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Abstract
In this paper, in terms of the T-S fuzzy technique, the quantization control designs are resolved for a class of
nonhomogeneous Markov jump systems (MJSs) with partially unknown transition probabilities. Different from the previous
research, the transition probabilities are time-variant and not known exactly in the MJSs. Particularly in a network
environment, it is considered that the effects of data packet dropouts and the occurrence of signal quantization simultaneously
emerge in the closed-loop circuit. Furthermore, based on a fuzzy Lyapunov function and a set of linear matrix inequalities,
one can achieve the desired H∞ performance and the sufficient conditions such that the corresponding closed-loop system
is stochastically stable. By the cone complementarity linearisation (CCL) procedure, a sequential minimization problem
is tackled efficiently to gain the solutions of the dynamic output feedback controller (DOFC). Finally, the validity of the
suggested technique is showed via a simulation example.

Keywords Nonhomogeneous Markovian jump systems · T-S fuzzy · Quantization control

1 Introduction

In the past few decades, MJSs are a kind of specific
stochastic dynamic systems, which has a wide range of
employments in networked control systems, aerospace,
power, and manufacturing. Many realistic complicated
systems [1] may suffer unpredictable abrupt changes in
parameters and structures, which is frequently caused by
maintenances or failures of the components, environmental
disturbances and so on. MJSs have been introduced as
powerful and appropriate tool to describe such complex
situations. The network control systems [2, 3] are typical
examples which would be modeled via MJSs [4], and
network delays and packet dropouts can be supposed by
Markov processes. Note that in different periods packet
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losses and delays [5–7] are not in accord. For some
significant results on this subject, we can consult the reports
in [8–11] and the references therein. However, it is generally
true that the existence of exponential distribution of the
jump time brings about many restrictions on application
in MJSs. And as a result of constant transition rates,
the conclusions achieved from the MJSs are conservative
in nature. In the entire operation region the transition
probabilities are time-varying. Different from the MJSs, a
time variant matrix of transition probabilities is the greatest
feature of nonhomogeneous MJSs (NMJSs). The mentioned
works can be approximately split into nonlinear MJSs and
linear ones [12]. Clearly, without loss of generality, it is well
identified that the nonlinear MJSs normally have higher
usability.

On the other research front, numerous practical models
and systems contain complex uncertainties and nonlinear-
ities, which takes the control design and the analysis of
systems into straitened circumstances [13]. Based on the
stochastic set stabilization, both the strategy consensus and
the control of output tracking are presented [14]. The set
stability of equivalent stochastic system with probabili-
ties time delays is investigated in terms of the matrix of
state transition probabilities [15]. Due to appearance of T-S
fuzzy technique, the effective method has been employed to
describe complicated nonlinear systems in accordance with
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a set of “IF-THEN” rules. Consequently, based on T-S fuzzy
systems, some representative results of filtering [16], con-
trol issues [17], stabilization and stability are gained, for
example, [18–25] and the references therein. Very recently,
the researchers had paid close attention to fuzzy MJSs.
By some presented slack matrices, they separate Lyapunov
function matrices from system variables such that the design
of controller and the analysis of stability are addressed
in [26]. However, in a lot of the gained results about
MJSs, assuming that transition probabilities are exactly
known and time invariant, a homogeneous Markov chain
or Markov process comes into being. These assumptions
are invalid in some actual circumstances. It is considered
that a polytope set is employed to represent the feature of
time-varying transition rate in such situations. We can assess
the numerical values in some operating point in spite of
the matrices of transition probabilities are not fully known.
The polytope is a convex set such that it is described to
handle the nonhomogeneous fuzzy MJSs (NFMJSs) accom-
panied by time-varying transition probabilities. Therefore,
in [27], a few of novel plan methods are farther enhanced
for NFMJSs.

In addition, in the field of control systems, the issue on
saturating quantization measurements has been proved to
be a hot theme in recent years. Under the circumstances
of network, real-valued signals of the controller and ones
of the model are always projected into piecewise-constant
signals before transmission in the closed-loop circuit. In
some literatures, the results have been obtained toward this
direction, for example [19]. In [28], in the special systems
the state-feedback controller was proposed. However, in
realistic example the state-feedback possesses the critical
shortcoming that the states of system are always hard to
achieve or can not be obtained on account of method,
final cost, etc [29–33]. What’s more, the measurements of
sensor and the instructions output of controller require new
quantized techniques when the signals are sent via networks.
Therefore, inspired by the aforementioned work, we want to
construct a DOFC for NFMJSs with unmeasurment states.

Motivated by the above discussion, in this paper, we
investigate the quantized control design for a class of
NMJSs with partly unknown and time variant transition
probabilities via T-S fuzzy technique. The main contri-
butions of this paper are as below: i) In the uplink and
downlink, the effects of data packet dropouts and signal
quantization are considered simultaneously. In terms of the
T-S fuzzy method and the approach of parameter dependent
Lyapunov function, we have achieved a sufficient condi-
tions which equip the NMJSs with required performance as
well as stochastic stability. ii) In our work, a key character-
istic is that we employ the conception of nonhomogeneous
Markov process in which transition probabilities are time-
variant. iii) Along with the development of researches, the

desired DOFC has been demonstrated. Meanwhile, the CCL
procedure is applied to the DOFC solutions.

The remainder of this article is listed as follows: The
system description and preliminaries are expressed in
Section 2. The main results of the studied problem for
NFMJSs are derivated under data missing and time variant
transition probabilities in Section 3. Section 4 presents a
numerical example and we formulate the conclusion of this
paper in Section 5.

Notation In this paper, suppose a complete probability
space (Ω, F, P r) in which Pr , F and Ω denotes the
probability measure defined over F , σ− algebra and the
sample space, respectively. The symmetry term is denoted
by symbol (∗). The matrix transposition is signified by
superscript “T ”. The square integrable space on [0,∞) is
indicated by l2[0,∞). The expectation of α is represented
by E{α}. The expectation of α conditional on β is indicated
by E{α/β}. The notation P > 0(≥ 0)means that under real
symmetric structure it is positive definite (semi-definite).
‖M‖ refers to the norm of a matrix. | · | refers to the
Euclidean norm of a vector and the norm of conventional
l2[0,∞) is defined by ‖ · ‖2. If the dimensions of matrices
are not clearly regulated, the compatible dimensions are
assumed.

2 Problem formulations

In this section, the T-S fuzzy model is considered. It
is a non-linear discrete-time system on probability space
(Ω, F, P r), which may be denoted via the fuzzy model.

2.1 T-S fuzzymodel

The i-th rule of T-S fuzzy MJSs (FMJSs):

Rule i : If ϑ1(t) is λi1 and · · · and ϑ�(t) is λi� then
⎧
⎨

⎩

x(t + 1) = Ai(rt )x(t)+ Bi(rt )u(t)+ Ei(rt )	(t)
z(t) = Ci(rt )x(t)+Di(rt )u(t)+ Fi(rt )	(t)

y(t) = Gi(rt )x(t) i ∈ N,
(1)

where x(t) ∈ Rnx×1 is the state vector; u(t) ∈
Rnu×1 is the control input vector; y(t) ∈ Rny×1

is the measured output vector; z(t) ∈ Rnz×1 is the
controlled output vector; 	(t) ∈ l2[0,∞) are external
disturbances and 	(t) ∈ Rn	×1. Ai(rt ), Bi(rt ), Ci(rt ),
Di(rt ), Ei(rt ), Fi(rt ), Gi(rt ) are constant matrices with
appropriate dimensions; λij (j = 1, 2, · · · , �) represents
the membership grade of ϑ�(t); [ϑ1(t), · · · , ϑ�(t)]T are
known premise variables. N = (1, 2, · · · , λ), λ is the
number of rules.
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The final FMJSs system is listed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) =
λ∑

i=1
hi[Ai(rt )x(t)+ Bi(rt )u(t)

+Ei(rt )	(t)]
z(t) =

λ∑

i=1
hi[Ci(rt )x(t)+Di(rt )u(t)+ Fi(rt )	(t)]

y(t) =
λ∑

i=1
hi[Gi(rt )x(t)],

(2)

where we consider for all t : εi (ϑ (t)) =
�∏

j=1
λij
(
ϑj (t)
)
,

(i = 1, · · · , λ) is the membership function of the model
with the i-th rule. In this paper, we assume εi (ϑ (t)) ≥
0,

λ∑

i=1
εi (ϑ (t)) > 0, hi (ϑ (t)) = εi (ϑ(t))

λ∑

i=1
εi (ϑ(t))

, then

hi (ϑ (t)) ≥ 0,
λ∑

i=1
hi (ϑ (t)) = 1. In what follows, we

write hi (ϑ (t)) by hi for brevity.

The Markov chain is represented by{rt , t ≥ 0} which
takes values in the space � = {1, 2, · · · , ω}. The matrix of
transition probability is Λ(t) = {πmn(t)},m, n ∈ �. From
mode m at time t to mode n at time t + 1, the transition
probability is denoted by πmn(t) = Pr(rt+1 = n |rt = m),

and πmn(t) ≥ 0, ∀m, n ∈ �,
ω∑

n=1
πmn(t) = 1. In the system

(2), the time-variant matrix of transition probability Λ(t) =
{πmn(t)} is proposed as a polytope PΛ. PΛ = {Λ(t) =
κ∑

τ=1
ζτ (t)Λ

(τ)(t),
κ∑

τ=1
ζτ (t) = 1, 0 ≤ ζτ (t) ≤ 1}, where the

vertices of PΛ are denoted by Λ(τ)(t), τ = 1, 2, · · · κ , and
κ is the number of the chosen vertices. Λ(τ)(t) includes
some elements which are partially unknown or uncertain,
namely, the matrices of transition probability possesses

incomplete transition characterization. We consider � =
�mk + �muk, ∀m ∈ � , where

�mk = (n : πmnisknow)
�muk = (n : πmnisunknow) , ∀m ∈ �. (3)

Also, we define �mk = (ϕm1 , · · ·ϕmv ),∀1 ≤ v ≤ ω,∀m ∈ �.
Where ϕmv is the v − th known element in the m − th row
of matrix Λ(t).

2.2 Output feedback controller

In this paper, in terms on the T-S fuzzy model (2), the DOFC
is constructed:

Rule i : If ϑ1(t) is λi1 and · · · and ϑ�(t) is λi� then
{
ηc(t + 1) = Aci (rt )ηc(t)+ Bci (rt )yc(t)

uc(t) = Cci (rt )ηc(t),
(4)

where ηc(t) ∈ Rnη×1, uc(t) ∈ Rnu×1 and yc(t) ∈
Rny×1 respectively denote the state of the controller,
the output of the controller, the input of the controller.
Aci (rt ), B

c
i (rt ), C

c
i (rt ) are the gains to be determined

matrices with appropriate dimensions. Then the DOFC is
described as follows:
⎧
⎪⎪⎨

⎪⎪⎩

ηc(t + 1) =
λ∑

i=1
hi
[
Aci (rt )ηc(t)+ Bci (rt )yc(t)

]

uc(t) =
λ∑

i=1
hiC

c
i (rt )ηc(t).

(5)

2.3 Quantization and unreliable communication
links

From Fig. 1, we note that the NFMJSs are quantized in the
environment of network with the unreliable links. Before
the signal is conveyed in the digital channel, the output
measurements y(t) and the output uc(t) of the controller
are quantized respectively in the network. The system (2) is

Fig. 1 Plant flow chart
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subordinate to logarithmic quantizer qm(·) = qrt (·) which
is characterized by

qm(·) =
[
q(1)m (·) q(2)m (·) . . . q(ny)m (·)

]T
,m ∈ �, (6)

where q(n)m (·) is assumed to be symmetric. q(n)m (yn(t)) =
−q(n)m (−yn(t)), n = 1, . . . , ny . For m ∈ �, the set of

quantification levels of q(n)m (·) is represented by Υn ={
±η(m,n)

�

∣
∣
∣η
(m,n)
�

= (ρ(m,n))
� · η(m,n)(0) , � = ±1,± 2, . . .

}
∪

{
η
(m,n)
(0)

}
∪{0} , 0 < ρ(m,n) < 1,

{
η
(m,n)
(0)

}
> 0, where ρ(m,n)

denotes the quantizer density of the subquantizer q(n)m (·)and
η
(m,n)
(0) are the initial values for subquantizer q(n)m (·). The

quantizer q(n)m (·) is represented as follows:

q(n)m (yn(t)) =

⎧
⎪⎨

⎪⎩

η
(m,n)
�

, if
η
(m,n)
�

1+δ(m,n) < yn(t) <
η
(m,n)
�

1−δ(m,n)
0, if yn(t) = 0

−q(n)m (−yn(t)), if yn(t) < 0 ,

(7)

where δ(m,n) = (1−ρ(m,n))/(1+ρ(m,n)) are the parameters
of the quantizer. Based on [34], the logarithmic quantizer
(7) may be described by

qm(y(t)) = (Iny +Δ(m,ny))y(t), (8)

where Δ(m,ny) = diag
{
δ(m,1), · · · , δ(m,ny)}, 0 <

Δ(m,ny) < Iny . In the same way,

qm(u
c(t)) = (Inu +Δ(m,nu))uc(t). (9)

From Fig. 1, in the closed-loop circuit, it can be seen
that data missing randomly occurs in the network. Thus
qm(y(t)) �= yc(t), qm(uc(t)) �= u(t). In light of the
application of the stochastic technique, the aforementioned
phenomenon is denoted as follows
{
yc(t) = α(t)qm(y(t)) = α(t)(Iny +Δ(m,ny))y(t)
u(t) = β(t)qm(u

c(t)) = β(t)(Inu +Δ(m,nu))uc(t), (10)

where α(t) and β(t) fulfill Bernoulli random distribution.
The α(t) is applied to denote the data dropout of the
downlink and the β(t) is applied to denote the data dropout
of the uplink. Consider α(t), β(t) as following Pr{α(t) =
1} = E{α(t)} = ᾱ, Pr{α(t) = 0} = 1 − ᾱ, Pr{β(t) =
1} = E{β(t)} = β̄, Pr{β(t) = 0} = 1 − β̄, where
ᾱ ∈ [0, 1] and β̄ ∈ [0, 1] are constants. Suppose α(t) =
ᾱ + α̃(t), β(t) = β̄ + β̃(t), then E{α̃(t)α̃(t)} = ᾱ(1 − ᾱ),
E{β̃(t)β̃(t)} = β̄(1 − β̄). According to the Eq. 10, one can
obtain
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ηc(t + 1) =
λ∑

i=1
hi[Aci ηc(t)

+α(t)Bci (Iny +Δ(m,ny))y(t)]
uc(t) =

λ∑

i=1
hiC

c
i ηc(t).

(11)

Combining Eqs. 2–11, the closed loop system is obtain as
follows
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̄ (t + 1) =
λ∑

i=1

λ∑

j=1
hihj [Aij (rt )ξ̄ (t)+Ξi(rt )	(t)]

z(t) =
λ∑

i=1

λ∑

j=1
hihj [Cij (rt )ξ̄ (t)+ Fi(rt )	(t)],

(12)

where Aij (rt ) =

[
Ai(rt )

α(t)Bcj (rt )(Iny +Δ(m,ny))Gi(rt )
β(t)Bi(rt )(Inu +Δ(m,nu))Ccj (rt )

Acj (rt )

]

,

Cij (rt ) =
[
Ci(rt ) β(t)Di(rt )(Inu +Δ(m,nu))Ccj (rt )

]
,

ξ̄ (t) =
[
x(t)

ηc(t)

]

, Ξi(rt ) =
[
Ei(rt )

0

]

.

2.4 Definition and Lemma

Definition 1 [35] The closed-loop system (12) with
	(t) ≡ 0 is considered to be stochastically stable, for any
initial condition ξ̄ (0) ∈ Rn and r0 ∈ �, if there exists a
matrixW > 0 such that the following condition holds

E

{ ∞∑

t=0

∣
∣ξ̄ (t)
∣
∣2
∣
∣
∣(ξ̄ (0),r0)

}

< ξ̄T (0)W ξ̄(0).

Definition 2 [36] For a given constant γ > 0, under zero
initial condition the system (12) with an H∞ performance
γ is considered to be stochastically stable, if under 	(t) ≡
0 it is stochastically stable, then for all nonzero 	(t) ∈
l2[0,∞) the following condition holds

E

{ ∞∑

t=0

|z(t)|2
}

≤ γ 2 ‖	‖22 .

Lemma 1 [34] Suppose thatM , N and T are real matrices
with appropriate dimensions and T T T ≤ I , then for any
scalar ε > 0, one can have

MTN +NT T TMT ≤ ε−1MMT + εNT N . (13)

Lemma 2 [37] If the following conditions are founded

Mii < 0, i = 1, 2, · · · λ. (14)

1

λ− 1
Mii+1

2
(Mil+Mli) < 0, i �= l, i, l = 1, 2, · · · λ. (15)

Then we have the following inequality

λ∑

i=1

λ∑

l=1

hihlMil < 0. (16)
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3Main results

Theorem 1 For a supposed disturbance attenuation le-vel
γ > 0, the closed-loop system (12) is stochastically stable
and the controller gains are solvable if there exist positive
definite matrices Pl(m), m ∈ �, (l = 1, ..., λ) fulfilling

(A1
ij )
T
P̃l(n)A

1
ij + (A2

ij )
T
P̃l(n)A

2
ij − Pi(m) < 0, (17)

�1
ij lτ
(m) =

⎡

⎣
−℘−1

l 0 ℵmv Âij
0 −I √∏mv Ĉij
∗ ∗ −∏mv Qi

⎤

⎦ < 0, n ∈ �k, (18)

�2
ij lτ
(m) =

⎡

⎣
−P̂−1

l (n) 0 Âij

0 −I Ĉij
∗ ∗ −Qi

⎤

⎦ < 0, n ∈ �uk, (19)

where

−℘−1
l = diag

{−P̂−1
l (ϕm1 ) · · · −P̂−1

l (ϕmv )
}
,

ℵmk = [
√
π
(τ)

mϕm1
I · · ·
√

π
(τ)
mϕmv

I ]T ,

P̃l(n) =
ω∑

n=1

πmn
(τ)Pl(n),

m∏

v

=
∑

n∈�mk
πmn

(τ),

Ĉij =
[
C1
ij Fi

C2
ij 0

]

, Âij =
[
A1
ij Ξi

A2
ij 0

]

,

P̂l(n) =
[
Pl(n) 0
0 Pl(n)

]

,Qi =
[
Pi(m) 0
0 γ 2I

]

,

A1
ij =

[
Ai(m)

ᾱBcj (m)(Iny +Δ(m,ny))Gi(m)
β̄Bi(m)(Inu +Δ(m,nu))Ccj (m)

Acj (m)

] ,

A2
ij =

[
0√

ᾱ(1 − ᾱ)Bcj (m)(Iny +Δ(m,ny))Gi(m)√
β̄(1 − β̄)Bi(m)(Inu +Δ(m,nu))Ccj (m)

0

] ,

C1
ij =
[
Ci(m) β̄Di(m)(Inu +Δ(m,nu))Ccj (m)

]
,

C2
ij =
[
0
√
β̄(1 − β̄)Di(m)(Inu +Δ(m,nu))Ccj (m)

]
.

Proof Considering 	(t) ≡ 0, the system (12) is proved
to be stochastically stable. For system (12), we define
the following Lyapunov function and assume rt = m at

time instant t . V (t,m) = ξ̄ T (t)

[
λ∑

i=1
hiPi(m)

]

ξ̄ (t), where

Pi(m) > 0, supposing h+
l = h+

l (ϑ(t + 1)), ζτ (t) = ζτ , one
have

E {ΔV (t, rt )} = E
{
V (t + 1, rt+1)

∣
∣ξ̄ (t), rt

}− V (t, rt )

≤ ξ̄ T (t)
λ∑

l=1

h+
l

λ∑

i=1

λ∑

j=1

κ∑

τ=1

hihj ζτ

[
(A1
ij )
T
P̃l(n)A

1
ij

+(A2
ij )
T
P̃l(n)A

2
ij − Pi(m)

]
ξ̄ (t). (20)

According to Eq. 17, we can have the system (12) is
stoch-astically stable.

Let Ψ =
λ∑

l=1
h+
l

λ∑

i=1

λ∑

j=1

κ∑

τ=1
hihj ζτ [(A1

ij )
T
P̃l(n)A

1
ij +

(A2
ij )
T
P̃l(n)A

2
ij − Pi(m)], From λ̂min(−Ψ )

∣
∣ξ̄ (t)
∣
∣2 ≤

ξ̄ T (t)(−Ψ )ξ̄(t) ≤ λ̂max(−Ψ )
∣
∣ξ̄ (t)
∣
∣2, one can obtain

E {ΔV (t, rt )} ≤ −λ̂min(−Ψ )ξ̄T (t)ξ̄ (t), which implies

E

{ ∞∑
t=0

∣
∣ξ̄ (t)
∣
∣2
}

≤ ξ̄ T (0)(λ̂min(−Ψ ))−1 λ∑

i=1
hiPi(m)ξ̄ (0).

Let W = (λ̂min(−Ψ ))−1 λ∑

i=1
hiPi(m), from Eq. 17

achieve Ψ < 0 andW > 0. Therefore, in light of Definition
1, we obtain that the system (12) is stochastically stable.
When the zero initial condition exists we will consider the
H∞ performance in the following section. The index onH∞
performance is as follows

J = E
{
zT (t)z(t)

∣
∣
�(t),rt

}
− γ 2	T (t)	(t)

+E {V (t + 1, rt+1)
∣
∣
�(t),rt

}− V (t, rt ). (21)

Let �(k) =
[
ξ̄ (k)

	(k)

]

, and we obtain

J = E
{
zT (t)z(t)

∣
∣
�(t),rt

}
− γ 2	T (t)	(t)

+E {V (t + 1, rt+1)
∣
∣
�(t),rt

}− V (t, rt )

= E

⎧
⎨

⎩
�T (t)

λ∑

l=1

h+
l

λ∑

i=1

λ∑

j=1

λ∑

s=1

λ∑

o=1

hihjhsho

(
[
Aij Ξi

]T

[
κ∑

τ=1

ζτ

ω∑

n=1

πmn
(τ)Pl(n)

]
[
Aso Ξs

]
)

�(t)

}

−γ 2	T (t)	(t)− ξ̄ T (t)
[
λ∑

i=1

hiPi(m)

]

ξ̄ (t)

+E
⎧
⎨

⎩
�T (t)

λ∑

i=1

λ∑

j=1

λ∑

s=1

λ∑

o=1

hihjhsho

([
Cij Fi

]T [
Cso Fs

])
�(t)

}
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≤ �T (t)
λ∑

l=1

h+
l

λ∑

i=1

λ∑

j=1

κ∑

τ=1

hihj ζτ

{[
(A1
ij )
T
P̃l(n)A

1
ij + (A2

ij )
T
P̃l(n)A

2
ij (A

1
ij )
T
P̃l(n)Ξi

ΞTi P̃l(n)A
1
ij ΞTi P̃l(n)Ξi

]

+
[
(C1
ij )
T
C1
ij + (C2

ij )
T
C2
ij (C

1
ij )
T
Fi

Fi
T C1

ij F Ti Fi

]

−
[
Pi(m) 0
0 γ 2I

]}

�(t)

= �T (t)

λ∑

l=1

h+
l

λ∑

i=1

λ∑

j=1

κ∑

τ=1

hihj ζτ

⎧
⎨

⎩

[
C1
ij Fi

C2
ij 0

]T [
C1
ij Fi

C2
ij 0

]

+
[
A1
ij Ξi

A2
ij 0

]T

[
P̃l(n) 0
0 P̃l(n)

][
A1
ij Ξi

A2
ij 0

]

−
[
Pi(m) 0
0 γ 2I

]}

�(t).

From above formula, we can have

ÂTij

[
ω∑

n=1

πmn
(τ)P̂l(n)

]

Âij + ĈTij Ĉij −Qi

= ÂTij

[∑

n∈�mk
πmn

(τ)P̂l(n)

]

Âij

+
∑

n∈�mk
πmn

(τ)[ĈTij Ĉij −Qi]

+ÂTij
[∑

n∈�muk
πmn

(τ)P̂l(n)

]

Âij

+
∑

n∈�muk
πmn

(τ)[ĈTij Ĉij −Qi].
Then, from Schur complement, for each n ∈ �mk , pre- and
postmultiplying by

diag[ −P̂−1
l (ϕm1 ) · · · −P̂−1

l (ϕmv ) I I ],
one can have
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P̂−1
l (ϕm1 ) · · · 0 0

√
π
(τ)

mϕm1
Âij

∗ . . .
...

...
...

∗ ∗ −P̂−1
l (ϕmv ) 0

√

π
(τ)
mϕmv

Âij

∗ ∗ ∗ −I √∏mv Ĉij
∗ ∗ ∗ ∗ −∏mv Qi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (22)

∑

n∈�muk
πmn

(τ)

⎡

⎣
−P̂−1

l (n) 0 Âij

0 −I Ĉij
∗ ∗ −Qi

⎤

⎦ . (23)

According to Eqs. 18 and 19, we can obtain J ≤ 0 and

E

{ ∞∑
t=0

|z(t)|2
}

≤ γ 2 ‖	‖22. The proof is finished.

From the condition of Theorem 1, it is difficult to find the
solutions of the controller due to the uncertainties. In terms
of Lemma 1, the following theorem is presented.

Remark 1 Note that a common quadratic rather than
the fuzzy Lyapunov function is used to obtain more
conservative stable conditions. In terms of Theorem 1, based
on the method of linear matrix inequalities [38], we can
derive the DOFC condition in Theorem 2.

Theorem 2 For a supposed disturbance attenuation le-
vel γ > 0, the closed-loop system (12) is stochastically
stable and the controller gains Acj (m), B

c
j (m), C

c
j (m)(j =

1, ..., λ) are solvable if there exist scalars εq > 0, (q =
0, 1, 2, · · · , 2v) and positive definite matrices Pl(m), m ∈
�, (l = 1, ..., λ), such that the following inequalities
hold:

�1
ij lτ
(m) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H11 H12 H13 H14 0 0
H21 H22 H23 0 0 0
∗ ∗ H33 0 0 H36

∗ ∗ ∗ H44 0 0
∗ ∗ ∗ ∗ H55 0
∗ ∗ ∗ ∗ ∗ H66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (24)

n ∈ �k ,

�2
ij lτ
(m) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P̂−1
l (n) 0 Ãij Y1 0 0
∗ −I C̃ij 0 0 0
∗ ∗ Q∗

1 0 0 Y2
∗ ∗ ∗ Y3 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ Y4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (25)

n ∈ �uk,

where

[
H11 H12

H21 H22

]

=
[−℘−1

l 0
0 −I

]

+ ε−1
0 ££T ,

H13=ℵmv Ãij , H23 =
√
∏m

v
C̃ij , H33=

[
χ 0
0 −∏mv γ 2I

]

,

Ãij =
[
A1ij (m)

A2ij (m)

]

, C̃ij =
[
C1ij (m)

C2ij (m)

]

,

χ = −
∏m

v
Pi(m)+ χ1,

χ1 = (ε1 + · · · + ε2v−1)Φ
T
1i
Φ

1i
+ (ε2 + · · · + ε2v)RTi Ri,

H14 = diag
{
E0Kj(m) E0Kj(m) · · ·

E0Kj(m) E0Kj(m)
}
,

H44 = diag{ −ε1(π(τ)mϕm1 )
−1
I −ε2(π(τ)mϕm1 )

−1
I

· · · − ε2v−1(π
(τ)
mϕmv

)
−1
I −ε2v(π(τ)mϕmv )

−1
I },

£ =
[ √
π
(τ)

mϕm1
ΩT
i
(m)
√
π
(τ)

mϕm1
Q̄T
i
(m) · · ·
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√

π
(τ)
mϕmν

ΩT
i
(m)

√

π
(τ)
mϕmν

Q̄T
i
(m)
√∏m

v β̄D̄
T
i
(m)

√∏m
v

√
β̄(1 − β̄)D̄T

i
(m)

]T
,

H36 = Y2 =
[

(E1C̄cj (m))
T

0
0 0

]

,

H55 = −I,H66 = Y4 =
[−ε0−1I 0

0 −I
]

,

Y1 =
[
E0Kj(m) 0

0 E0Kj(m)

]

, Y3 =
[−ε1I 0

0 −ε2I
]

,

Q∗
1 =
[−Pi(m)+ ε1ΦT1i Φ1i

+ ε2RTi Ri 0
0 −γ 2I

]

.

Proof Let

A1
ij = A1ij (m)+ΔA1ij (m),

A2
ij = A2ij (m)+ΔA2ij (m),

C1
ij = C1il(m)+ΔC1il(m),

C2
ij = C2il(m)+ΔC2il(m),

A1ij (m) = Λi(m)+ E0Kj(m)Φi(m)

+Ωi(m)E1C̄cj (m),

A2ij (m) = E0Kj(m)Ri(m)+ Q̄i(m)E1C̄cj (m),

C1il(m) = ψi(m)+ β̄D̄i(m)E1C̄cj (m),

C2il(m) =
√

β̄(1 − β̄)D̄i(m)E1C̄cj (m),

ΔA1ij (m) = E0Kj(m)Δ(m,ny)Φ1i (m)

+Ωi(m)Δ(m,nu)E1C̄cj (m),

ΔA2ij (m) = E0Kj(m)Δ(m,ny)Ri(m)

+Q̄i(m)Δ(m,nu)E1C̄cj (m),

ΔC1il(m) = β̄D̄i(m)Δ(m,nu)E1C̄cj (m),

ΔC2il(m) =
√

β̄(1 − β̄)D̄i(m)Δ(m,nu)E1C̄cj (m),

Λi(m) =
[
Ai(m) 0

0 0

]

, E0 =
[

0
Inx×nx

]

, E1 =
[
0
I

]

,

Φi(m) =
[

0 I

ᾱGi(m) 0

]

, Φ1i (m) =
[

0 0
ᾱGi(m) 0

]

,

Ωi(m) =
[
0 β̄Bi(m)
0 0

]

, z

Ri(m) =
[

0 0√
ᾱ(1 − ᾱ)Gi(m) 0

]

,

Q̄i(m) =
[
0
√
β̄(1 − β̄)Bi(m)

0 0

]

,

ψi(m) = [Ci(m) 0
]
, D̄i(m) = [ 0 Di(m)

]
,

Kj (m) =
[
Acj (m) B

c
j (m)
]
, C̄cj (m) =

[
0 Ccj (m)

]
.

It is shown that �1
ij lτ (m) < 0 in Eq. 18 is equivalent to

�1
ij lτ (m) =

⎡

⎣
Υ11 0 Υ13
∗ Υ22 Υ23
∗ ∗ Υ33

⎤

⎦ < 0, (26)

where

Υ11 = diag
{
Ῡ11 · · · Ῡvv

}
,

Ῡ11 =
[−P−1

l (ϕm1 ) 0
0 −P−1

l (ϕm1 )

]

,

Ῡvv =
[−P−1

l (ϕmv ) 0
0 −P−1

l (ϕmv )

]

,

Υ13 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
π
(τ)

mϕm1
A1
ij

√
π
(τ)

mϕm1
Ξi(m)

√
π
(τ)

mϕm1
A2
ij 0

...
√

π
(τ)
mϕmv

A1
ij

√

π
(τ)
mϕmv

Ξi(m)
√

π
(τ)
mϕmv

A2
ij 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Υ22 =
[−I 0

0 −I
]

;Υ23 =
[√∏m

v C
1
ij

√∏m
v Fi(m)√∏m

v C
2
ij 0

]

,

Υ33 =
[−∏mv Pi(m) 0

0 −∏mv γ 2I
]

.

It is noted that �1
ij lτ (m) = �̄1

ij lτ (m)+Δ�̂1
ij lτ (m), in which

�̄1
ij lτ (m) =

⎡

⎣
Υ11 0 Υ̃13

∗ Υ22 Υ̃23
∗ ∗ Υ33

⎤

⎦ ,

Υ̃13 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
π
(τ)

mϕm1
A1ij (m)

√
π
(τ)

mϕm1
Ξi(m)

√
π
(τ)

mϕm1
A2ij (m) 0
...

...
√

π
(τ)
mϕmv

A1ij (m)

√

π
(τ)
mϕmv

Ξi(m)
√

π
(τ)
mϕmv

A2ij (m) 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Υ̃23 =
[√∏m

v C1ij (m)
√∏m

v Fi(m)√∏m
v C2ij (m) 0

]

,

Δ�̂1
ij lτ (m) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0
√
π
(τ)

mϕm1
ΔA1ij (m) 0

0 · · · 0
√
π
(τ)

mϕm1
ΔA2ij (m) 0

...
...

...
...

...

0 · · · 0
√

π
(τ)
mϕmv

ΔA1ij (m) 0

0 · · · 0
√

π
(τ)
mϕmv

ΔA2ij (m) 0

0 · · · 0 √∏mv ΔC1ij (m) 0

0 · · · 0 √∏mv ΔC2ij (m) 0
∗ · · · ∗ 0 0
0 · · · 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (27)

Peer-to-Peer Netw. Appl. (2019) 12:1761–1773 1767



We rewrite the formula Δ�̂1
ij lτ (m) as follows:

Δ�̂1
ij lτ (m) = Δ�̂(m)+Δ�̂1(m)+Δ�̂2(m)+ · · ·

+Δ�̂2v−1(m)+Δ�̂2v(m).

Let η0 =
[ √
π
(τ)

mϕm1
ΩT
i
(m)
√
π
(τ)

mϕm1
Q̄T
i
(m) · · ·

√

π
(τ)
mϕmv

ΩT
i
(m)

√

π
(τ)
mϕmv

Q̄T
i
(m)
√∏m

v β̄D̄
T
i
(m)

√∏m
v

√
β̄(1 − β̄)D̄T

i
(m) 0 0

]T
,

μ0 = [ 0 0 · · · 0 0 0 0 E1C̄cj (m) 0
]
,

Δ�̂(m) = η0Δ(m,nu)μ0 + μ0
T ΔT (m,nu)η0

T ,

η1 =
[ √
π
(τ)

mϕm1
(E0Kj(m))

T 0 · · · 0 0 0 0 0 0
]T
,

μ1 = [ 0 0 · · · 0 0 0 0 Φ1i (m) 0
]
,

Δ�̂1(m) = η1Δ(m,ny)μ1 + μ1
T ΔT (m,ny)η1

T ,

η2 =
[
0
√
π
(τ)

mϕm1
(E0Kj(m))

T · · · 0 0 0 0 0 0
]T
,

μ2 = [ 0 0 · · · 0 0 0 0 Ri(m) 0
]
,

Δ�̂2(m) = η2Δ(m,ny)μ2 + μ2
T ΔT (m,ny)η2

T ,

...

η2v−1 =
[

0 0 · · ·
√

π
(τ)
mϕmv

(E0Kj(m))
T 0 0 0 0 0

]T
,

μ2v−1 = [ 0 0 · · · 0 0 0 0 Φ1i (m) 0
]
,

Δ�̂2v−1(m) = η2v−1Δ(m,ny)μ2v−1

+μ2v−1
T ΔT (m,ny)η2v−1

T ,

η2v =
[

0 0 · · · 0
√

π
(τ)
mϕmv

(E0Kj(m))
T 0 0 0 0

]T
,

μ2v = [ 0 0 · · · 0 0 0 0 Ri(m) 0
]
,

Δ�̂2v(m) = η2vΔ(m,ny)μ2v + μ2v
T ΔT (m,ny)η2v

T .

Then, by Lemma 1, one can have

�̄1
ij lτ (m)+ ε0μ0

T μ0 + ε0−1η0η0
T + ε1μ1

T μ1

+ε1−1η1η1
T + ε2μ2

T μ2 + ε2−1η2η2
T + · · ·

+ε2v−1μ2v−1
T μ2v−1 + ε2v−1

−1η2v−1η2v−1
T

+ε2vμ2v
T μ2v + ε2v−1η2vη2v

T < 0, (28)

�1
ij lτ (m) = �̄1

ij lτ (m)+ Z1 + Z2 < 0, (29)

where

Z1 = diag{ε−1
1
(π
(τ)

mϕm1
)(E0Kj(m))(E0Kj(m))

T

· · · ε−1
2v
(π
(τ)
mϕmv

)(E0Kj(m))(E0Kj(m))
T 0

0 ε0(E1C̄cj (m))
T
(E1C̄cj (m))0},

Z2 =
⎡

⎣
ε0

−1££T 0 0
∗ χ1 0
∗ ∗ 0

⎤

⎦ .

We can obtain Eq. 24 by Schur complement for each n ∈
�mk ,and in the same way one can achieve Eq. 25 for each
n ∈ �muk . The proof is finished.

From the conditions of Theorem 2, we are very difficult
to find the solutions of the controller due to the conservative.
We adopt the basis-dependent Lyapounov function in this
paper. With the achieved LMI of the designed controller,
it generates a non-convex condition. In order to solve
the parameters of controller matrices, we use the CCL
algorithm to tackle it. In terms of Lemma 2, the following
theorem is given.

Remark 2 On the above proof of theorem 2, the matrix
inequalities are applied to supply conveniences of mathe-
matical derivation. At the same time, it will lead to more
conservatives. One feasible method as in [39] is to present
a constant matrix in order to decrease the conservative. In
this paper, without loss of generality, the fuzzy Lyapunov
function and the CCL algorithm are utilized to tackle the
solutions.

Theorem 3 For a supposed disturbance attenuation le-
vel γ > 0, the closed-loop system (12) is stochastically
stable and the controller gains Acj (m), B

c
j (m), C

c
j (m)(j =

1, ..., λ) are solvable if there exist scalars εq > 0, (q =
1, 2, · · · , 2v) and positive definite matrices Pl(m), Ll(m),
m ∈ �, (l = 1, ..., λ), such that the following inequalities
hold:

�1
iilτ
(m) < 0, n ∈ �k, (30)

1

λ− 1
�1
iilτ
(m)+ 1

2
(�1

ij lτ
(m)+ �1

jilτ
(m)) < 0, i �= j, (31)

�2
iilτ
(m) < 0, n ∈ �uk, (32)

1

λ− 1
�2
iilτ
(m)+ 1

2
(�2

ij lτ
(m)+ �2

jilτ
(m)) < 0, i �= j, (33)

Pl(m)Ll(m) = I . (34)

In Theorem 1 and Theorem 2, we define other relevant
variables.

Proof In terms of Lemma 2, if the matrix inequalities
(30)–(34) hold, then one can have the following inequality

λ∑

l=1

h+
l

λ∑

i=1

λ∑

j=1

κ∑

τ=1

hihj ζτ (�
1
ij lτ
(m)+ �2

ij lτ
(m)) < 0. (35)

The proof is completed.

We introduce the basic notion of the CCL algorithm. If
Pl(m) > 0, Ll(m) > 0, m ∈ �, (l = 1, ..., λ) are n̄
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dimensional solutions for the condition of LMI:
[
Pl(m) I

I Ll(m)

]

≥ 0, ∀m ∈ �, (36)

then, tr(
∑
m Pl(m)Ll(m)) ≥ n̄, furthermore, if and only if

Pl(m)Ll(m) = I ,

tr
(∑

m
Pl(m)Ll(m)

)
= n̄. (37)

In this paper, the quantizedH∞ DOFC design problem is as
follows:

mintr
(∑

l,m
Pl(m)Ll(m)

)
, (38)

subject to Eqs. 30–33 and 36.
Then the conclusions in Theorem 3 are resoluble if there

have solutions such that min tr(
∑
l,m Pl(m)Ll(m)) = λn̄

is subject to Eqs. 30–33 and 37. The algorithm is shown in
Table 1.

Remark 3 In the previous algorithm, note that, an iteration
technique is applied to tackle the minimization problem
rather than the handled problem of customary nonconvex
feasibility in Eq. 34. Because it is difficult to get the optimal

Table 1 Quantized control design algorithm

Programme Algorithm

Step 1: Seek a feasible set

(Pl
0(m), Ll

0(m),Ac0i (m), B
c0
i (m), C

c0
i (m))

to satisfy Eqs. 30–33 and 36. Set k = 0.

Step 2: Solve the following issue

mintr(
∑
l,m (Pl(m)L

k
l (m)+ P kl (m)Ll(m)))

s.t. Eqs. 30–33 and 36.

Step 3: The achieved variables

(Pl (m), Ll (m),A
c
i (m), B

c
i (m), C

c
i (m))

are substituted into the inequality Eqs. 24 and 25.

If the inequality Eqs. 24 and 25 are hold, with
∣
∣tr(
∑
l,m Pl(m)Ll(m))− λn̄

∣
∣ < δ̄

for any sufficiently small scalar δ̄ > 0,

then obtain the feasible solutions

(Pl (m), Ll (m),A
c
i (m), B

c
i (m), C

c
i (m)). EXIT.

Step 4: If k > N̄ , where N̄ is the allowed

maximum number of iterations , EXIT.

Step 5: Set k = k + 1,

(Pl
k(m), Ll

k(m),Acki (m), B
ck
i (m), C

ck
i (m)) =

(Pl (m), Ll (m),A
c
i (m), B

c
i (m), C

c
i (m)) and go to Step 2.

values to satisfy the requirement that the stopping criterion
is supposed to be verified in the minimization problem.

4 Numerical simulations

In the section, a numerical example is applied to illustrate
the validity of the proposed design method. We suppose
that three modes are in the discrete-time FMJSs (1), and
the matrixes of parameters for the system (1) are listed as
follows:

A1{1} =
[

1.1363 0.1554
−0.9647 −0.0240

]

, B1{1} =
[
0.1055
0.0909

]

,

A2{1} =
[
0.1919 0.3824
0.4814 0.3357

]

, B2{1} =
[
0.1060
0.0167

]

,

A1{2} =
[

0.1925 0.1930
−2.0994 −0.1935

]

, B1{2} =
[
0.0742
0.1930

]

,

A2{2} =
[

0.3711 0.2222
−1.7779 −0.0734

]

, B2{2} =
[
0.0786
0.2222

]

,

A1{3} =
[

1.1572 0.125
− 0.328 −0.25

]

, B1{3} =
[
0.42
0.031

]

,

A2{3} =
[
0.46 0.32
0.039 0.2

]

, B2{3} =
[−0.031

0.418

]

,

E1{1} =
[

0.0042
−0.0036

]

, E2{1} =
[ −0.0004

− 0.008

]

,

C1{1} = [ 0.0017 −0.0058
]
,

C2{1} = [−0.0020 −0.0061
]
,

D1{1} = −0.0033,D2{1} = 0.0228,

F1{1} = 0, F2{1} = 0,

G1{1} = [−0.0826 0.5
]
,G2{1} = [−0.0502 1.0

]
,

E1{1} = E1{2} = E1{3}, E2{1} = E2{2} = E2{3},
C1{1} = C1{2} = C1{3}, C2{1} = C2{2} = C2{3},
D1{1} = D1{2} = D1{3},D2{1} = D2{2} = D2{3},
F1{1} = F1{2} = F1{3}, F2{1} = F2{2} = F2{3},
G1{1} = G1{2} = G1{3},G2{1} = G2{2} = G2{3}.

We propose the design of DOFC. As opened up before
our eyes in Fig. 1, under the circumstances of network,
the signals of the controller and the ones of the model
are always projected into piecewise-constant signals before
transmission. The logarithmic quantizer (6) makes the
signal y(t) and the signal uc(t) quantize. ρ(1,1) = 0.6667,
ρ(1,2) = 0.7391, ρ(1,3) = 0.6 and η(1,1)(0) = η

(1,2)
(0) =

η
(1,3)
(0) = 0.0001 are the selected quantizer densities. It can

be calculated that δ(1,1) = 0.4, δ(1,2) = 0.5 and δ(1,3) =
0.25 hold. We apply the CCL algorithm and the LMIs in the
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theorem 3 when ᾱ = 0.8, β̄ = 0.8. The DOFC gains are
listed below

Ac1{1} =
[

0.0058 0.0116
−0.0887 0.1160

]

,

Ac2{1} =
[
0.0594 −0.0401
0.0209 −0.0177

]

,

Bc1{1} =
[−0.0541

0.0199

]

, Bc2{1} =
[−0.0913

0.0689

]

,

Cc1{1} = [ 0.0092 −0.0088
]
,

Cc2{1} = [−0.0028 0.0010
]
,

Ac1{2} =
[−0.0352 0.0519

−0.0016 −0.0188

]

,

Ac2{2} =
[

0.0143 −0.0069
−0.0091 0.0026

]

,

Bc1{2} =
[
0.0026
0.0111

]

, Bc2{2} =
[−0.0043

0.0067

]

,

Cc1{2} = [−0.0081 −0.0393
]
,

Cc2{2} = [−0.0035 0.0103
]
,

Ac1{3} =
[−0.0142 0.0248

0.0003 −0.0009

]

,

Ac2{3} =
[
0.0090 −0.0060
0.0113 −0.0015

]

,

Bc1{3} =
[−0.0041

0.0023

]

, Bc2{3} =
[−0.0043

−0.0089

]

,

Cc1{3} = [ 0.0086 −0.0276
]
,

Cc2{3} = [−0.0051 0.0075
]
.

Let ζτ (t) = hi(t). Membership functions for Rules 1, 2 and
the matrix of transition probability are listed as follows

h1(x1(t)) =
⎧
⎨

⎩

1 x1(t) ≤ − 1
0.5 − 0.5x1(t)− 1 ≤ x1(t) ≤ 1

0 else,

h2(x1(t)) = 1 − h1(x1(t)),

Π1 =
⎡

⎣
? ? 0.25
? ? 0.2
? ? 0.35

⎤

⎦ ,Π2 =
⎡

⎣
? ? 0.4
? ? 0.45
? ? 0.7

⎤

⎦ ,

Π3 =
⎡

⎣
? ? 0.15
? 0.75 ?
? ? 0.55

⎤

⎦ ,Π4 =
⎡

⎣
0.3 ? ?
? ? 0.45
? 0.6 ?

⎤

⎦ ,

where, ? represents the unknown element.
Figure 2 shows that in both the uplink and the downlink

the missing of random data packet is described. The
external disturbance is given as 	 (t)=1/(2+t). Moreover,

we suppose that x(0) = [−1 4
]T

and ηc(0) = [−2 1
]T

are the initial value of the model and the initial value of the

Fig. 2 The missing of random data packet

Fig. 3 Quantized signals and the output y(t)

Fig. 4 The state curves of the closed-loop system
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Fig. 5 The state curves of the controller

controller, respectively. The output qm(y(t)) of quantized
signals and the output y(t) of model are displayed in Fig. 3,
in which the signals are quantized well via the logarithmic
quantizer. The quantized signals quickly approach zero with
the passage of time, which suggests that the developed
technique is applicable and correct. Figures 4 and 5 display
the state curves of the closed-loop system and the state
curves of the controller, respectively, which indicates the
validity of the proposed method. The results indicate that the
nonlinear MJSs can be effectively stabilized via the fuzzy
DOFC. Furthermore, the entire model is devised perfectly
along with the advantageous capacity of the controller.
Perhaps more accurately, due to the condition performance
the states quickly converge to the equilibrium point, which
is easily noted. From Fig. 4, under the signal switching,

Fig. 6 Quantized signals and the output uc(t)

Fig. 7 the state signals of the MJSs model

it can be found that the amplitudes of the states are
smaller and denser, which further means that a more ideal
performance exists in the system. Further, from Figs. 4
and 5, it is observed that the states are approximating fast
to zero as time k passes by. Then, we can conclude that
there exists a DOFC of the form (5) such that the system
(12) with H∞ performance level is stochastically stable.
The output qm(uc(t)) of quantized signals and the output
uc(t) of the controller are indicated in Fig. 6. Additionally,
Fig. 7 plots the state signals of the FMJSs model. The
efficiency of the presented technique is illustrated by the
above phenomena. Therefore, for the closed-loop system,
the stochastic stability and the requiredH∞ performance are
ensured in this paper.

5 Conclusion

In this paper, we have dealt with the quantized control
design for a class of NMJSs with partly unknown and time-
variant transition probabilities by a T-S fuzzy approach.
Particularly in a network environment, we considered
simultaneously the effects of data packet dropouts and
signal quantization in the closed-loop circuit. A sufficient
condition of the stochastic stability and the required
performance for the closed-loop system are presented by a
fuzzy Lyapunov function. In order to deal with the solutions
for the DOFC, a sequential minimization is efficiently
tackled by the CCL procedure. The effectiveness of the
suggested control schemes is illustrated by a simulation
example. The more practical and realistic stochastic system
will be followed with interest by us. Particularly, in a
network environment, the fuzzy filtering with the semi-
Markovian jump systems (S-MJSs) are our interest.
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