
https://doi.org/10.1007/s12083-019-00746-y

Centrality prediction based on K-order Markov chain in Mobile
Social Networks

Mengni Ruan1 · Xin Chen1 ·Huan Zhou1

Received: 4 December 2018 / Accepted: 19 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, we proposed a centrality prediction method based on K-order Markov chains to solve the problem of centrality
prediction in Mobile Social Networks (MSNs). First, we use the information entropy to analyze the past and future regularity
of the nodes’ centrality in the real mobility traces, and verify that nodes’ centrality is predictable. Then, using the historical
information of the center of the node, the state probability matrix is constructed to predict the future central value of the
node. At last, through the analysis of the error between real value and predicted value, we evaluate the performance of the
proposed prediction methods. The results show that, when the order number is K = 2, compared with other existing four
time-order-based centrality prediction methods, the proposed centrality prediction method based on K-order Markov chain
performs much better, not only in the MIT Reality trace, but also in the Infocom 06 traces.

Keywords Mobile Social Network · Prediction method · Node centrality · Information entropy · Markov chains

1 Introduction

With the rapid development of mobile smart devices (such
as ipads, PDAs, and smart-phones), Mobile Social Networks
(MSNs) have began to emerge in our daily life [1–3]. In
MSNs, mobile smart devices can be considered as nodes,
and short-distance communications between devices can
be viewed as edges between nodes, which often appear
or disappear over time. Since carriers of mobile smart
devices are individual members of society, data is mostly
spread among nodes with social relations, such as friends,
classmates, and family members [4–9]. Although Mobile
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Social Network is inherently a dynamically connected
network with time-varying topology, the activity of nodes
in the network with this characteristic is not irregular.
Actually, the mobility of nodes in MSNs mainly depends
on human behavior patterns. Some studies have showed
that the activities of individuals or groups of people are
generally characterized by regularity, aggregation and social
characteristics, and the regularity of human intrinsic activity
makes the predictability of people’s behavior as high as
93% [10].

In recent years, more and more research has used
social network analysis technology to help design routing
protocols [11–15]. Centrality is one of the focuses of
social network analysis. The greater the influence, the more
likely a node is to contact other nodes [16–19]. Therefore,
this paper will use node’s centrality to analyze the social
characteristics of MSNs. Previous studies have proposed
some centrality metrics to measure the importance of nodes
such as betweenness centrality, closeness centrality, degree
centrality, and so on [20–22]. At present, some studies in
MSNs have tried to predict the centrality (or importance)
of nodes in the future. For example, Kim et al. in [23]
have proposed several methods to predict nodes’ future
importance under three important centrality metrics, namely
degree, closeness, and betweenness centrality. However,
according to the evaluation results, the proposed methods
have a large difference in terms of performance. The main
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reason is that the proposed methods fail to make full use
of discrete time series information. To solve this problem,
in the paper we propose a prediction method based on the
Markov chain. The Markov chain is a theory that studies the
state of things and their transition probabilities, which can
not only be applied to time and space sequences, but also
to represent randomness. Because of the continuous nature
of the development of things, which makes a very close
relationship between adjacent variables, there is a certain
limitation in the 1-order Markov chain. In order to make the
Markov chain not only represent the real situation, but also
improve the prediction performance, Bartlett [24] proposed
the concept of high-order Markov chain, which extends the
traditional 1-order Markov chain correlation to high-order
correlation. In MSNs, because of its own social nature,
nodes will have a certain continuity. That is, the previous
period has a significant impact on the latter period, which
is similar to the nature of Markov chain. However, when
using the 1-order Markov chain model to predict the state
of the future, a lot of historical state information is ignored
and only the information of the current moment is used.
Therefore, this paper proposes a prediction method based on
K-order Markov chain to predict the future importance of
nodes in MSNs. The main contributions of this paper are as
follows:

1. By analyzing the information entropy of the node’s
centrality, we found the regularity and relativity of the
node centrality.

2. The K-order Markov chain-based prediction model is
proposed, and extensive simulations are conducted to
determine the optimal order K .

3. The K-order Markov chain-based prediction method is
compared with other four existing prediction methods.
The results show that the K-order Markov chain-based
prediction method has great advantages.

The remainder of this paper is organized as follows.
Section 2 gives a brief introduction about the related work.
Section 3 introduces the K-order Markov chain and three
centrality metrics. Section 4 uses the information entropy
to analyze the past and future regularity of the nodes’
centrality. Section 5 introduces K-order state transition
matrix and prediction model. Extensive simulations are
conducted to evaluate the performance of the proposed
methods in Section 6. Section 7 concludes the paper.

2 Related work

Human daily activities are regular. For groups, such as
school classes, teams and interest groups, the frequency
and time of their behavior and the law of group activities
are relatively stable [25–27]. People often say that “things

are gathered together, people are divided into groups” and
nodes with the same or similar nature will come together to
form small groups [28, 29]. The small world characteristics
of human mobility behavior makes human society exhibit
high clustering characteristics, and a few people occupy
the core position of social networks [30]. The social nature
of people’s behavior means that people are more inclined
to move around in places they are relatively familiar with,
and more likely to choose to be with people who are
familiar with them [31]. This shows that the centrality of the
temporal state of the nodes in MSNs is predictable.

Centrality is a measure of the influence of a node in a net-
work. For simplicity, most studies in MSNs tend to model
MSNs as the static network to analyze nodes’ central-
ity [16]. For example, authors in [32] proposed SimBet
Routing which uses the betweenness centrality metric and
locally social similarity to improve data transmission effi-
ciency. Authors in [23] proposed a method of sequential
graph, which transforms the topological structure of the net-
work into a set of static graphs based on time sequence.
Authors in [33] proposed a basic theoretical framework for
sequential graph modeling. In sequential graph modeling,
MSNs are modeled as a set of continuous graphs in a contin-
uous period of time. The structure of the MSNs in each time
period is considered to be basically not change. Authors
in [34] consider the dynamic network of MSNs as a set
of network topology snapshots from a series of minimum
time units. In this model, network characteristics of MSNs’
connectivity, sparsity, and data forwarding indicators are
considered. Authors in [35] developed a more general model
by introducing a variable representing the speed at which a
message travels. Furthermore, authors in [36] also proposed
temporal centrality metrics based on temporal paths in order
to measure the importance of a node in a dynamic network.

To measure nodes’ centrality more accurately, some stud-
ies have tried to model MSNs as a time-varying network,
and propose several methods to predict nodes’ future cen-
trality based on time-varying graphs. For example, authors
in [23] have proposed several methods to predict nodes’
future importance under three important centrality met-
rics, namely degree, closeness, and betweenness central-
ity. Similarly, through extensive real trace-driven simula-
tions, authors in [7] observed that nodes’ temporal cen-
trality shows strong correlation. With this knowledge, they
designed several intuitive methods to predict nodes’ future
temporal centrality. However, the results also showed that
the performance of different prediction methods are obvi-
ously different. The main reason is that the proposed pre-
diction methods fail to make full use of discrete time series
information, while the Markov process is a theory that stud-
ies the state of things and their transition probabilities [24].
Authors in [37] used Markov chains to predict the social-
ity of future vehicles and proposed two greedy heuristics to
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select the most “central” vehicles as seeds for mobile adver-
tising. Based on the above work, our work tries to use the
Markov chain model to predict nodes’ centrality in MSNs.

3 Basic knowledge

In this section, we first introduce the K-order Markov chain
model used in this paper and then present the centrality
metrics which are used to analysis information entropy of
nodes and prediction problem.

3.1 K-order Markov chain

The Markov chain describes a state sequence, which is
described in the mathematical field as a discrete time random
variable with Markov properties. The main idea is that given
the state information of the current moment, the past (i.e. the
historical state of the present moment) is irrelevant with the
predictions of the future (i.e. the future state of the present
moment), that is, the past and the future are independent of
each other. When there are n consecutively changing things,
and in the course of its change, the result of any change
is non-responsive, then the set of these continuous changes
is called the Markov chain, and the process of evolution of
such things is called Markov process [38–41].

Because the development of things is continuous, there
is a high correlation between the state of the adjacent
neighbor. However, when using the 1-order Markov chain
model to predict the state of the future, a lot of historical
state information is ignored and only the information of the
current moment is used. Therefore, such limitations make
the practical application of 1-order Markov chain prediction
method lack of prediction accuracy. In order to improve the
prediction accuracy, authors in [42] use K-order Markov
chain model to estimate network link packet loss in time
domain. In this paper, similarly, we use the K-order Markov
chain model to predict nodes’ future centrality in MSNs.
The K-order Markov chain model extends the order of
Markov chain in the observation sequence from 1-order
correlation to K-order correlation, the advantage of which
is that it can make better use of historical information
and establish a reasonable and very close relation between
several neighboring historical states, present moment states
and future states. It can be defined as:

P (Ct = it |Ct−1 = it−1, ..., C0 = i0) =
P (Ct = it |Ct−1 = it−1, ..., Ct−k = it−k) (1)

3.2 Centrality metrics

The importance of nodes is the most important research
hotspot in MSNs, which refers to the influence of nodes.

From the point of view of the network topology, the
importance of a node is not its independent property, but
the common relationship that the node encounters with
other nodes. The network centrality of a node can measure
the importance of nodes in a network topology. Centrality
metrics is a very important concept in network analysis,
which is used to measure the importance of nodes in the
network. There are several common methods to measure
“centrality”. In this paper, we only introduce three of them:
degree, betweenness and closeness centrality. Formally, we
use the standard definition of the degree, betweenness and
closeness centrality, and the centrality value of a node i can
be expressed as follows [13].

3.2.1 Degree centrality

Degree centrality represents the total number of direct links
with other nodes of a certain node. Higher degree centrality
value of a node means more contacts with other nodes in the
network, and the Degree centrality value of a certain node i

is expressed as:

Degree(i) =

∑

j �=i,j∈V

e(i, j)

|V | − 1
(2)

where e(i, j) = 1 if a direct link exists between node i and
j , and V is the set of nodes in the network.

3.2.2 Betweenness centrality

Betweenness centrality represents the extent to which a
node lies on the shortest paths linking other nodes in
the network, which can be calculated as the proportional
number of the shortest paths between all node pairs in the
network, that pass through a certain node. Betweenness
centrality value of a certain node i is expressed as:

Betweenness(i) =
∑

u�=i,v �=i,i∈V

δu,v(i)

δu,v

(3)

where δu,v is the total number of shortest paths starting from
the source node u and ending at the destination node v,
and δu,v(i) is the number of shortest paths starting from the
source node u and ending at the destination node v which
pass through node i.

3.2.3 Closeness centrality

Closeness centrality represents the distance a certain node
to all other reachable nodes in the network, which can
be calculated as the average shortest path length between
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a certain node and all other reachable nodes. Closeness
centrality value of a certain node i is expressed as:

Closeness(i) = 1

|V | − 1

∑

j �=i,j∈V

�i,j (i) (4)

where �i,j is the number of hops in the shortest path from
node i to node j and V is the set of nodes in the network.

4 Information entropy analysis

In this section, the information entropy is used to describe
the change rule of node centrality in MSNs. The concept
of entropy comes first from thermodynamics in physics,
but entropy in information theory has nothing to do with
the entropy of thermodynamics. In information theory, one
measure of uncertainty is the use of entropy. Information
entropy is an analysis of the uncertainty of objective
outcome in the angle of random experiment, which is used
to calculate the expected value of random variable, the
greater the information entropy of this random variable,
the greater the uncertainty of the variable. Therefore,
information entropy can be used to measure the regularity
of the system, and when the regularity of a system is higher,
the information entropy will be smaller.

C represents the degree centrality random variable of the
node. Assuming the size of the observation sequence is S,
then this observation sequence can be expressed as a vector
V = (v0, v1, ..., vS−1), where 0 ≤ i ≤ S − 1 , vi represents
the degree of centrality of the node in the i-th window. The
probability of the value j is cj /S, where cj represents the
number of times the value is j . Therefore, the entropy of V

can be expressed as:

E (C) =
∑∞

j=0

(
cj /S

)
log2

1

cj /S
(5)

Here, when K = 1, for a given node’s current degree
centrality C, the random variable C′ represents the degree
centrality of the previous time window of the node. If S is
large enough, C′ and C have the same distribution. Vector
V can be expressed as W = {(vi, vi+1) : 0 ≤ i ≤ S − 2}.
Therefore, the joint entropy of C′ and C can be expressed
as:

E
(
C′, C

) =
∑

(c′,c)∈W
p

(
c′, c

)
log2

1

p (c′, c)
(6)

where p
(
c′, c

)
is the number of occurrences of

(
c′, c

)
in W

divided by the total number of pairs of elements in W .
When E (C) and E

(
C′, C

)
are known, the conditional

entropy of C for a given C ′ is:

E
(
C|C′) = E

(
C′, C

) − E
(
C′)

= E
(
C′, C

) − E (C) (7)

When K = 2, for a given node’s current degree centrality
C, the random variable C′ represents the degree centrality
of the first two window of the node. Similarly, we can get
conditional entropy E

(
C|C′) as follows:

E
(
C|C′′) = E

(
C′′, C

) − E
(
C′′)

= E
(
C′′, C

) − E
(
C′, C

)
(8)

The centrality sequence of each node is constructed
with the collected data set, and the marginal entropy and
conditional entropy of the current state of the node are
computed when the centrality of the K time window is
given (K = 0 is the marginal entropy of the current state
of the node, and K > 0 is the conditional entropy of a
node where the K state before the current state is known).
Figure 1 gives the simulation results of the marginal entropy

0 1 2 3 4 5 6

Information entropy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
he

 c
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

of
 

no
rm

al
iz

ed
 in

fo
rm

at
io

n 
en

tr
op

y

Marginal
Entropy K=1
Entropy K=2
Entropy K=3

(a) MIT Reality

0 1 2 3 4 5

Information entropy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
he

 c
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

of
 

no
rm

al
iz

ed
 in

fo
rm

at
io

n 
en

tr
op

y

Marginal
Entropy K=1
Entropy K=2
Entropy K=3
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Fig. 1 Cumulative distribution function of the entropy of the degree
centrality
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and conditional entropy of the degree centrality of the node
in the MIT Reality and the Infocom 06 traces.

In Fig. 1, where the horizontal axis represents informa-
tion entropy, the longitudinal axis represents the cumulative
distribution function of normalized information entropy. In
the case of K = 0, 1, 2, 3, the cumulative distribution of
the marginal entropy and conditional entropy of the node in
the MIT Reality trace and the Infocom 06 trace is shown in
Fig. 1 (K = 0 is the marginal entropy of the current state of
the node. When K > 0 is the conditional entropy of a node
where the K state before the current state is known). It can
be seen from the figure that the conditional entropy of the
K = 1 is much smaller than the marginal entropy, and the
conditional entropy of the K = 2 is much smaller than the
conditional entropy of theK = 1. At the same time, the con-
ditional entropy is obviously less than the marginal entropy,
and the conditional entropy decreases with the increase of
K value. This phenomenon indicates that the degree cen-
trality of the node has certain regularity, and the uncertainty
of the degree centrality of the node decreases with the
knowledge of some degree centrality information before the
present, which provides a possibility for the prediction of
the centrality of the node’s future.

Figure 2 shows the comparison of the marginal mean
entropy and the conditional mean entropy of degree
centrality, betweenness centrality and closeness centrality
of the nodes in the MIT Reality and the Infocom 06 traces.
It can be obtained from Fig. 2 that the conditional mean
entropy is obviously less than the marginal mean entropy.
And the conditional mean entropy is obviously reduced
as the value increases. This conclusion is similar to the
conclusion drawn from Fig. 1, which proves the regularity
and relativity of node centrality, and provides a theoretical
basis for predicting the future centrality of nodes based on
K-order Markov chain method.

5 Prediction based on K-order Markov chain

In this section, we introduce the K-order state transition
matrix and construct the prediction model which based on
the K-order Markov chain prediction method.

5.1 K-Order state transitionmatrix

Based on the K-order Markov chain prediction method,
the prediction of node’s centrality is the probability
of calculating all possible states by the current known
historical state information, in which the maximum
probability state is the desired state, that is the prediction
centrality value. The state transition probability matrix is
composed of the probability of state, and the centrality
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Fig. 2 Mean entropy of different centrality metrics

prediction method based on K-order Markov chain is
mainly to solve the state transition probability matrix.

When solving the K-order state probability transfer
matrix S, the centrality of nodes in the next time window is
predicted by the centrality of the adjacent k time window of
the current time window. In the state transition probability
matrix S, the matrix element represents the probability of
arriving at state b from a state a, after a k time unit, and
becomes a k-step state transition probability:

ma,b = P (Cn+1 = b|C (n − k + 1, n) = a) (9)

where v represents any continuous k centrality value in
(v0, v1, ..., vS−1), and b represents an independent centrality
value.
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The solution of the state transition matrix S is obtained by
a large number of centrality historical data of the node, and
as same with the information entropy, it can approximate its
probability by the frequency at which the nodal centrality
value appears:

P (Cn+1 = b|a) = N (b, a)

N (v)
(10)

where N (v) represents the number of consecutive occur-
rence of the centrality value of k in a certain state as a in the
historical data sequence, andN (b, a) represents the number
of times the next state is b after the state is a in the historical
data sequence.

5.2 Predictionmodel

Given a time series contact graph, for each node vi , calculating
the centrality of each node in the contact graph, a series of
centrality values can be obtained, denoted as {xi}ni=1. By
discretizing the continuous measures, a finite state space can
be obtained, expressed as S. The Markov chain of k-state
transition probabilities can be used to estimate for all a ∈ S
and b ∈ Sk , where b = (b1, b2, ..., bk). Remember the nba

is the number of times the state b follows the value a in the
sequence. Note the nb is the number of occurrences of state
b, and pb;a represents the estimation of the state transition
probability from state b to state (b2, ..., bk, a). The state
transition probability of the maximum likelihood estimator
of the K-order Markov chain is:

pb;a =
{

nba/nb , if nb > 0
0 , otherwise

(11)

Specifically, bi represents the current state of node vi in
the K-order Markov chain. The centrality of node vi in the
next window can be calculated as:

Ci
f u =

∑

a∈S
pb;a × a (12)

In the process of predicting node’s future centrality, two
parameters are critical to the computational accuracy: the
order of Markov models and the historical data length used
for training models. For Markov chain models with known
state sets, simply increasing k does not necessarily apply
to the inclusion of dependencies in time series. The order
of Markov chains can be evaluated by information content
test [43].

6 Performance evaluation

In order to evaluate the performance and accuracy of
the proposed prediction methods, extensive simulation
experiments are carried out in real traces. Here, we also
use two real mobility traces, the MIT Reality and Infocom
06 traces to do extensive simulations. For each prediction

method, we use the average error between the predicted
value and the real value to analyze the prediction precision
of the proposed prediction method, and we compare the
predicted results with the performance of several prediction
methods based on time windows.

6.1 Simulation setup

In the process of data processing, because the centrality
value of the node retention accuracy is high, the difference
between the values is small. If the value of each centrality
is an independent state, it will not only cause the states to
be more, but also cause the state to be difficult to match.
At the same time, when the state transition probability
matrix is computed, the calculation of time and space is
more complicated. Therefore, it is necessary to classify the
nodes according to their centrality value. In this chapter,
for the calculation of the state transition probability matrix,
the probability of each state is calculated with the current
state as the starting state. Take the MIT dataset closeness
centrality of the node as the example to illustrate.

There are 97 nodes in the MIT Reality, and a total of
77 different closeness centrality values are obtained by
computational statistics. After sorting, you can find that
due to the high accuracy of data retention, the number of
effective digits after the decimal point is not large, so the
difference between the closeness centrality value is not big,
but if the 77 different closeness centrality value as a single
independent state to calculate, it will cause the states of
node to be too big, the state transition probability matrix
is large and inconvenient to calculate, it can also make the
states difficult to match. Therefore, the closeness centrality
value is artificially divided. In the experiment process, the
closeness centrality value is divided into a state with little
difference, which can reduce the total number of states in
the calculation process, so as to simplify the calculation.

The main performance index of the evaluation forecast-
ing method is its prediction precision, that is, the size of
the prediction error. The prediction error is the difference
between the predicted value and the real value, which can
be divided into absolute error and relative error according
to different characteristics, and the absolute error is also
called the position deviation, and the relative error is also
called the scale deviation. The absolute error reflects the
size of the measured deviation from the real value, where
the error analysis of the centrality predictive method based
on Markov is carried out with absolute error. |V| is the num-
ber of nodes in the network, you can define the prediction
method error as the average of the predicted errors for all
nodes in the network:

Error(Gr+1) =
∑

u∈V
∣
∣
∣Cr+1(u) − Ĉr+1(u)

∣
∣
∣

|V| (13)
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For each predictionmethod, the error Error(Gr+1) between
the predicted value and the real value is used to analyze the
prediction accuracy of the proposed prediction method.

6.2 Performance comparison

It is necessary to solve the problem of state space expansion
based on the proposed centrality prediction method. The K-
order state transition probability matrix is constructed using
nodes’ history centrality scale ofN , and the state probability
transfer matrix’s size is Nk × N . If the state number N

and the order K values are very large, the state transition
probability matrix will be large, and the complexity of
computation and search is very large. It has been proved
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Fig. 3 Prediction of degree centrality using the K-order Markov
chain-based prediction method

in the relevant literatures that low order Markov chains can
also achieve good prediction results in the case of large data
volume [44]. Therefore, this paper makes a judgment on the
order of K in Markov chain by simulation experiment on
the basis of the collected real mobility traces.

Figure 3 shows the prediction results of the degree
centrality values in the MIT Reality and Infocom 06 traces
using a centrality prediction method based on K = 1, 2, 3-
order Markov chain, where the horizontal axis represents the
number of time windows used for the predicted data, and
the longitudinal axis represents the predicted error between
the predicted value and the real value. The results show
that when the order K = 1, the prediction error is big and
the fluctuation and volatility are large, the performance is
not stable and the prediction effect is not good. When the
order K = 2, the prediction error reaches the minimum
value, and the volatility is small and the performance is
stable. When the order K = 3, the performance of Markov
chain prediction method compared to K = 2, although the
prediction error is relatively increased, but the fluctuation is
less and the prediction result is relatively stable. With the
growing of K in K-order Markov chain, the complexity of
computation increases exponentially, so the computational
complexity of prediction method and the prediction error are
considered synthetically, based on K-order Markov chain
prediction method, when K= 2 the prediction method based
on Markov chain has the least error and relatively good
stability in each dataset.

We summarize the above results of the simulation exper-
iments using the K-order Markov chain-based centrality
prediction method in the MIT Reality and Infocom 06
traces. With the increase of the orderK , the time complexity
and the spatial complexity of the computational scale will
increase exponentially, although the Markov chain-based
prediction method of order K = 2 is obviously better than
that of K = 1, the prediction performance of order K = 3
Markov chain-based prediction method is not better than
the order K = 2 in terms of prediction error and stabil-
ity. One aspect of this result is that the prediction method
based on the K-Markov chain is only a probabilistic pre-
diction, and its prediction results can only indicate that the
system is approaching a certain state in the future with a
certain probability, rather than absolutely infinite approxi-
mation to this state. On the other hand, when calculating
the state transition probability matrix, the artificial manual
state division is adopted according to the value of the node’s
centrality. Therefore, comparing to the K = 2 Markov
chain-based prediction method, the prediction performance
of the Markov chain-based prediction method of order K >

2 in the simulation experiment does not have great improve-
ment. Therefore, in the following, our proposed K-order
Markov chain-based centrality prediction method in MSNs
is modeled using the 2-order Markov chain.
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After choosing the optimal K of the K-order Markov
chain-based prediction method, we compare our proposed
prediction method with four other existing prediction
methods introduced in [7]:

1. Last Method: Only using the node’s centrality value in
the last observation time window as the centrality value
of the node in the next window.

2. Recent Uniform Average Method: Using the average
node’s centrality value of the last m observation
windows to predict the centrality value of the node in
the next window.

3. Recent Weighted Average Method: Using the weighted
average node’s centrality value of the lastm observation
windows to substitute the uniform average centrality
value.

4. Periodical AverageMethod: For people’s daily lives, the
reasonable period is one day or one week. For periods
of one day or one week, consider using the period-
averaged centrality value as the centrality value of the
future prediction window.

Figure 4 shows the centrality prediction results for different
prediction methods in the MIT Reality. It can be seen
from the figure that compared with four other existing
centrality prediction methods, the performance of our
proposed prediction method based on 2-order Markov chain
is obviously better when predicting three centrality metrics.
Our proposed centrality prediction method not only in the
prediction error, but also in the stability of the prediction
error has a greater advantage. When compared with the
best performance recent weighted average method, the
prediction errors are not much different in the prediction of
degree centrality, and their prediction errors are unbiased in
the prediction of the betweenness centrality and closeness
centrality. At the same time, it can be seen that the prediction
method based on the 2-order Markov chain has less volatility.

Figure 5 shows the centrality predictive results for
different prediction methods in the Infocom 06 traces. It
can be seen from the figure that compared with the other
four existing centrality prediction methods, the performance
of our proposed centrality prediction method is obviously
better. When compared with the best-performance last
method, their prediction errors are basically the same when
predicting the degree centrality, while for the prediction
error of the betweenness centrality and closeness centrality,
the prediction performance of our proposed centrality
prediction method is much better. Therefore, our proposed
2-order Markov chain-based prediction method is superior
to other existing prediction methods.

Therefore, the above results prove that our proposed
prediction method is superior to other existing prediction
methods, can be applicable to both MIT Reality and
Infocom 06 traces.
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Fig. 4 Comparison of prediction methods in the MIT Reality trace
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Fig. 5 Comparison of prediction methods in the Infocom 06 trace

7 Conclusions

This paper analyzed the centrality of nodes in MSNs and
proposed an effective method for predicting nodes’ future
centrality. By analyzing the information entropy of a large
number of nodes’ centrality values using the real mobility
traces, it is proved that when the centrality of the node
is known, the uncertainty of the centrality of the node is
reduced, providing a theoretical basis for predicting the
future centrality of the node. Discovering the limitation of
1-order Markov chain model, this paper proposed nodes’
centrality prediction method using historical information
based on K-order Markov chain, and gave the conclusion
that the order of K in Markov chain is based on the analysis
of the results by experiment comparison. Finally, extensive
real trace-driven simulations are conducted to evaluate the
performance of our proposed K-order Markov chain-based
centrality prediction method, using three centrality metrics,
namely betweenness centrality, closeness centrality, and
degree centrality. The results show that compared with
other existing prediction methods, our proposed prediction
method performs much better not only in the MIT Reality
trace, but also in the Infocom 06 trace.
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