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Abstract
In view of the location privacy problem of participants in mobile crowd sensing, this paper proposes a method to protect the
location of participants based on local differential privacy preference. First of all, the map is discretized and mapped from two-
dimensional space to one-dimensional space by means of MHC, which can guarantee the spatial correlation, and the map is
segmented based on the density of participants using genetic algorithm; Then, according to the personal privacy needs of current
location, two different local differential privacy perturbation methods, RAPPOR and k-RR, are chosen by participants; Next, the
chosen local differential privacy is used to perturb the location of each participant in the region after segmentation, and the
perturbed location data are sent to the data collection server to protect the participants’ locations. Finally, the simulation
experiments are carried out and show that map density segmentation can reduce the privacy cost, and the method proposed in
this paper is superior to the method using k-anonymous and differential privacy and the method using Hilbert and differential
privacy in terms of running time and average relative error, and prove that the execution time is lower and the data availability is
improved.
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1 Introduction

In recent years, large-scale and high-precision environmental
sensing has become an important prerequisite for carrying out
various social activities, and in the face of uncertain and large-
scale sensing environment such as limited network resources,
the sensing quality obtained through the pre-deployment of
dense sensor nodes is difficult to satisfy actual needs.
However, through ubiquitous intelligent terminals and net-
work access, mobile crowd sensing (MCS) migrates the sens-
ing task from the centralized platform to the distributed com-
puting terminal across spatial and temporal dimensions [1–3],
providing new ideas for large-scale and high-precision real-
time sensing problems. Unfortunately, while mobile crowd

sensing brings convenience to people, it also brings hidden
dangers of participants’ location privacy. As participants are
aware of the potential possibility of personal location leakage,
the number of participants is reduced. Some participants up-
load false sensing information or refuse to participate in sens-
ing in order to protect their locations. This situation will re-
duce the quality and quantity of sensing data. Therefore, it is
very important to protect the participant’s location in mobile
crowd sensing.

K-anonymity is currently widely used in location privacy
protection, Gruteser et al. [4] introduced the concept of k-an-
onymity into location privacy, and proposed a simple and
effective spatial concealment method for the first time, but
participants could not set different k and concealment areas
according to their requirements. Chow et al. [5] proposed a
personalized k-anonymity scheme, but k-anonymity could not
reflect the level of privacy protection accurately when the
probability of user occurrence in the conceal area is not equal.
Therefore, many scholars proposed the concept of location
entropy, which is originated from Shannon entropy, and that
is a method to measure uncertainty, which is also widely used
in location privacy protection. Beresford et al. [6] proposed a
privacy protection scheme based on mix-zone, but it didn’t
consider participants’ motion mode. Palanisamy et al. [7]
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applied the mix-zone to the vehicle location privacy protection
in the road network environment, while none of the above
methods can resist the location inference attack.

Differential Privacy (DP) makes it possible to resist all
kinds of attacks who have the greatest background knowledge
[8, 9]. Differential privacy is a new privacy definition pro-
posed by Dwork in 2006 for privacy leakage of statistical
data-base. Andres et al. [10] proposed a location-based differ-
ential privacy extension model, and generated an anonymous
location which would not be attacked within the privacy bud-
get, however, the distance between the real location and the
anonymous location could not be predicted, so the quality of
LBS service could not be guaranteed. Dewri et al. [11] used
the anonymous set distributed by Hilbert to obtain high-
quality services, but there is no similarity between the anony-
mous location and the real location, so it is easy to be attacked.
In addition, differential privacy and its variants to protect pri-
vacy are also used in algorithms that contain participant’s
location information. In literature [12], a differential privacy
mechanism for location privacy protection in spatial-based
group perception task was proposed. Tong et al. [13] put for-
ward a private scheduling protocol for ridesharing services, in
which participant’s location information was protected under
a state-of-the-art variant of differential privacy, joint differen-
tial privacy [14]. Jin et al. [15] studied the location privacy
protection in the crowdsourced spectrum perception. In their
work, participants’ locations were protected by differential
privacy, and system objectives such as task fulfillment were
optimized. Nevertheless, differential privacy protection for
sensitive information is always based on a premise: a trusted
third-party data collector, that is, to ensure that the third-party
data collector doesn’t steal or leak sensitive information about
participants. In practice, participant’s privacy is not guaran-
teed even if third-party data collectors claim that they will not
steal and leak sensitive information.

For these questions, a method for mobile crowd sensing
based on local differential privacy preference [16, 17], namely
MCS-LDPP, is proposed to protect the participant’s location.
While it can resist location inference attacks, it also transfers
the perturbation of location data to the sensors of each partic-
ipant. This can avoid sending participant’s real location infor-
mation to third party, and participants can individually define
their privacy levels in their own sensors. Then, the location
after perturbation is sent to the data collection center to better
protect the location privacy of participants.

Because the location information is perturbed in the partic-
ipant’s sensor, reducing the privacy cost is important. First,
after receiving the sensing task, participants judge which pri-
vate level they are in the task’s location by themselves, and
then the perturbation method is selected, namely k-ary ran-
domized response (k-RR) [18] or randomized aggregatable
privacy-preserving ordinal response (RAPPOR) [19]. In the
perturbation method, k-RR simplifies the process of data

perturbation, which can reduce the privacy cost of the algo-
rithm. While, if the participants have high privacy require-
ments, the perturbation using k-RR method makes data avail-
ability lower. Therefore, RAPPOR is selected under this con-
dition. By using k-RR and RAPPOR, the number of partici-
pants will affect the running time. Thus, map density segmen-
tation is conducted in this paper, and the number of partici-
pants in the corresponding region is used for perturbation
according to the location of participants.

Main contributions in this paper:

1) By using local differential privacy, the participant’s loca-
tion is protected and perturbed in the participant’s sensor,
avoiding the privacy threat from the third party;

2) Participants select the perturbation method based on the
personal privacy need of the current location. Considering
the personal privacy need of current location, participants
choose two different local differential privacy perturba-
tionmethods, RAPPOR and k-RR, so as to reduce privacy
cost and meet the participant’s needs;

3) When participants use k-RR or RAPPOR perturbation,
the regional segmentation is executed on the server side
for the participant’s perturbed location. Through the re-
gional segmentation, the privacy cost of participant’s sen-
sor is further reduced;

4) Experiments show that the method proposed in this paper
can protect the participant’s location, the method of map
density segmentation can reduce the privacy cost and it has
advantages in algorithm time and the availability of data.

2 Problem Descriptions

In mobile crowd sensing, after users participate in the sensing,
participants’ locations are protected by local differential pri-
vacy. The protectivemodel of local differential privacy is fully
considered the possibility that the data collector steals or leaks
the participant’s privacy during the process of collecting the
participant’s location. Participants perturb their locations first-
ly, and then the perturbed locations are sent to data collection
server. The received location data are made statistics on the
data collection server to obtain effective analysis results. That
is, when the location data are statistically analyzed, the priva-
cy information of the participants’ locations can’t be leaked.
The definition of local differential privacy is as follows.

Definition 1 Suppose n participants, one location for each
participant, given a privacy algorithmM, its domain Dom(M)
and range Ran(M), if any two locations t and t’(t, t ' ∈
Dom(M)) can be obtained the same output results t* (t ∗ ⊆
Ran(M)) through the algorithm M, that is, the algorithm M
satisfy the following inequalities, as shown in formula (1),
then M satisfies the ε−local differential privacy.
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Pr M tð Þ ¼ t*½ �≤eε � Pr M t0ð Þ ¼ t*½ � ð1Þ
From definition 1, the local differential privacy ensures that

the algorithm M satisfies the ε−local differential privacy by
controlling the similarity of the output results of any two par-
ticipants. In short, it is almost impossible to infer the true
participant’s location according to the privacy algorithm M.
For the differential privacy, the privacy of algorithm M is
defined by the neighbor dataset [20], so it requires a trusted
third-party data collection server to privacy the analysis results
of location data. However, for the local differential privacy,
each participant can perturb their own location data indepen-
dently. It means that the processing of perturbing the partici-
pant’s location is transferred from the data collection server to
the participant’s sensor, so the trusted third party is no longer
required, and the privacy attack that can be caused by
untrusted third party is also exempted, as shown in Fig. 1.
The participant’s location is directly perturbed in the partici-
pant’s sensor by local differential privacy, and then the
perturbed location is sent to the data collection server.
Definition 1 ensures that the algorithm satisfies ε−local differ-
ential privacy in theory, and the perturbation mechanism is
required to achieve ε−local differential privacy.

3 Location Protection Algorithms for Mobile
Crowd Sensing

For mobile crowd sensing, this paper proposes a method to
protect participants’ locations based on local differential pri-
vacy preference, MCS-LDPP. When the task publisher of mo-
bile crowd sensing publishes the task to users, users decide
whether to accept the task. Once the user accepts the task, the
participant will query the server to find the current location in
which region after segmentation, for getting the number of
participants and the participant’s id in the region after segmen-
tation. Participants select the perturbation method according
to the personal participant’s privacy need of the current loca-
tion. When the privacy need is low, that is, the privacy budget
is high, the k-RR is used, and then the participant’s location
after perturbation is sent to the data collection server. On the
contrary, when the privacy need is high, that is, the privacy
budget is low, the RAPPOR is used, and then the participant’s

location after perturbation is sent to the data collection server
in the same way. By perturbing the location information in the
participant’s sensor, the participant’s location can be protected
from attackers when it is in the transmission and the data
collection server. Even if the attacker gets the data, it’s the
encrypted data, so the attacker can’t get the actual participant’s
location, as a result, and the participant’s location is protected,
as shown in Fig. 2. In the map density segmentation, modified
Hilbert curve (MHC) is used for the segmentation of region.
The map is mapped from two-dimensional space to one-
dimensional space, which can guarantee the spatial correla-
tion. Then the map is segmented according to the density of
participants by genetic algorithm. Finally, in this way, the
points of region after segmentation can be obtained. Because
the participants’ locations are changing constantly, so regular
updates are required, but this situation is not considered in this
paper.

The participant’s location is perturbed in the participant’s
sensor, thus reducing the privacy cost is important. In this
paper, participants select the perturbation method according
to the personal participant’s privacy need of the current lo-
cation, so RAPPOR or k-RR is not always used for privacy
protection. Meanwhile, the privacy cost can be reduced.
Because k-RR is optimal when the privacy budget is high
[21], the privacy cost is reduced. In addition, when
protecting the participants’ locations, the number of partici-
pants is reduced through regional segmentation, further re-
ducing the privacy cost and enhancing the practicability of
this method.

3.1 Map density segmentation

The participant’s location is perturbed in the participant’s sen-
sor, so reducing the privacy cost is important. In this paper, the
map is divided according to the density of participants, and it
can reduce the number of beacon users when RAPPOR or k-
RR is used for perturbation. Consequently, the privacy cost of
protecting the participants’ locations can be reduced. Besides,

attack leak

data collection server

LDP

Fig. 1 Participant’s location for local differential privacy protection Fig. 2 Participant’s location privacy protection
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since the distribution of participants’ locations will be sparse,
after the regional segmentation, the difference of the perturbed
participants’ locations can be reduced, and the availability of
the perturbed participants’ locations can be improved.
Moreover, the confusion to the attacker can be increased,
and the analysis of the perturbed participants’ locations can
be more effective.

First, the map is divided initially to make the map
discretization. The map is mapped from two-dimensional
space to one-dimensional space by using MHC [22], which
can guarantee the spatial correlation. Without loss of general-
ity, it is considered that map R is a rectangular region. If and
only if the number of participants in the map is greater than the
predefined threshold, the map is divided into 4 sub-regions of
the same size recursively, as shown in Fig. 3. It is divided by
recursion according to a given threshold σ=1 until the number
of participants in the region after segmentation does not ex-
ceed the given threshold σ.

Through MHC, it’s easy to get a four-point tree, and there
are only two possibilities for each node in the tree: leaf nodes
or nodes contained four children. In order to store the tree
effectively, a breadth first search tree can be built and 1 bit
information is stored for each node to indicate whether the
node is a leaf node, and through this way we can convert the
map into serialized storage files. Figure 4 (b) shows an exam-
ple of the serialized storage of a map in Fig. 4 (a). Suppose that
the size of the potential participants’ locations in the region is
n, then the number of leaf nodes is n/σ. A quadtree with n/σ
leaf nodes has 4n/3σ nodes at most. And then, the maximum
amount of space required to serialize the file is 4n/3σ bits, so
the storage cost of the file is O(n). Because the participant’s
location density in the regionwill not changemuch in a certain
period of time, the MHC construction can be achieved by
offline mode. In order to assign Hilbert values in one-
dimensional space to each atomic unit, it is necessary to con-
duct a depth-first traversal of the quadtree, and Hilbert values

of potential participants in one-dimensional space are assigned
according to the traversal order of each leaf node. As shown in
Fig. 4 (a), the number below the leaf node represents the order
in which each leaf node is accessed, that is, the leaf node
corresponded to the Hilbert value of the atomic unit, and it
is also the Hilbert value of potentially participant’s location.
For example, in Fig. 3, the Hilbert values of the atomic units
that include the participant’s location (P2, P5) are 14 and 30
respectively, and the Hilbert values of the participant’s loca-
tion (P2, P5) are also 14 and 30 in Fig. 4 (a). The time com-
plexity of calculating the Hilbert value of each participant is
O(n).

After the above operations, the initial segmentation of the
map is obtained. The initial region segmentation sequence can
be indicated as: r1, r2⋯, rs, and the subscript is the Hilbert
value of the region. Due to the update of regional segmenta-
tion established by MHC within a certain period of time, it is
necessary to traverse according to the initial regional segmen-
tation to judge whether the potential participant is in the cur-
rent region. If the potential participant is in the i-th region, then
ai + 1. In turn, the number of participants in each region after
segmentation is received, and the sequence of participants’
number in each region after segmentation can be represented
as: a1, a2, ⋯, as.

Then, the map is segmented according to the number of
participants through using genetic algorithm [23]. The map is
divided into different grades on the basis of the sequence
which is got by the above method, such as dense, relatively
dense, medium, relatively sparse, sparse, and so on. Assuming
that n regions are divided, n-1 sequence segmentation points
need to be set, that is, n-1 values are selected from the se-
quence of subscript 1, 2, ⋯, s which is obtained from the
sequence of participants’ number in each region after segmen-
tation. The corresponding sequence is indicated as: D = {d1,
d2,⋯, dn − 1}, where d1, d2, ⋯, dn − 1 ∈ {2, 3,⋯s − 1}. The
element values in D are arranged in ascending order, shown

a s : D
0 ¼ d

0
1; d

0
2;⋯; d

0
n−1

n o
, w h e r e

1 < d
0
1 < d

0
2 < ⋯ < d

0
n−1 < l. If the subscripts are equal,

two adjacent region cell-grids are merged. Through segmen-
tation, the corresponding relation between the subscript set
D1, D2, ⋯, Ds of s region cells and the complete sequence
of subscript is as follows. It can be seen from the above that
each combination of D values corresponds to a segmentation
scheme, so the regional segmentation is transformed to find an
appropriate subscript set D of the sequence of segmentation
points, making the value ofΔminimum, as shown in formula
(2):

Δ ¼ ∑
s−1

j¼1
∑k¼D j

jak− 1

h j
∑i¼D j

aij ð2Þ

Where, hj is the number of elements in set Dj.Fig. 3 MHC division
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On the basis, genetic evolution is carried out, and individ-
ual detection, selection, crossover and mutation operations are
performed. After reaching the maximum number of genera-
tions, the calculation is terminated. In the final population, the
optimal solution output is selected for the individual with the
maximum fitness, that is, the optimal subscript set D of the
sequence of segmentation points is obtained. The algorithm
for calculating the region segmentation point is described as
follows.

Algorithm 1: genetic algorithm to calculate the region seg-
mentation point.

Input: the sequence of participants’ number in each
region after segmentationa1, a2, ⋯, as, population size
M, maximum generation W, control parameters of fitness
calculation αand β, adjustment parameters of selection op-
eration γ.

Output: the region segmentation points

Step 1 G values for groupM are generated randomly, where
the element values in G become binary, and the
encoding length of each element is [lbl] + 1, where
[*] represents the integer operation, and then, the
coding length of G is (s-1)([lbl] + 1). From this, the
binary sequence of M group is obtained as the initial
population;

Step 2 The w-th generation group is selected to determine
whether the G values of M groups in the group are
all within the effective range. If the subscript is not
in the upper limit l, then a bit of 1 is selected ran-
domly from the corresponding binary sequence and
set to 0. If all the subscripts are in the range, take the
next step;

Step 3 Follow the minimized objective expression, the cor-
respondingΔθ = 1, 2,⋯,Mθ ofG value forM groups
is calculated. Its minimum value and maximum value
are Hmin and Hmax respectively, and Δh =Hmax −
Hmin;

Step 4 The normalized fitness is calculated, as shown in
formula (3):

Fθ ¼ Hmax−Δθ þ α
Δh þ α

� �β

; θ ¼ 1; 2;⋯;M ð3Þ

Step 5 Selection operations: verify whether Fθ ≥ rand ∗ γis
true, if not, eliminate the θ-th individual, then verify
the next individual; if the expression is true, proceed
to the next step;

Step 6 The θ-th member of the population is selected to
produce the next generation, and the individual itself
is directly passed on to the next generation;

Step 7 Crossover operations: two crossing points are gener-
ated randomly, and two individual sequences are ex-
changed divided by crossing points;

Step 8 Mutation operations: A point is selected randomly
from an individual, and its bit location is reversed
to form the w + 1 generation group;

Step 9 Verify if w is equal toW, if it’s not equal to w + 1, and
go back to step 2; if it satisfies, go to the next step;

Step 10 In the final population, the maximum fitness indi-
vidual is selected as the output of the optimal solu-
tion, in other words, the optimal subscript set G of
the sequence of segmentation points is achieved.

3.2 Privacy protection for participant’s location

After receiving the sensing task, participants can select the
perturbation method according to the personal privacy need
of the current location. In terms of different privacy budgets,
the performance of the two perturbation methods, RAPPOR
and k-RR, shows some difference [24]: with the privacy bud-
get ε = ln k, the RAPPOR is used for the lower privacy budget,
while the k-RR is better when the privacy budget is high.
Therefore, in this paper, when the privacy budget ε < ln k,
the RAPPOR is used, and when the privacy budget ε ≥ ln k,
the k-RR is selected.

Fig. 4 MHC mapping

Peer-to-Peer Netw. Appl. (2019) 12:1097–1109 1101



3.2.1 k-RR perturbation algorithm of participants’ locations

Once the participant selects the privacy need of the current
location, the k-RR is used when the privacy budget is high.
For the n participants’ locations in the region, the location
xi ∈ χ, which is the i-th participant Ui. The value of χis ob-
tained from the region after segmentation by algorithm 1 and
∣χ ∣ = k (k is got from algorithm 1). When k > 2, we can
respond immediately. For any input in the participant’s loca-
tion R ∈χ, the output of participant’s location R' ∈χ is shown
in the following formula (4):

P R
0 jR

� �
¼ 1

k−1þ eε
eε; if R

0 ¼ R
1 ; if R

0
≠R

�
ð4Þ

That is, response to real results with the probability of
eε

k−1þeε, and in the probability of 1
k−1þeε response to the other

results, so it satisfies the ε-local differential privacy.

3.2.2 RAPPOR perturbation algorithm of participants’
locations

The RAPPOR is used for perturbation when the participant’s
location is selected to be in the low privacy budget. Let
A= {a1, a2,…,as} be whether the participant accepts a task
in the region after segmentation, and s denotes the number of
participants in the region after segmentation, which is calcu-
lated by algorithm 1 in section 3.1. For the i-th user, if it is the
participant, ai is set to 1; otherwise, ai is set to 0. Let U be an
array of s bits, and Uj represents the value of the jth bit in U.
That is to say, when the ith user accepts the task, the bit cor-
responding to the user is set to 1 and the other bits are set to 0,
as shown in formula (5):

U j ¼ 1; if j ¼ i
0; otherwise

�
ð5Þ

The next step is to perturb U which is obtained from the
previous step by RAPPOR. Each bit in U is first perturbed by
randomized response, as shown in formula (6):

P U
0
j ¼ x

� �
¼

0:5 f ; x ¼ 1
0:5 f ; x ¼ 0
1− f ; x ¼ U

8<
: ð6Þ

Where, f(f ∈ [0, 1]) is a system parameter that controls the
privacy level. It means that values close to 1 enforce a stronger
privacy guarantee. In RAPPOR, the generated U' is called the
permanent random response.

Then, another perturbation is applied to each bit of U', and
the instantaneous random response is obtained, denoted as S,
as shown in formula (7):

P S j ¼ 1
� � ¼ q; if U

0
j ¼ 1

p; if U
0
j ¼ 0

(
ð7Þ

Where, p ∈ [0, 1] and q ∈ [0, 1] represent the probability of
setting Sj = 1when Uj' = 1 and Uj' = 0 respectively.

At last, the instantaneous randomized response S is sent to
the data collection server.

It can be seen from the Literature [19], when

ε ¼ hlog q* 1−p*ð Þ
p* 1−q*ð Þ

� �
,q* ¼ 1

2 f pþ qð Þ þ 1− fð Þq, and

p* ¼ 1
2 f pþ qð Þ þ 1− fð Þp, the above random encoding

method satisfies ε-differential privacy.
Algorithm 2: perturbation algorithm of the partici-

pant’s location.
Input: the participant’s location, and the participant’s pri-

vacy need for the current location.
Output: participant’s location after perturbation

Step 1 Select the perturbation method according to the per-
sonal participant’s privacy need for the current
location;

Step 2 If ε ≥ ln k, get the k which is the number of partici-
pants in the region after segmentation from the data
collection server, and k-RR is used to perturb the
participant’s location. The perturbation steps are as
section 3.2.1;

Step 3 Else get the k which is the number of participants in
the region after segmentation and the participant’s id
from the data collection server, and RAPPOR is used
to perturb the participant’s location. The perturbation
steps are as section 3.2.2;

Step 4 The participant’s location after perturbation is sent to
the data collection server.

4 Simulation experiments and analysis

Gowalla data set are adopted in this paper, and experimental
environments are in Window 10 operating system, Intel core
i5-7300 processor, and 8GB memory, and the algorithm is
written in MATLAB language.

4.1 Parameter setting

In genetic algorithm, the range of population size M is in
[200,400], and the range of maximum evolutionary algebra
W is in [100,300]. αis positive, generally 10−6; β is a positive
integer which is 1, 2, 3; γ > 0 and it is close to 1; rand is a
random number between [0,1].

In Fig. 9 (a) and Fig. 11, f is from 0 to 0.4, increasing by
0.1, and (q, p) = (0.75, 0.25). At this time ε is from ln(9) to
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ln(3.35); f is 0.2, and (q, p) are (0.65, 0.35) and (0.55, 0.45). In
this case, ε are ln(2.66) and ln(1.38). In Fig. 7 (b) and Fig. 10,
ε are set as 7, 7.25, 7.5, 7.75, 8, 8.25.

4.2 Proof of privacy

In this experiment, 750 users’ locations are randomly selected,
as shown in Fig. 5 (a). In Fig. 5 (a), the blue points are the
selected 750 users’ locations, and the horizontal and vertical
coordinates are the longitude and latitude of the users’ loca-
tions respectively. 40 users’ locations are randomly selected
from 750 users’ locations as the participants’ location. 40 par-
ticipants’ locations are distributed in different regions and the
selected participants’ locations are represented by red points,
as shown in Fig. 5 (b).

According to the region after segmentation, the number of
participants in the current region is obtained. Through the
number of participants, two perturbation methods are distin-
guished, and the privacy budget is divided in ε = ln k. The
selected 40 participants’ locations are protected by the two
perturbation methods of local differential privacy, namely k-
RR and RAPPOR. The participant’s location after perturba-
tion in both cases of ε < ln k and ε > ln k is verified, and it is
proved that the participant’s location can be protected effec-
tively. The experimental results are shown in Fig. 6.

The 40 participants’ locations after perturbation by k-RR
are shown in Fig. 6 (a). Compared Fig. 6 (a) with Fig. 5 (b), it
can be found that the number of red points increases. It is
proved that the number of participants which is sent to the
data collection server increases after the perturbation, so the
participant’s location can be protected after perturbing by k-
RR.

Simultaneously, the 40 participants’ locations after pertur-
bation by RAPPOR are shown in Fig. 6 (b). Compared Fig. 6
(b) with Fig. 5 (b), it can be found that the number of red
points increases, which is also proved that the participant’s
location can be protected after perturbing by RAPPOR. In
addition, from the comparison between Fig. 6 (a) and Fig. 6
(b), it is observed that the red points in Fig. 6 (b) are more than

those in Fig. 6 (a), which can be proved that RAPPOR is better
for the participant’s location protection than k-RR. Because in
this experiment, the privacy budget of RAPPOR is lower than
the privacy budget of k-RR, indicating that more noise is
added to RAPPOR. So, the sensitive points in Fig. 6 (b) are
more than those in Fig. 6 (a).

Through the above experiments, it is proved that two per-
turbation methods of local differential privacy can be used to
protect the participants’ locations.

4.3 The role of map density segmentation

Because the participant’s location protection is protected in
the participant’s sensor, perturbation time affects electricity
consumption. The longer the perturbation time is, the more
electricity consumption is, as shown in formula (8). Thus,
it can be seen that privacy cost is related to electricity
consumption. In addition, perturbed locations are sent to
the data collection server for further analysis. The greater
the difference between the perturbed locations and the
original locations is, the less information will be provided,
as shown in formula (9). In order to obtain more accurate
information, more participants may be needed, and as a
result, the incentive cost of task publishers will be in-
creased. The higher the data availability is, the lower the
incentive cost will be. Therefore, the privacy cost is related
to data availability, and the lower the data availability is,
the higher the privacy cost will be. So, the privacy cost is
as shown in formula (10).

e ¼ k⋅t ð8Þ

c ¼ 1

l
⋅r ð9Þ

w ¼ γ⋅eþ 1−γð Þ⋅c ð10Þ

Among them, γ and 1-γ represent the weight of electricity
consumption and incentive cost for privacy cost. In this paper,
without loss of generality, γ = 0.5 is chosen, indicating that in
privacy cost, electricity consumption and incentive cost are
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equally important. e denotes electricity consumption, t de-
notes perturbation time, c denotes incentive cost, and r de-
notes relative error, where k = 0.1, l = 1. Since the relative
error range is [0, 1], there is a large difference in the value of
perturbation time and relative error, and the influence of in-
centive cost on privacy cost is not obvious. In order to verify
the role of map density segmentation, the method which does
not use map density segmentation for perturbation, namely N-
MDS is used for comparison to show how the map density
segmentation affects the proposed scheme, and experimental
results are given in Fig. 7 and Fig. 8.

From Fig. 7, with k unchanged and the privacy budget
changed, it can be found that the privacy cost of N-MDS is
higher than that of MCS-LDPP. Since there is no map density
segmentation in N-MDS, the relative error is greater than that
of MCS-LDPP, and the incentive cost c of N-MDS is greater
than that ofMCS-LDPP. As the number of perturbed locations
is different, N-MDS is higher thanMCS-LDPP in perturbation
time, so the electricity consumption of N-MDS is greater than
that of MCS-LDPP. In addition, it can be seen from Fig. 7 that
the privacy cost w decreases with the increase of ε. This is
because, with the increase of ε, the smaller the perturbation is,
data availability increases and the incentive cost c decreases.
Therefore, for N-MDS and MCS-LDPP, the privacy cost w
decreases with the increase of ε.

From Fig. 8, with the privacy budget ε unchanged and k
changed, it can be found that the privacy cost of N-MDS is
higher than that of MCS-LDPP, for the same reason. In addi-
tion, it can be seen from Fig. 8 that the privacy cost w de-
creases with the increase of k. This is because, as k increases,
the perturbation time increases and the electricity consump-
tion e increases. As a result, for N-MDS and MCS-LDPP, the
privacy cost w decreases with the increase of k.

4.4 Comparison of algorithm running time

750 users’ locations are randomly selected in this experiment as
the participants’ locations. The algorithm proposed in this paper
is compared with literature [25] and [11]. In literature [25], k-
anonymity and differential privacy are used to protect the pri-
vacy of the participants’ locations, represented as k +DP in the
following; in literature [11], Hilbert and differential privacy is
used for perturbation, finally, the perturbed location which is
the minimum average distance to the original location is select-
ed as the output, which is represented by DP below. In the
experiment, in literature [25], when k-anonymous is used to
protect the participants’ locations, k takes the number of partic-
ipants’ locations in the region after segmentation; similarly, k
represents the same meaning in literature [11].
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The experiment is divided into 4 parts. When the k is equal
to 20 and the privacy budget ε < ln k, the algorithm time of
RAPPOR to perturb the participant’s location is compared
with the running time of k +DP and DP, as shown in Fig. 9
(a); when the k is equal to 20 and the privacy budget ε > ln k,
the algorithm time of k-RR to perturb the participant’s location
is compared with the running time of k +DP and DP, as shown
in Fig. 9 (b); when the privacy budget is the same and the k is
changed, the algorithm time of RAPPOR to perturb the par-
ticipant’s location is compared with the algorithm time of k +
DP and DP, as shown in Fig. 10 (a); when the privacy budget
is the same and the k is changed, the algorithm time of k-RR to
perturb the participant’s location is compared with that of k +
DP and DP, as shown in Fig. 10 (b).

In Fig. 9 (a) and Fig. 9 (b), it is can be seen that when the
privacy budget increases, it hasn’t obvious change in the run-
ning time of MCS-LDPP which uses two different perturba-
tion methods and the algorithm time of k + DP and DP. The
reason is that the algorithm time of MCS-LDPP, k +DP and
DP varies with k. And in Fig. 9 (a) and Fig. 9 (b), the algorithm
running time of MCS-LDPP is lower than the running time of
k +DP and DP, it means that MCS-LDPP has less privacy cost
than k + DP and DP when the participant’s location is
protected by MCS-LDPP. The reason is that in literature

[25], k-anonymity and differential privacy are used to protect
the participants’ locations, which are perturbed twice; in liter-
ature [11], when the value of k is a constant, the time to judge
the distance between the perturbed location and the original
location is invariant, at the same time, the time of perturbing
locations does not vary with k. Nevertheless, the MCS-LDPP
method proposed in this paper is that perturbed locations are
directly output after local differential privacy, so MCS-LDPP
is better in the algorithm running time.

The running time of RAPPOR is showed in Fig. 10 (a)
when the privacy budget doesn’t change (ε < ln k) and ε =
0.98. With the increase of k, the algorithm time of MCS-
LDPP, k + DP and DP increases. RAPPOR perturbs every
bit of k, and the participant’s location is firstly protected by
k-anonymous in k +DP, and then, the participant’s location
which has perturbed by k-anonymous is protected by differ-
ential privacy again, and the participant’s location is protected
by differential privacy in DP, and then DP should consider the
distance between the perturbed location and the original loca-
tion, and it takes a process to choose the perturbed location
which is the minimum average distance to the original loca-
tion as output. So, the running time increases with the increase
of k. In Fig. 10 (a), it can be found that the algorithm time of
MCS-LDPP is lower than the algorithm time of k +DP and
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DP, and it means that MCS-LDPP has less privacy cost than
k +DP and DP when the participant’s location is protected by
MCS-LDPP. Meanwhile, with the decline of k, the algorithm
time of MCS-LDPP decreases, so it proves that when using
RAPPOR to perturb the participants’ locations, reducing the
number of participants by regional segmentation can reduce
the privacy cost.

The running time of k-RR is showed in Fig. 10 (b) when the
privacy budget doesn’t change (ε < ln k) and ε = 7.25. With the
increase of k, the algorithm running time of k +DP and DP
increases, and the algorithm time of MCS-LDPP is basically

unchanged. It is because that the algorithm time of k-RR is
independent of the change of k. In Fig. 10 (b), for the same
reason, the algorithm time of k-RR is obviously lower than the
algorithm time of k +DP and DP, namely MCS-LDPP has less
privacy cost than k +DP andDPwhen the participant’s location
is protected by MCS-LDPP. That is to say, it is proved that
classification can reduce the privacy cost significantly.

From the comparison between Fig. 9 (a) and Fig. 9 (b), and
the comparison between Fig. 10 (a) and Fig. 10 (b), the algo-
rithm time of RAPPOR is lower than the algorithm time of k +
DP and DP. So, it proves that when protecting the participant’s
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location, the privacy cost can be reduced by using different
perturbation methods which divide through the personal par-
ticipant’s privacy need.

4.5 Data availability

In this paper, the relative error used in literature [26] is used to
measure the availability of the participant’s location, and the
relative error is shown as follows:

Error ¼
jQ D

0
j

� �
−Q Dtð Þj

max Q Dt; sð Þð Þ ð11Þ

The above formula calculates the error by querying the partic-
ipant’s location Q on the perturbed participants’ locations com-
pared to query the participant’s location Q on the unperturbed
participants’ locations. And the parameter s is to avoid a zero in
the denominator when the participant’s location Q is queried.

The average relative error is tested in the case that the
privacy budgets of RAPPOR and k-RR take different values
respectively. The selective parameter s is set for 1% of the data
set. In this experiment, the query area, shown as Size(Q) is set
for 5%, 15%, 25% and 50% of the total data set, and k is equal
to 750. The query is divided into different groups according to

the size of Size(Q). The following figures show the experi-
mental results. Among them, the perturbation method is
RAPPOR and the results of the experiment in the RAPPOR
are shown in Fig. 11, and the perturbation method is k-RR and
the results are shown in Fig. 12. It's necessary to note that each
of these values is the average of ten queries.

In Fig. 11, the average relative error decreases with the
increase of privacy budget. The reason is that with the increase
of ε, the noise added to the participant’s location decreases,
which makes the query more accurate. With the increase of
Size(Q), under the same privacy budget, the average relative
error of MCS-LDPP, k +DP and DP decreases. In addition,
the average relative error ofMCS-LDPP byRAPPOR is lower
than that by k +DP and DP. It means that after adding noise,
the data availability of participant’s locations inMCS-LDPP is
better than that in k +DP and DP. Because the larger Size(Q),
the smaller ratio of noise data it contains, and the average
relative error of DP is lower than k +DP because DP should
take in account of the distance between the perturbed location
and the original location, and in the same way, the perturbed
location which is the minimum average distance to the origi-
nal location is selected as the output in the end. And in this
paper, map density segmentation reduces the distance between
the perturbed location and the original location, so the average
relative error of MCS-LDPP is lower than DP.
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In Fig. 12, the average relative error decreases with the
increase of privacy budget. Similarly, the reason is that with
the increase of ε, the noise added to the participant’s location
decreases, which makes the query more accurate. In Fig. 12,
we can find that the average relative error ofMCS-LDPP by k-
RR is lower than that by k +DP and DP, and it means that after
adding noise, the data availability of participant’s locations in
MCS-LDPP is better than that in k +DP and DP. In addition,
with the increase of Size(Q), under the same privacy budget,
the average relative error decreases, because the larger the
Size(Q), the smaller ratio of noise data it contains.

At the same time, it can be found from the comparison
between Fig. 11 and Fig. 12, the average relative error of
MCS-LDPP by RAPPOR is higher than that of MCS-LDPP
by k-RR, because after the perturbation by RAPPOR, more
noise data appears during the query.

5 Conclusions

This paper proposes a method to protect mobile crowd sensing
location based on local differential privacy preference.
According to the personal privacy needs of current location,
participants choose two different local differential privacy per-
turbation methods, RAPPOR and k-RR. By using local differ-
ential privacy, the participant’s location can be protected di-
rectly in the participant’s sensor, avoiding the privacy threat
from the third party. The map is segmented on the server, and
then the number of participants and the participant’s id in the
participant’s region are sent to the participant’s sensor for par-
ticipant’s location perturbation. Through the segmentation of
map, the perturbation privacy cost of participants’ sensor is
reduced. This method is proved that it has advantages in pri-
vacy protection, data availability and algorithm running time.
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