
update step and the protocol has a stateless
design, keys cannot be desynchronized and the
protocol can be resumed from scratch at any
step of the authentication.

– DoS attack resistance: The proposed protocol
being stateless, each transaction is considered
as a new one. For each party, a new authen-
tication transaction does not consume more
memory space than the previous one. It uses
computational resources, but this is unavoid-
able. The worst case depends on the implemen-
tation and type of memory used: if the smart
objects use non-volatile memory technology
like Flash or EEPROM to store their interme-
diate computations, the memory cells may be
dead after 105 writing cycles; however if they
use FRAM it will last 1012 cycles and if it is
RAM only the number of cycles is infinite.

• Scalability: As long as the certification authority server
is enabled for the setup phase, it is possible to add
new smart objects to the system. When they are
in the system, since smart objects authenticate in a
decentralized manner, the system is scalable.

• Smart objects’ anonymity: In the proposed protocol,
since Pi and σi are always the same, it is possible
to trace a smart object and identify it (as long as we
consider a public key as an identifier), but this is not one
of our requirements. Despite this issue, the privacy of
subsequent exchanges between smart objects is ensured
using the shared key K .

• Formal analysis with AVISPA
In the following paragraphs, important points of the

protocol specification and the results are highlighted.

– Protocol specification
The HLPSL script of our proposed protocol

is shown in Appendix A.1.3. There are two
basic roles, A and B, which explain the
activity of Ti and Tj nodes. The fundamental
concept of the protocol is to keep the values
xi , xj , ri and rj secret through the
protocol authentication phase between Ti and
Tj . Mutual authentication is achieved via

Table 4 AVISPA validation results

AVISPA Engine Result

OFMC SAFE

CL − AtSe SAFE

SAT MC INCONCLUSIVE

T A4SP INCONCLUSIVE

witness and request goals. Details are
provided in the Appendix.

– Verification results
The results after running our protocol coded

in HLPSL are given in Table 4.

In Table 4, AVISPA outputs SAFE from two of its
back-ends; On-the-Fly Model-Checker (OFMC) and CL-
based Model-Checker (CL-AtSe), while the SAT-based
Model-Checker (SATMC) and Tree Automata, based on
Automatic Approximations for the Analysis of Security
Protocols (TA4SP) give an INCONCLUSIVE result due to
unsupported operations, which means that AVISPA cannot
find any attack on our protocol.

• Formal analysis with ProVerif
In the following paragraphs, important points of the

protocol specification and the results are highlighted.

– Protocol specification
The applied pi calculus scripts are shown

in Appendix A.2.5. As for AVISPA, there are
two basic roles SOA and SOB, which explain
the activity of Ti and Tj . Secret values are
checked using queries. Mutual authentication
between Ti and Tj is modeled using events that
are mapped in the SOA and SOB subprocesses
and queries. Details are provided in the
Appendix.

– Verification results
The results available in Appendix A.2.6

show that the secrecy of xa, xb, ra and
rb are preserved by the protocol and mutual
authentication between SOA and SOB is
achieved.

5 Protocols evaluation

Instead of arbitrarily choosing particular smart objects to
evaluate the efficiency of our proposals, we decided to
make a formal analysis based on the domain parameters
of the curves used and the number of smart objects in the
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Table 5 Comparison of smart object’s computational cost

Protocol Computational cost

Liao et al. [16] 5 ∗ Tsm + 3 ∗ Tadd

Zhao [14] 5 ∗ Tsm + 3 ∗ Tadd

Alamr et al. [15] 4 ∗ Tsm + 1 ∗ Tadd

Dinarvand et al. [17] 3 ∗ Tsm + 2 ∗ Tadd

Jin et al. [13] 4 ∗ Tsm + 1 ∗ Tadd

Our improvements of Jin et al. 3 ∗ Tsm + 1 ∗ Tadd

Our hash-based authentication proposal 2 ∗ Tsm

system. However, to assess the validity of our proposals,
we conducted some practical time measurements of the
most expensive operation used in the protocols, scalar
multiplication, for different curves on a highly resource-
constrained device, the Multos IoT Trust Anchor, which
runs a secure operating system on a secure hardware
microcontroller. To confirm our results, we also conducted
measurements on a second target using a similar model of
microcontroller but running Java Card technology under a
smart card form factor.

5.1 Formal performance analysis

In this section, we analyze the performance of the proposed
protocols according to computational costs, communication
costs, storage requirements and performance comparisons.

For this we consider a system with n smart objects.
Depending on the domain parameters chosen for E, the
size of the point on the curve and the scalar used change
according the following formula: The size in bits of a point
is 2N and the size of a scalar is N . The domain parameters
(q, a, b, p, P ) size in bits is usually 6N (bit sizes of q, a

and b are often similar to that of p, i.e. N , and the generator
P is a point, thus its bit size is 2N). We assume that both
IdTi

and H(IdTi
) are scalar, i.e. the bit size of each is N .

Tsm and Tadd denote the time elapsed to achieve a scalar
multiplication and points addition, respectively.

5.1.1 Analysis of M2C authentication protocols

In this section we compare our M2C proposals with selected
protocols (from Section 3): Dinarvand et al.’s [17], Liao
et al.’s [16], Zhao’s [14], Alamr et al.’s [15], and Jin et
al.’s [13].

Computation costs The comparisons between smart objects
and server computational costs for the authentication
phase for our proposals and selected other protocols are
summarized in Tables 5 and 6 respectively.

From Table 5, the two best protocols in term of
computational cost for smart objects are our proposals:
1) the hash-based authentication protocol; and 2) our
improvements of Jin et al.’s protocol. Compared to Jin et al.
we win with regard to scalar multiplication on smart objects
and lose on the server side. From Table 6, the two best
protocols in term of computational cost for the server are our
proposals: 1) the hash-based authentication protocol; and 2)
our improvements of Jin et al.’s protocol even if we have a
scalar multiplication, thanks to our improvements relating
to database search complexity.

In our two M2C proposals (i.e. improvements of Jin et
al.’s protocol and the hash-based authentication protocol)
we improved the transaction time on the database on the
server side during smart object authentication by reducing
the database computational search cost to O(1) compared
to O(n) for the related work.

Communication costs To determine communication costs,
we computed the total bit size of transmitted messages
during the authentication phase and we also counted the
number of flows.

Table 7 summarizes the communication costs of the
different protocols.

From Table 7, the two best protocols in term of
communication cost for the server are: 1) the hash-based
authentication protocol; and 2) the original version of Jin
et al.’s protocol, since in our improvements of the latter
we decided to do the scalar multiplication on the server

Table 6 Comparison of
server’s computational cost Protocol Computational cost Database search complexity

Liao et al. [16] 5 ∗ Tsm + 3 ∗ Tadd O(n)

Zhao et al. [14] 5 ∗ Tsm + 3 ∗ Tadd O(n)

Alamr et al. [15] 5 ∗ Tsm + 1 ∗ Tadd O(n)

Dinarvand et al. [17] 3 ∗ Tsm + 2 ∗ Tadd O(n)

Jin et al. [13] 2 ∗ Tsm O(n)

Our improvements of Jin et al. 3 ∗ Tsm O(1)

Our hash-based authentication proposal 2 ∗ Tsm O(1)
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Table 7 Comparison of communication cost

Protocol SO→S (bits) S→SO (bits) Total (bits) # of flows

Liao et al. [16] 4N 4N 8N 3

Zhao [14] 4N 4N 8N 3

Alamr et al. [15] 4N 6N 10N 3

Dinarvand et al. [17] 5N 4N 9N 4

Jin et al. [13] 4N 3N 7N 3

Our improvements of Jin et al. 4N 4N 8N 3

Our hash-based authentication proposal 4N 3N 7N 3

instead of the smart object (i.e. a point is sent instead of
a scalar). However it would be possible to transmit only
the x coordinate of AuthS without jeopardizing security
if we want to be considered the two best candidates for
communication costs.

Storage requirements The storage requirement is defined
as the space used to store data in system communicating
entities. In any protocol, it means the domain parameters
and the additional data (such as credentials, shared keys,
and identities) stored at the end of the setup phase. Table 8
summarizes the storage requirements of the different
protocols.

From Table 8, the three best protocols in terms of
storage requirements for smart objects and for servers are:
1) our hash-based authentication protocol; and then 2) tied,
our improvements of Jin et al.’s protocol and the original
Jin et al. ’s protocol. We did not consider Alamr et al.’s
protocols due to the storage requirements on the smart
object.

Summary According to the performance criteria analysed,
the two most efficient protocols are the two M2C
protocols we proposed. The hash-based authentication
protocol outperforms all others on all criteria. Although our
improvements of Jin et al.’s protocol mean there is one more
computation on the server, this is negligible compared to

the time saved by introducing our method to reduce the
database search operation from linear complexity (O(n))
to a constant complexity access (O(1)). We also explained
how the communication cost from server to smart object
can be reduced to that of Jin et al.’s protocol without
jeopardizing security.

To conclude, the hash-based authentication protocol is
the best solution for an M2C communication mode, since
it is more flexible and more scalable than the others we
examined.

5.1.2 Analysis of M2M authentication protocol

As explained in Section 3 there is no similar (direct
connection, i.e. without proxy) authentication protocol
proposed in the literature and thus we could only analyse
our own.

Unlike the M2C communication mode, where the
smart object communicates only with the server, in M2M
authentication protocols, a smart object usually needs to
have basic information about other smart objects present
in the system to allow it to communicate. Thus, in our
ECC-based authentication protocol to reduce the storage
requirements of smart objects and to make it possible
to dynamically communicate with new smart objects, in
addition to their own credentials, on each smart object we
only store the certification authority server’s public key.

Table 8 Comparison of storage
requirements Protocol SO (bits) S (bits)

Liao et al. [16] 6N + 5N 6N + 3N + 3N · n

Zhao [14] 6N + 5N 6N + 3N + 3N · n

Alamr et al. [15] 6N + 5N 6N + 3N + 2N · n

Dinarvand et al. [17] 6N + 5N 6N + 3N + 3N · n

Jin et al. [13] 6N + 4N 6N + 3N + 2N · n

Our improvements of Jin et al. 6N + 4N 6N + 3N + 2N · n

Our hash-based authentication proposal 6N + 2N 6N + 2N · n
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Table 9 ECC-based authentication protocol performance analysis per
smart object

Computational cost 5 ∗ Tsm + 1 ∗ Tadd

Communication cost (bits) 9N

Storage requirements (bits) 6N + 8N

This allows the smart object to verify the authenticity of the
public keys of other smart objects without needing to store
them in its memory.

The performance analysis provided in Table 9 shows that
the proposed protocol is more than suitable for an M2M
communication mode.

5.2 Practical analysis

To evaluate the practical performance of our proposals,
time measurements of different operations were conducted
on two targets: the Multos IoT Trust Anchor [32] and
the Universal JCard [33]. The Multos IoT Trust Anchor
being designed for IoT applications, most operations used
in the proposed protocols were subjected to performance
measurements: hash (SHA-1), xor, multiplication, modular
multiplication and scalar multiplication. The second target,
the Universal JCard, was only used to confirm that the most
expensive operation, i.e. the scalar multiplication, could
reach the same performance on the same hardware platform
but running another operating system.

5.2.1 Overview of the targets

We chose to perform our experimental measurements on
the two aforementioned platforms for several reasons. The
two devices are both highly resource-constrained platforms
composed of a secure ICC and a secure system. The
Multos IoT Trust Anchor is the first initiative from the
Multos Consortium [34] to port the Multos smart card
Operating System (OS) on a secure embedded ICC to
address the IoT domains to enable the running of secure
applications. Since the hardware used for this platform
was one model, SLE78CLUFX5000PHM [35], of the
SLE78 series from Infineon, which is often used in smart
card products, we chose to study the performance of
the most expensive cryptographic operation, the scalar
multiplication, on another model, SLE78CLFX4000P [36],
of the SLE78, running a Java Card operating system
implementation. This was also motivated by the recent
choice of Oracle Inc. to target IoT devices with Java Card

technology [37], as can be seen with release 3.1 of the
Java Card specifications [38, 39]. Both SLE78 ICCs contain
several security hardware sensors (temperature, light,
voltage, frequency) and protections (I 2-shield, which is an
Infineon-specific shielding technique combined with secure
wiring of critical security signals to avoid manipulation
or eavesdropping by an attacker). These 16-bit security
controllers integrate the Integrity Guard [40] which is, in
brief, a dual CPU approach constantly, checking each other
to establish whether the other unit is functioning correctly,
and the SOLID FLASH™ [41], which is a technology that
replaces mask ROM with a Flash memory to provide the
flexibility required to answer time-to-market needs.

Multos IoT Trust Anchor The Multos IoT Trust Anchor
consists of a secure ICC, i.e. SLE78, which runs the Multos
OS. This OS is known to be one of the most secure
in the smart card industry: i.e. sensitive operations are
conducted in a state-of-the-art manner (e.g. operations are
done in “constant time” to avoid information leakage). The
target is available to developers in two footprints [42]:
a DIP32 format that can be plugged into a development
board to provide access to the GPIO, I2C, SPI, serial
and contact and contactless smart card interfaces; and a
nano board that breaks out all the used pins for the same
interfaces. Footprints respectively run the M5-P22 (aka
Multos 4.5.3) [43] and M5-P19 (aka Multos 4.5.1) [44]
families of Multos OS implementations. The development
board for the DIP32 footprint provides different features
to ease the development: an on-board 3.3V regulator (for
USB or external DC power), power on/off switch, USB
to serial interface, LEDs for Tx/Rx, a general purpose
LED, a push button switch, and header pins to access the
different interfaces. In the following, we used the DIP32
format plugged in to the development board. To develop
applications, we used the Multos SmartDeck [45], which
enabled us to easily compile our programs in C-language for
the Multos targets.

Universal JCard The Universal JCard is available on a smart
card form factor with ISO7816 contact and ISO14443
contactless interfaces. It consists of a secure ICC, i.e.
SLE78, which runs the Java Card OS. Java Card [46]
is a multiapplication technology for memory-constrained
devices that enables secure running of applications from
different providers [47]. The implementation available on
the Universal JCard is Oracle’s reference implementation of
Java Card version 3.0.1. To develop applications, so called
applets, we used Infineon’s development software [48].
JCIDE stands for “Java Card IDE”, which relies on the
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Fig. 6 Multos IoT Trust Anchor
running our application and
connected to channel 1 of our
oscilloscope

Java Card Development Kit [49] to build the distribution
file, i.e. the cap file. We also used it to load this file onto
the card, using the GlobalPlatform-compliant integrated
tool.

It is worth noting that interaction with a smart card
is limited to APDU protocol on contact or contactless
interfaces; i.e. commands sent by the reader to the card and
responses received from the card.

5.2.2 Methodology to measure performance on the Multos
IoT Trust Anchor

To measure the internal timing of Multos OS implementa-
tion of our device for a hash function, xor, multiplication,

modular multiplication and scalar multiplication, we used
API calls. In our implementation, it was not possible to
directly access the scalar multiplication primitive and since
only Short-Weierstrass curves were supported and there
were constraints on the specification of domain parameters,
we only did time measurements for several elliptic curves
(secp192k1, secp192r1, Wei22519, secp256k1, secp256r1,
secp384r1 and secp521r1).

In short, we implemented a very simple applica-
tion calling on API functions, using the operations hash
function, xor, multiplication and scalar multiplication:
i.e. multoSHA1, multosXor, multosMultiply and
multosECDH respectively. Since the modular multipli-
cation was not directly accessible via API functions, we

Fig. 7 Time for a scalar multiplication on secp256r1 running on Multos IoT Trust Anchor

Peer-to-Peer Netw. Appl. (2020) 13:439–474456



Table 10 Internal time spent
on scalar multiplication for
different curves on Multos IoT
Trust Anchor

Private key size (bits) Curve name Time (ms) Mean time (ms)

192 secp192k1 108.2 107.8

secp192r1 107.4

256 Wei25519 134.2 147.27

secp256k1 156.4

secp256r1 151.2

384 secp384r1 285 285

521 secp521r1 485 485

implemented a naive version using multosMultiply
and multosDivide, i.e. it is not optimized and it intro-
duced a limitation on operand size to a maximum of 512
bits. We ran our application on the domain parameters sup-
ported for ECC (i.e. scalar multiplication) and for other
operations we ran them on operands whose length was of
size of N or 2N since it is the most common data size used
in the studied protocols.

To get the most precise timing for each operation we
used a GPIO pin to serve as a trigger and we set it to
HIGH before the function call and then to LOW at the
return of the call. As illustrated in Fig. 6, we connected
channel 1 of our oscilloscope to the GPIO pin (here
GPIO7) used as trigger and to the GND pin. Obviously we
checked that the time required for the operations of setting
the GPIO pin from LOW to HIGH and then to LOW was
negligible.

With this hardware setup and after having arranged the
oscilloscope to trigger on a rising edge on channel 1 to start
signal capture on this channel, we were able to obtain some
measurements like those illustrated in Fig. 7, which is a
scalar multiplication on secp256r1.

5.2.3 Performance results on the Multos IoT Trust Anchor

The time measurements we report in Table 10 for the
different curves are the time slots measured between the
rising edge and the falling edge. This is not exactly an

approximation of the scalar multiplication processing time
since the API call can certainly contain some additional
operations (e.g. checks), but the related time is negligible.

As noted in Table 10 even for domain parameters with
the same bit size the scalar multiplication times are different.
However for the same curve we always obtained the same
results when we multiplied different scalars and points in
the scalar multiplication. This is certainly due to the constant
time techniques used by the secure OS implementer to avoid
information leakage. To make the scalar multiplication
measurements comparable to the rest of our measurements
presented in Table 11 we decided to use a mean time for a
domain parameters size (i.e. private key size).

Table 11 summarizes the results obtained for the different
operations and they are reported in Fig. 8.

Figure 8 clearly confirms that the most important (i.e.
time consuming) operation to consider in our protocols is
scalar multiplication. The curves of performance for each
operation are represented with a y-axis using a linear scale
on the left and a log scale on the right.

It is worth noting that our results are the first to be
published on the Multos IoT Trust Anchor platform.

5.2.4 Methodology to measure performance
on the Universal JCard

To measure the internal timing of scalar multiplication
on the Universal JCard, we needed to use the API calls.

Table 11 Internal time spent to execute the different operations on different data sizes on Multos IoT Trust Anchor (ms)

192 256 320 384 448 512 521

SHA-1 3.72 3.72 3.72 3.72 6.72 6.80

xor 1.55 2.09 2.54 2.96 3.37 3.84

multiplication 2.91 3.70 4.32 5.02 5.63 6.28

modmult (software implementation) 12.24 16.56 20.44 22.90 27.20 30.90

scalarmult (mean) 107.8 147.27 285 485
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Fig. 8 Performance of different
required operations of studied
protocols run on Multos IoT
Trust Anchor
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Since Java Card supports Short-Weierstrass curves and
the Universal JCard implementation also supports various
key sizes up to 521 bits, we did time measurements for
several elliptic curves (secp112r1, secp128r1, secp160k1,
secp160r1, secp192k1, secp192r1, secp224k1, Wei22519,
secp256k1, secp256r1, brainpoolP256r1, secp384r1 and
secp521r1).

In short, we implemented a very simple applet
creating keys containers, and we sent APDU com-
mands to configure the different domain parameters
of these keys. To measure a single scalar multi-
plication we created a KeyAgreement object of
type KeyAgreement.ALG EC SVDP DH PLAIN, i.e.
the secret value derivation primitive Diffie-Hellmann.
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Fig. 9 Universal JCard running
our applet and connected to the
smart card reader through an
adapter enabling measurements
with an oscilloscope

We initialised this object with a random private key
and requested the secret value derivation by calling
generateSecret on point P , the generator of the cho-
sen curve: this call is simply a scalar multiplication of
the private key (i.e. a scalar) and of P . To avoid inaccu-
racies due to factors such as overhead and mutex on the
computer, the operating system, and delays in communica-
tion between computer and smart card, we decided to use
an oscilloscope to measure the precise timing between the
arrival of the APDU command on the contact smart card
interface and the departure of the APDU response for the
reader.

As illustrated in Fig. 9, we connected channel 1 of the
oscilloscope on I/O line and GND line. We also connected
channel 2 to a resistance of 22Ω , which was placed between
the GND of the smart card interface and the GND of
the reader and reflected the power consumption. The aim
of this channel was to check whether it was possible to
observe an obvious pattern in power consumption during

cryptographic operations, in order to get a better internal
timing of scalar multiplication; the expected pattern was
not observable (probably due to countermeasures to protect
against side-channels).

To avoid any bias, we conducted the experiments
for each curve 10 times. This was sufficient since the
standard deviation was negligible and we thus kept the
average as the result. However, in the code written to
perform the required measurement we had some additional
instructions, including getting the value of P and copying
it to a temporary buffer in RAM. There was also a small
overhead on-card due to the APDU dispatcher in the
Java Card runtime environment. To get the most accurate
measurements of the scalar multiplication, we wanted to
measure the time spent to execute all these instructions.
We therefore wrote specific code to isolate them, which
we called “an empty command” in Fig. 10 enabled us to
accurately measure this useless time, based again on the
average result of 10 executions.

Time for an empty command Time for a scalar multiplication on secp521r1

Fig. 10 Performance of different operations run on Universal JCard
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Table 12 Internal time spent
on scalar multiplication for
different curves on Universal
JCard

Private key size (bits) Curve name Time (ms) Mean time (ms)

112 secp112r1 28.04 28.04

128 secp128r1 31.24 31.24

160 secp160k1 38.04 37.89

secp160r1 37.74

192 secp192k1 45.74 45.49

secp192r1 45.24

224 secp224k1 53.94 53.94

256 Wei25519 59.84 62.06

secp256k1 63.84

secp256r1 62.54

brainpoolP256r1 62.04

384 secp384r1 107.04 107.04

521 secp521r1 196.24 196.24

5.2.5 Performance results on the Universal JCard

The time measurements reported in Table 12 are the
averages for each curve, from which we subtracted
the time spent for the “empty command”. This is the
best approximation of the time required for a scalar
multiplication on each curve.

Table 12 shows that as for the Multos IoT Trust
Anchor, for domain parameters with the same bit size,
the scalar multiplication times were different. However,
for the same curve we always obtained the same results
when we multiplied different scalars and points in the

scalar multiplication. This was due to the “constant time”
techniques used by the secure OS implementer to avoid
information leakage. This also explains why only 10
executions for each curve were sufficient, and why the
standard deviation was negligible.

To make the scalar multiplication measurements compa-
rable to those obtained for the Multos IoT Trust Anchor, we
decided to compute the mean time for a domain parameter
size (i.e. private key size) and to illustrate the difference in
performances in Fig. 11.

Performances for scalar multiplication on the Universal
JCard were much better than those on the Multos

Fig. 11 Comparison of scalar
multiplication performance on
two SLE78-based devices:
Universal JCard and Multos IoT
Trust Anchor
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Table 13 Estimated computation time required for authentication on
smart object side

Protocol Estimated time (ms)

Our improvements of Jin et al. 186.18

Our hash-based authentication proposal 124.12

Our ECC-based authentication protocol 310.30

IoT Trust Anchor. There may be different explanations,
ranging from the internal frequency used (however only
the SLE78CLUFX5000PHM may be run at 50MHz,
compared with 33MHz for the SLE78CLFX4000P) to
library implementations, and OS overheads. Since it was
not the aim of this paper to dig into these differences, we
simply concluded that scalar multiplication can be achieved
efficiently and securely on embedded IoT devices.

5.2.6 Summary

If a 256 bit security is required, and if we consider the scalar
multiplication time on the Universal JCard, as0 can be seen
in Table 13, the smart object’s estimated computation time
is reasonable for each of our proposals if other operations
are neglected.

6 Conclusion and future work

With the increasing use of IoT technology in healthcare,
security and privacy are major concerns, and the cornerstone
of security is authentication. Depending on the communica-
tion modes, M2C or M2M, the protocols have to be adapted
to the context. In this paper, after a study of the state of the
art, we established the security and functional requirements
and we then proposed three mutual authentication protocols.
Two of the three are suitable for the M2C communication
mode and the last one is appropriate for the M2M commu-
nication mode. Both informal security analysis and formal
verification using AVISPA and ProVerif tools have shown
they satisfy our security requirements. The performance
analysis and the practical experimental results have demon-
strated they fulfil the functional requirements. In summary,
the three proposed authentication protocols outperform the
state-of-the-art systems.
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Appendix: AVISPA and ProVerif
specifications for protocols

A.1 AVISPA

A.1.1 Jin et al.’s authentication protocol improvements

There are two basic roles, S and T, which explain the activity
of Server and Ti .

– There are two agents T, S and they both use a hash
function H, a modular multiplication function MULT,
a scalar multiplication function MECC, a modular
addition function ADD, a points addition function ADDP
and a curve generator P, and a smart object T identity
Idt, its identity hash result HidT and server public key
Ps, to compute the authentication message AUTHI and
AUTHS.

– Secrecy of identity of smart object T Idt,
its identity hash result HidT, the server’s
secret key Xs and secret random numbers
Ri, Rs is modeled using the goal predicates
secret(Idt, sec idt, T), secret(Idt,
sec idt, S), secret(HidT, sec hidt,
T), secret(HidT, sec hidt, S), secret
(Xs, sec xs , S), secret(Ri’, sec ri,
T), secret(Rs’, sec rs, S) which are main-
tained by the protocol id: sec idt, sec hidt,
sec xs, sec ri and sec rs respectively. The
parameters Idt, HidT, Xs and Ri, Rs are kept secret
to T and S.

– Mutual authentication is achieved via witness
and request goals, i.e. witness(T, S,
auth i, AUTHI’), request(S, T, auth i,
AUTHI’), witness(S, T, auth s, AUTHS’),
request(T, S, auth s, AUTHS’).
witness(T, S, auth i, AUTHI’) declares
that agent T claims to be the peer of agent S, agreeing
on the value AUTHI’. auth i is the name of AUTHI’
authentication shown in the goal section, whereas
request(S, T, auth i, AUTHI’) declares
that agent S accepts the value AUTHI’ and now relies
on the guarantee that agent T exists and agrees with it
on this value.
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Listing 1 AVISPA specification
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Listing 1 (continued)

– The environment contains the global constants and the
composition of one or more sessions. The intruder
participates as a concrete session in the execution
protocol.

A.1.2 Hash-based authentication protocol

There are two basic roles, S and T, which explain the activity
of Server and Ti .

– There are two agents T, S and they both use a hash
function H, a scalar multiplication function MECC,
a curve generator P, and a smart object T identity
Idt and its identity hash result HidT respectively
to compute the authentication message AUTHI and
AUTHS.

– Secrecy of identity of smart object T Idt, its
identity hash result HidT and secret random num-
bers Ri, Rs are modeled using the goal predicates
secret(Idt, sec idt, T), secret(Idt,
sec idt, S), secret(HidT, sec hidt, T),
secret(HidT, sec hidt, S), secret(Ri’,
sec ri, T), secret(Rs’, sec rs, S)
, which are maintained by the protocol id:
sec idt, sec hidt, sec ri, sec rs respectively.
The parameters Idt, HidT and Ri, Rs are kept secret
to T and S.

– Mutual authentication is achieved via witness and
request goals; i.e., witness(T, S, auth i,
AUTHI’), request(S, T, auth i, AUTHI’),
witness (S, T, auth s, AUTHS’), request

Listing 2 AVISPA specification
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Listing 2 (continued)

(T, S, auth s, AUTHS’). witness(T,
S, auth i, AUTHI’) declares that agent T
claims to be the peer of agent S, agreeing on the
value AUTHI’. auth i is the name of AUTHI’
authentication shown in the goal section whereas
request(S, T, auth i, AUTHI’) declares that
agent S accepts the value AUTHI’ and now relies on the
guarantee that agent T exists and agrees with it on this
value.

– The environment contains the global constants and the
composition of one or more sessions. The intruder
participates as a concrete session in the execution protocol.

A.1.3 ECC-based authentication protocol

There are two basic roles, A and B, which explain the
activity of Ti and Tj nodes.

– There are two agents A, B and they both use a hash
function H, a modular multiplication function MULT, a
scalar multiplication function MECC, a points addition
function ADDP, an initialization function INITVAR and
a curve generator P, server public key Ps, private/pub-
lic keys Xa/Pa, Xb/Pb, and public key Schnorr
signature (Ppa, Za), (Ppb, Zb) respectively to

Peer-to-Peer Netw. Appl. (2020) 13:439–474464



Listing 3 AVISPA specification
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Listing 3 (continued)

compute the authentication messages AUTHA and
AUTHB.

– Secrecy of private keys Xa, Xb and secret random
numbers Ra, Rb is modeled using the goal predicates
secret(Xa, sec xa, A), secret(Xb, sec
xb, B), secret(Ra’, sec ra, A), secret
(Rb’, sec rb, B), which are maintained by the
protocol id: sec xa, sec xb, sec ra, sec rb
respectively. The parameters (Xa, Ra) and (Xb,
Rb) are kept secret to A and B respectively.

– Mutual authentication is achieved via witness
and request goals i.e. witness(A, B,
auth a, AUTHA’), request(B, A, auth a,
AUTHA’), witness(B, A, auth b, AUTHB’),
request(A, B, auth b, AUTHB’).
witness(A, B, auth a, AUTHA’) declares
that agent A claims to be the peer of agent B, agreeing
on the value AUTHA’. auth a is the name of AUTHA’
authentication shown in the goal section whereas
request(B, A, auth a, AUTHA’) declares
that agent B accepts the value AUTHA’ and now relies
on the guarantee that agent A exists and agrees with it
on this value.

– The environment contains the global constants and the
composition of one or more sessions. The intruder

participates as a concrete session in the execution
protocol.

A.2 ProVerif

A.2.1 Applied Pi calculus specification script of Jin et al.’s
authentication protocol improvements

Explanations of the applied pi calculus scripts are the
following:

– The secrets xs, idt and hidt are declared as
secret to the attacker using the word [private].
ch is the public channel where SERVERS and SOI
exchange their messages. The one-way hash function is
modeled by H1, H2 and H3, for hashing one, two and
three elements respectively. mult, mecc, add, addp,
concat and xor represent modular multiplication,
scalar multiplication, modular addition, points addition,
concatenation and xor functions respectively.

– Secrecy of idt, hidt, xs, ri and rs is verified
with queries query attacker(idt), query
attacker(hidt), query attacker(xs),
query attacker(new ri) and query
attacker(new rs).

Listing 4 ProVerif specification
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Listing 4 (continued)

– Mutual authentication between the Ti and Server is
modeled with the definition of four events that are
mapped in the SOI and SERVERS sub-processes and
the following queries:

– In the main process, SERVERS and SOI sub-processes
are running in parallel. ! indicates an unlimited number
of processes:

A.2.2 ProVerif results of Jin et al.’s authentication protocol
improvements

A.2.3 Applied Pi calculus specification script of hash-based
authentication protocol

Explanations of the applied pi calculus scripts are the
following:
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Listing 5 ProVerif results

Listing 6 ProVerif specification
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Listing 6 (continued)

– The secrets idt, hidt are declared as secret to the
attacker using the word [private]. ch is the public
channel where SERVERS and SOI exchange their
messages and h, mecc, concat, xor represent hash,
scalar multiplication, concatenation and xor functions
respectively.

– Secrecy of idt, hidt, ri and rs is veri-
fied with queries query attacker(idt), query
attacker(hidt), query attacker(new ri)
and query attacker(new rs).

– Mutual authentication between the Ti and Server is
modeled with definition of four events that are mapped
in the SOI and SERVERS sub-processes and the
following queries:

– In the main process, SERVERS and SOI sub-processes
are running in parallel. ! indicates an unlimited number
of processes:

A.2.4 ProVerif results of hash-based authentication protocol

A.2.5 Applied Pi calculus specification script of ECC-based
authentication protocol

Explanations of the applied pi calculus scripts are the
following:

– The secrets xa, xb are declared as secret to the attacker
using the word [private]. ch is the public channel
where SOA and SOB exchange their messages and
h, mult, mecc, addp represent hash, multiplication,
scalar multiplication and points addition functions
respectively.

– Secrecy of xa, xb, ra and rb is verified with query
attacker(xa), query attacker(xb),
query attacker(new ra) and query
attacker(new rb).

– Mutual authentication between Ti and Tj is modeled
with the definition of four events that are mapped in the
SOA and SOB sub-processes and the following queries:

event beginA(bitstring).
event endA(bitstring).
event beginB(bitstring).
event endB(bitstring).

query x: bitstring; inj-event(beginB(x))
==> inj-event(beginA(x)).

query x: bitstring; inj-event(endA(x))
==> inj-event(endB(x)).

query x: bitstring, y:bitstring;
inj-event(endA(y))
==> inj-event(beginA(x))
&& inj-event(beginB(x)).
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Listing 7 ProVerif results

Listing 8 ProVerif specification
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Listing 8 (continued)

– In the main process, SOA and SOB sub-processes are
running in parallel. ! indicates an unlimited number of
processes:

process
((!SOA) | (!SOB))

A.2.6 ProVerif results of ECC-based authentication protocol

Listing 9 ProVerif results
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