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Abstract
To enhance the reliability as well as the value of sensing data in Wireless Sensor Networks (WSNs), a type of Energy-efficient
Target Tracking Approach (ETTA) is proposed in this paper. The sensor network is divided into several virtual grids for
distributed tracking and three kinds of states (tracking state, prepared-tracking state and preparing-tracking state) of these grids
are also proposed to reduce energy consumption and enhance the accuracy of node localization. Moreover, a tracking recovery
strategy is also described in this paper that effectively enhance the robustness of the tracking system. Experiment results show that
ETTA has a good performance on target tracking in sensor networks compared to BPS and EMTT.
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1 Introduction

Wireless Sensor Networks (WSNs) is a special type of ad-hoc
network that is composed of a large number of inexpensive
sensors. They are often powered by portable energy supplies
and can sense physical events to collect environmental informa-
tion [1, 2]. Target tracking, whose goal is to detect and track the
moving targets, has been one of the most typical applications in
WSNs [3, 4]. In some applications of the modern military field,
the randomly deployed sensor nodes have been adopted for
target tracking. For example, in the military base, with the help
of a large number of cheap nodes as well as other precise equip-
ment, it is better to detect, locate and track illegal intrusion
targets in real time. In addition, this WSN-based target tracking

technology is also widely used in the fields of biological habits
monitoring and urban road traffic monitoring. For example, as
early as 2005, the researchers from UC Berkeley put 30 sensor
nodes on the Great Duck Island to track the behavior of wildlife
in real time. Finally, they obtained the most comprehensive data
on animal life habit.

In WSNs, the accuracy of localization directly affects the
effect of target tracking. Nowadays, there are three types of
localization strategies in sensor networks, those are range-based,
range-free and hybrid localization methods. In the range-based
method, some additional hardware should be installed on nodes,
so they are expensive and not suitable for large-scale densely
deployed networks. On the other hand, the location accuracy
based on the range-free methods are often not high enough.
Relatively speaking, the hybrid localization algorithm achieves
a compromise between the above two, but its overhead on time
and space is much higher. Thus, it is also not suitable for target
tracking system with high real-time requirements. Therefore,
how to design a lightweight target localizationmethodwith high
accuracy is the first problem to be solved in this paper.

Different from the discrete event detection method [5], the
WSN-based target tracking system often needs continuous
monitoring. That is to say, there should always exist nodes
that can detect the target along its trajectory. Usually, when
the targets move into the network, many sensor nodes have to
remain in active mode to track these targets in all potential
directions. Nevertheless, nodes are powered by low-cost bat-
teries and should work for a long time in an unattended man-
ner. So, how to reduce the energy consumption of nodes so as
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to ensure the network runs for a long time becomes more and
more important [6]. In our previous work, we have designed
several types of energy replenishment schemes by using some
mobile charging vehicles [7, 8]. However, it is undeniable that
the wireless charging rate is still slow nowadays, and it is not
realistic to charge all nodes periodically. Therefore, in order to
reduce the energy consumption of nodes in the process of
target tracking, current researches mainly focus on the energy
saving strategy of the active nodes.

In general, the locality characteristics of the target tracking
process are obvious. So, it is sometimes unnecessary to awaken
all the nodes. Inmost cases, it only needs to wake up some nodes
in the area where the target is expected to arrive [9, 10]. On the
other hand, if the neighbor node which works in sleeping mode
couldn’t be waked up in time, the target may be missing. Thus,
how to design a reliable sleep scheduling strategy for nodes in
the process of target tracking is of great significance to the energy
consumption as well as the running effect of the whole network.

In order to solve the above problems, a virtual grid based
target tracking strategy is proposed in this paper.
Contributions of our work can be concluded as follows.

Firstly, with the help of the collaboration between grids, not
all the nodes are required to participate in target tracking. This
not only enhances the energy efficiency of the whole network
but also reduces the cost of communication.

Secondly, the position of the target can be accurately and
timely calculated out by the improved APIT (Approximate
Point-In-Triangulation test algorithm) localization algorithm.
Thus, the predicted trajectory of the target is almost the same
as its real trajectory.

Finally, a tracking recovery mechanism is also proposed
that enhances the robustness of our method. Moreover, the
target may also be detected in real time when it moves out
of the network or moves into the network again.

The remainder of this paper is organized as follows. The
related works are described in section 2. And the virtual grids
based network model as well as the target localization method
are described in section 3 and 4 respectively. In addition, the
target tracking strategy based on moving direction prediction
is proposed in section 5. Finally, experimental results of ETTA
are shown in section 6 and the conclusion is provided in the
last section.

2 Related works

As mentioned above, target tracking is a significant application
in WSNs so that a lot of scholars have carried out related re-
search [11, 12]. Lots of researches on target tracking are com-
mitted to looking for an optimum energy consumption strategy,
enhancing the tracking accuracy and reducing the time spending
on calculation [13]. Generally, the target tracking methods in
WSNs could be classified into three categories: tree-based

tracking strategy [14–18]; cluster-based tracking strategy [2,
10, 19–23] and prediction-based tracking strategy [24–30].

2.1 Tree-based tracking strategies

In this type of strategies, sensor nodes are often organized as a
tree or graph structure, in which the vertices represent the
nodes and the edges represent the links between nodes that
can communicate directly. Kung [14] and Liu [15] organized
the network as a distributed database by the tree-based struc-
ture, which is also called Bmessage-pruning tree^. In this
structure, each sensor node should register with each other
when the target enters or leaves its detection range. Thus,
the target can easily be detected. However, the cost on com-
munication of this strategy is much higher. Zhang et al. [16]
proposed a dynamic tree-based collaboration method, which
was formalized as a multiple moving target optimization prob-
lem. A sequence based on some trees with low energy con-
sumption and high coverage was selected out to enhance the
accuracy of tracking. In addition, Mehta et al. [17] researched
on the location privacy issues in target tracking under this tree-
base method. They calculated out a lower bound on the com-
munication overhead of location privacy and discussed the
trade-offs between communication cost and location privacy.
In addition, Alaybeyoglu et al. [18] proposed an approach to
awaken nodes in a real time target tracking system. It formed a
tree-based structure to decrease the missing rate of the
target alone the predicted trajectory of the target dynamically.

2.2 Cluster-based tracking strategies

In cluster-based strategies, nodes are organized as some clusters,
with each cluster consisted of several cluster member nodes and
one cluster head. When the cluster members detect the target,
they immediately send data to their cluster heads. After
collecting the information from all its members, the cluster head
could predict the position of the target. The cluster-based coop-
eration in target tracking is used to promote collaborative data
processing, which greatly reduces the energy consumption by
managing the scarce resources of the whole networks.

Liao et al. [5] proposed a distributed information compression
method by cluster-based structure, which described the measure-
ment uncertainty of target tracking in sensor networks. This kind
of leader-based information processing scheme is proved to im-
prove the tracking accuracy. Moreover, Wang et al. [10] pro-
posed an energy saving mechanism in target tracking, which
based on dynamic and distributed adaptive clustering with rea-
sonable routing.An intra-cluster optimal routing frameworkwith
Particle Filter (PF)was established in this algorithm to predict the
position and trajectory of the target. Bernabe et al. [19] proposed
a novel and efficient cluster selection approach in target-tracking,
which was able to track multiple targets accurately in real-time
applications by the camera activation mechanism. Bhatti et al.

1042 Peer-to-Peer Netw. Appl. (2019) 12:1041–1060



[20] proposed a cluster-based target tracking mechanism, which
constructed static clusters at the time when the network was
firstly deployed. In this algorithm, the size and cluster members
of each cluster were fixed, but the cluster headmust be in regular
rotation among nodes of each cluster. So, the better distribution
of energy consumption about all nodes can be ensured in the
network. Teng et al. [21] employed a general state evolution
model of target tracking to describe the dynamical system with-
out precise location information of the sensors. Compared with
the centralized approaches, this algorithm reduced energy con-
sumption as well as the bandwidth occupancy. Similarly, Enayet
et al. [22] also proposed a clustering target tracking mechanism,
where the cluster heads coordinated with their cluster members
and determined the target location precisely by aggregating sens-
ing data from these member nodes. This mechanismwas proved
to minimize the sensing redundancy of sensor nodes and to
maximize the number of sleeping nodes in the networks.
Furthermore, Fu et al. [23] proposed an efficient cluster head
selection scheme for target tracking, in which the cluster mem-
bers were dynamically chosen by adopting a greedy on-line
decision method. In order to balance the tracking accuracy and
energy consumption in Wireless Camera Sensor Networks
(WCSNs), this greedy on-line decision method also considered
the limited energy of all camera nodes.

2.3 Prediction-based tracking strategies

Prediction-based methods, with a prediction the target trajec-
tory and its next location, only activate special nodes of net-
works for tracking and rest of nodes remain in sleeping mode
for energy saving. Typical target prediction methods include
kinematics-based prediction [24–26], dynamics-based predic-
tion [27], and Kalman Filter prediction [28–30]. Kinematics
and dynamics are two branches of the classical mechanics.
Kinematics describes the target motion without considering
circumstances that cause the motion, while dynamics studies
the relationship between target motion and its causes.

Jiang et al. [24] presented a prediction-based and sleep
scheduling protocol which was an example of kinematics-
based prediction. Another example of this type of prediction
is the Prediction-based Energy Saving scheme (PES) intro-
duced in [25]. It only used simple models to predict a specific
location without considering the detailed moving probabili-
ties. Turgut et al. [26] predicted the next position of the target
by the linear predictor, in which the previous location and
current location of the target were all taken into account.
The prerequisite of their study is that the target has a linear
mobility with constant velocity. However, this is often unre-
alistic because the movement of the target is often uncontrol-
lable. Moreover, Taqi et al. [27] proposed a dynamic
prediction-based protocol. They predicted the position that
the target was probably moving to by calculating yaw rate
and the side force, instead of estimating all the possibilities.

The Kalman Filter model allows the elaboration of an algo-
rithm to estimate the optimal state vector values. It’s possible to
generate a sequence of state values in each time unit, predicting
future states using the current state, and allowing the creation of
systems with real-time updates. J.M. Hsua et al. [28] tracked the
mobile target by the regression-based prediction andKalman filter
in sensor networks. Similarly, Olfati-Saber et al. [29] presented a
distributed version of theKalman Filter that is applicable to sensor
networks with different observation matrices. This enables the
sensor network to act as a collective observer. Experiments with
target tracking applications show that the distributed version is
similar to the centralized version in terms of performance. Feng
et al. [30] proposed a dynamic approach for target tracking by an
improved Kalman filter, in which the cluster head received the
estimations of the target from their respective cluster members,
and then, it applied the modified Kalman filter (KF) based on
Fisher information matrix for filtering in target tracking.

All of these researches cited above performed target tracking
in a continuous observation sensor networks, which estimate the
target position by complex computations and estimating the dis-
tance from nodes to the target. Although the prediction-based
methods introduced above performed target tracking more accu-
rately, they usually resulted in high-energy consumption.

In view of the fact that the current target tracking system
consumes a lot of energy, in the proposed strategy, the network
is firstly divided into some grids. With the help of the collabo-
ration among different grids, most of the nodes can be in
sleeping mode during the target tracking process. This ensures
that the network runs steadily for a long time. In addition, to
enhance the accuracy of target tracking, an improved APIT
localization method is also proposed without additional hard-
ware. Furthermore, most of the current researches do not con-
sider how to discover the target again when it is lost. In our
algorithm, the lost target can be found again in time, as long
as they are still in the network or re-enter the network. It is worth
noting that the proposed method is not only applicable to rect-
angular networks, but also to networks with irregular shape.

3 Network model

In large-scale sensor networks, the network is often divided into
several rectangular grids for cluster building, topology mainte-
nance and routing. For example, BGeographical Adaptive
Fidelity^ (GAF) [5, 31] is one of the classic grid-based routing
algorithms. On the other hand, using several cooperative sensor
nodes in grids for target tracking can not only enhance the per-
formance on real-time and accuracy but also reduce energy con-
sumption and data redundancy. Therefore, in the proposedmod-
el, the rectangular network with the length ofM and width of L
is divided into several grids whose lengths and widths arem and
l respectively (bothM/m and L/l are integers). It is assumed that
(M/m) × (L/l) = k. As shown in Fig. 1, if the shape of the

Peer-to-Peer Netw. Appl. (2019) 12:1041–1060 1043



network area is irregular, its external rectangle is divided into
grids according to the method described above. What’s more,
some definitions are listed as follows.

3.1 Boundary grid

If the network boundary goes through grid Gu, Gu is a bound-
ary grid, such as G1 in Fig. 1.

3.2 Neighborhood grid

If Gu and Gv have common edges or vertices, they are neigh-
bor grids of each other, such as G1 and G2 in Fig. 1.

N nodes are randomly deployed in the network, and it is
assumed that each node knows its geographical coordinate. rs
and rt are defined as the length of the sensing radius and com-
munication radius respectively. In order to ensure the real-time
accuracy of target tracking, each node should be able to commu-
nicate with any node located in the neighbor gird directly. That
is, 4l2 + 4 m2 ≤ rt2.

Obviously, if the shape of the network is irregular, the number
of nodes in the boundary grid may be much less than those in
other regions. Take the boundary grid Gu as an example, if
Num(Gu) <N/k, it is regarded that nodes in Gu are not suitable
to be clustered separately (e.g., grid G3 in Fig. 1). Num(Gu) is
defined as the total number of nodes in Gu. In this case, for each
node Si in Gu, the average distance between Si and nodes in the
neighborhood grid Gv can be calculated out by formula (2) (the
value of Num(Gv) should be no less than N/k). Then, the

neighborhood grid (e.g., Gv) with the smallest value of
P(Si) = δE(Si) + η/σ(Si,Gu)

2 is selected out. Thus, Si is allocated
to this specific neighborhood grid, and the value of Num(Gv) is
updated toNum(Gv) + 1. As shown in Fig. 1, nodes S3, S4, S5 and
S6 join in the clusters ofG1 andG4 respectively.G1 andG4 are the
neighborhood of G3. Moreover, CH1 and CH4 are defined as the
cluster headers.

d Si;Gvð Þ ¼
∑

Num Gvð Þ

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x u; ið Þ−x v; jð Þð Þ2 þ y u; ið Þ−y v; jð Þð Þ2

q

Num Gvð Þ
ð1Þ

In formula (1), x(u,i), y(u,i), x(v,j) and y(v,j) are defined as
the vertical and horizontal coordinates of Si and Sj respective-
ly. Subsequently, nodes in each grid begin to form clusters
separately. For each node Si in Gu, the priority of being the
cluster head can be defined by formula (2).

P Sið Þ ¼ δE Sið Þ þ η=σ Si;Guð Þ2 ð2Þ

δ and η are the adjustable parameters which vary from 0 to
1. E(Si) represents the residual energy of Si. σ(Si,Gu)

2 is de-
fined as the variance about the distance between Si and other
nodes in Gu. That is,

σ Si;Guð Þ2 ¼
∑

Num Guð Þ−1

j¼1
x u; ið Þ−x u; jð Þð Þ2 þ y u; ið Þ−y u; jð Þð Þ2

Num Guð Þ−1
− d Si;Guð Þ
� �2

ð3Þ

Fig. 1 Nodes Distribution and
Clustering based on Grids
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Thereinto,

d Si;Guð Þ ¼
∑

Num Guð Þ−1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x u; ið Þ−x u; jð Þð Þ2 þ y u; ið Þ−y u; jð Þð Þ2

q

Num Guð Þ−1
ð4Þ

To ensure energy balance between nodes and to minimize
the cost of communication, the node with the maximum value
of P(Si) is selected as the cluster head of Gu. In the following
process of target tracking, if the residual energy of the cluster
head is less than 15% of its initial energy, it will no longer
serve as a cluster head. In this case, the grid will select a new
cluster head according to the same method so that the network
can run well.

4 Target localization

At present, RSSI (Received Signal Strength Indicator) is still
one of the most widely used methods for distance measure-
ment in sensor networks. However, a large number of re-
searches have shown that the wireless signal transmission be-
tween nodes is easily influenced by the environment which
results in reflection, refraction, diffraction et al [32]. To a
certain degree, it reduces the accuracy of target tracking.
Therefore, it is necessary to improve the tracking accuracy
of nodes for the moving target. As mentioned before, in
ETTA, each node knows its position. Thus, the average rang-
ing error Δd can be defined as follows.

Δd ¼ 1

N
∑
i¼N

i¼1

∑
j¼Num nei Sið Þ

j¼1
d Si; S j
� �0

−d Si; S j
� �� �

Num nei Sið Þ

0
BBB@

1
CCCA ð5Þ

d(Si,Sj)′ is the distance measured by RSSI between Si and
Sj, and d(Si,Sj) represents the real distance between them. It is
not difficult to know that d(Si,Sj) is less than d(Si,Sj)′.
Moreover, Num_nei(Si) is defined as the number of neighbors
of Si.

Thus, when the node detects the target O, the estimated
distance will be revised by formula (6).

d Si;Oð Þ0 ¼ d Si;Oð Þ−Δd ð6Þ

d(Si, O) is the measured distance between Si and the target.
In the two-dimensional plane network, to get its position,

the sensor needs to obtain at least three non-collinear anchor
nodes’ coordinates. However, in ETTA, due to the boundary
effect as well as the distribution of nodes, the target may still
be able to located even if it is only detected by two nodes.

As shown in Fig. 2, assuming that only Si and Sj in the
network can find the target, O. The radius of circle Si is the
corrected value of the measured distance between Si and O.
Similarly, the radius of circular Sj can be obtained. Next, con-
sidering the following conditions.

1) If circle Si and Sj intersect, there are two possibilities for
the estimated position of the target, as O and O′ show in
Fig. 2(a). If another active node Sk appears near both Si
and Sj and d(Sk, O′) is smaller than rt, it is certain that the
target’s real position is O because Sk did not detect the
target. If there is no such node like Sk in the network, we
can use the convex programming idea to take the inter-
section of the line SiSj and the straight-line OO’ as the
estimated position of the target, as shown in Fig. 2(b).

2) If there exists an inclusion relation between the circle Si
and the circle Sj, the straight line SiSj intersects the
narrowest of the rings formed by these two circles. The
midpoint of the two intersections will be set as the esti-
mated position of the target, as shown in Fig. 2(c).

(a) (b)

(c) (d)   

(e)

Fig. 2 Target’s Position Estimation by Two Nodes only

Peer-to-Peer Netw. Appl. (2019) 12:1041–1060 1045



3) If the circle Si is tangent to the circle Sj, the tangent point
will be taken as the estimated position of the target, as
shown in Fig. 2(d).

4) When the circle Si and the circle Sj are separated, which
means that the straight line SiSj will intersect the two
circles at two points, the midpoint of the two intersection
points will be chosen as the estimated position of the
target, as shown as demonstrated in Fig. 2(e).

When the target is detected by three or more nodes, the
traditional localization method can be used to achieve the
positioning of the target. In this case, APIT (Approximate
Point-in Triangulation Test) [4, 5] is a good choice because
it is not only range-free but also an iterative refinement based
method. That is to say, the node which is to be positioned can
choose three beacons (black points shown in Fig. 3) to test
whether it is in the triangle formed by them. After testing all
the potential combinations, APIT calculates out the over-
lapped triangle region that contains the unknown node.
Thus, the centroid of the overlapped region is regarded as
the estimated position of this node.

For example, in Fig. 3, there are 12 beacon nodes (S1,
S2,...S12). It is not difficult to know that any three non-
collinear nodes can form a triangle. Then, the unknown node
uses the BPoint-in Triangulation Test^ method [33] to judge
which triangles it is possible to located in. Supposing that
there are four such triangles (e.g., ΔS1S6S8, ΔS2S9S10,
ΔS3S7S12, ΔS4S5S11 in Fig. 3), it is regarded that the common
area of the four triangles (e.g., the yellow polygon in this
figure) is the area where the unknown node is most likely to
exist.Without loss of generality, the centroid of this polygon is
defined as the estimated position of the node to be located, just
like the red point shows in Fig. 3.

However, when the unknown node is not inside the triangle
or when the beacons around the unknown node cannot form a
triangle, the localization accuracy of APIT will be greatly

decreased. The above situation may occur in ETTA because
of the random distribution of the nodes (especially when the
target is firstly detected by the nodes near the boundary of the
network). So, the localization algorithm in ETTA should be
improved based on the traditional APIT algorithm. As shown
in Fig. 4, if the relationship among Si, Sj, Sk and O could meet
formula(7), it is possible to basically determine that the target
is in the triangle formed by these three nodes, as shown in Fig.
4(a). Si, Sj and Sk are the nodes who can detect the target.

S ΔSiS jSk
� �

≈S ΔOS jSk
� �þ S ΔSiOSkð Þ þ S ΔSiS jO

� � ð7Þ

If the value of S(ΔOSjSk) + S(ΔSiOSk) + S(ΔSiSjO) is far
greater than that of S(ΔSiSjSk), it is regarded that the target is
out of the scope of ΔSiSjSk, as shown in Fig. 4(b).

Thus, if the target is detected by three or more nodes, the
solution is to determine whether there are triangles formed by
these nodes can meet the condition of formula (7). If so, the
traditional APIT method is used to estimate the position of O,
otherwise, these nodes are combined with each other to esti-
mate the position of O according to the method shown in Fig.
3. The mean value of these estimated positions is regarded as
the final position of O.

5 Target tracking based on moving direction
prediction

5.1 Target discovery

In order to describe the target tracking process more clearly,
hereby we make the following definitions.

5.1.1 Boundary node

For one node Si in current network (grid), if its sensing range
is beyond the boundary of the network (grid), Si is regarded as
the boundary node. As node S1 shows in Fig. 1, it is not only
the boundary node of the network but also the boundary node
of the grid. In addition, S2 is only the boundary node of the
grid.

5.1.2 Working mode of node

Active mode In this mode, the sensor node can continuously
monitor the surrounding environment, and it also has the abil-
ity of both data forwarding and computing.

Monitoring mode In this mode, to save energy, the sensor
node can only receive data.Fig. 3 Target Position Estimation by APIT [33]
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5.1.3 State of grid

Tracking state If the target is now in the current grid, this grid
is in the tracking state. Meanwhile, all nodes in this grid
should be in active mode.

Prepared-tracking state When the possibility of the target’s
departure from the current grid is beyond a certain threshold,
each neighborhood grid calculates the possibility of target’s
coming into itself at the next moment. Then, the grid which
has the maximum possibility turns into the prepared-tracking
state, and nodes in this grid keep in active mode. The purpose
of setting this state is to awaken those nodes which are near the
position where the target is most likely to pass. So, the accu-
racy and the real-time performance about target tracking will
be improved.

Preparing-tracking state The grid which is the common
neighborhood of the grids in tracking state and prepared-
tracking state is set as the preparing-tracking state. In this type
of grid, the cluster head and boundary nodes are all in active

mode and other nodes are set to the monitoring mode. Thus,
even if the target moves into a grid which is not in the
prepared-tracking state, it can still be detected. This greatly
enhances the fault tolerance of the system.

At the beginning, all the boundary nodes of the network are
in active mode. Due to this, the target can be detected in time
as soon as it enters into the network. Meanwhile, other nodes
work in the monitoring mode, as shown in Fig. 5.

If there are more than one network boundary nodes have
detected the target, the position of this target is calculated out
according to the method mentioned in section 4.
Subsequently, each network boundary node who finds out
the target sends the message, Btarget is close to the network^,
to its cluster head. The cluster head that receives this message
changes its mode from the monitoring to active, and then it
broadcasts this message to its members. The cluster members
then turn into active mode, as shown in Fig. 6.

Once the target moves into the network, it must be located
in one of the grids. It can be known from the above description
that at this moment, nodes in this grid are already in active
mode and the grid is also in the tracking state. Meanwhile, to

Fig. 4 Find out the Region where
the Target is Located at

Fig. 5 The Working States of
Nodes before Target’s Coming
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reduce energy consumption, the cluster head in this grid
broadcasts a message, Btarget has been found out^, to other
cluster heads. The cluster head who receives the message then
makes all its member nodes as well as itself into monitoring
mode, as shown in Fig. 7.

5.2 Target’s position prediction

At moment t, for a grid Gu which is in tracking state, it can
predict the region that the target may arrive to at moment t +
Δt.

5.2.1 Case 1. Gu is a boundary grid

As shown in Fig. 8, when the area of the circle O which is
outside the boundary of the network (the green part in this
figure) exceeds a certain threshold, it indicates that the target
probably moves out of the network at the next moment. O is

the target and the radius of circle O is v ×Δt. Then, all nodes
inGuwho can detect this target predict the position ofO at the
next moment by Kalman filter algorithm. So, the general non-
linear equation of state is

X tþΔtjt ¼ IX tjt þ UtþΔt ð8Þ

And, the observation equation is

ZtþΔt ¼ HX tþΔtjt þ VtþΔt ð9Þ

Xt +Δt|t is the predicted value of the system at t +Δt. In
other words, the real coordinates of the target at moment t is
used to predict the possible position of the target at t +Δt. Xt|t
is the optimal state vector at moment t, that is, the real position
of the target at this time. I is the system parameter. In formula
(9), Zt +Δt is the measurement value at t + vΔt, and H is the
parameter of the measurement system. Moreover, Ut+Δt and
Vt + Δt represent the process and measurement noise

Fig. 6 Working States of Nodes
when the Target is Found out by
the Boundary Nodes

Fig. 7 Working States of Nodes
after the Target Entering into the
Network
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respectively. It assumes that they are both Gaussian white
noise, and the covariance is Q and R. They do not change
the state of the system.

Furthermore, it is assumed that X t ¼ xt; vxt ; yt; vyt
� �T

and

Zt ¼ xzt ; yzt
� �T

. Xt and Zt are defined as the horizontal and
vertical coordinates of the target at moment t. While, vxt and
vyt are the velocity component of the target in the X and Y
directions. In addition, xzt and yzt represent the horizontal

and vertical coordinates of the target detected by the system.
When predicting the optimal state of the system, it is necessary
to update the covariance W at each moment. That is,

WtþΔtjt ¼ IWtjtIT þ Q ð10Þ

In formula (10),Wt+Δt|t is the covariance for Xt +Δt|t, while
Wt|t is the covariance for Xt|t. I

T is the transpose matrix of the
system parameter, I. In addition, Q is the covariance of the
process noise. Combined with the predictive value at t +Δt as
well as the measurement value Zt +Δt, it is not difficult to
calculate out the optimal estimate value at t + vΔt. This is
the position where the target will most likely to arrive to at
moment t + vΔt.

X tþΔtjtþΔt ¼ X tþΔtjt þ KtþΔt ZtþΔt−HX tþΔtjt
� � ð11Þ

Kt+Δt is the Kalman Gain. That is,

KtþΔt ¼ WtþΔtjtHT= HWtþΔtjtHT þ R
� � ð12Þ

In order to keep the Kalman filter running until the network
lifetime is over, the covarianceWt+Δt|t +Δ, that is correspond-
ing to the system optimal state Xt +Δt|t +Δt at moment t + vΔt,
needs to be updated. That is,

WtþΔtjtþΔt ¼ I−KtþΔtHð ÞWtþΔtjt ð13Þ

Values of the system parameter I and the measurement
parameter H in the above formula are

I ¼
1 ΔT 0 0
0 1 0 0
0 0 1 ΔT
0 0 0 1

2
664

3
775 H ¼ 1 0 0 0

0 1 0 0

	 


If the predicted position of O is indeed outside the network
(as the pink square shows in Fig. 9), the cluster head inGuwill
broadcast a message to the cluster heads in all the boundary
grids. The content of this message is Bthe target is likely to
leave the network^. The cluster head that receives the message
will change the network boundary node within its cluster to
the active mode. So, when the target re-enters into the net-
work, it is possible to find it in real-time.

If the area of circle O which is outside the boundary of the
network does not exceed the threshold, the prediction about
the region in which the target may arrive to will be carried out
according to the method described in case 2.

5.2.2 Case 2. Gu is a non-boundary grid

When the area of the circle outside the grid (defined as
Sout(O)) exceeds a certain threshold (the green area in
Fig. 10), it is possible that the target will move into the neigh-
borhood grid at moment t +Δt. Wout(Gu) is defined as the
possibility about the target leaving from the current grid Gu.

Wout Guð Þ ¼ Sout Oð Þ=π v�Δtð Þ2 þ λ�Max cosθkð Þ ð14Þ

θk is the angle between the velocity vector of the target and
the vertical axis of the target to the boundary of the grid (e.g.,
θ1 and θ2 in Fig. 10). λ is an adjustable parameter. This for-
mula considers both the arrival possibility of the target at the

Fig. 8 Target’s Position
Prediction with the help of Nodes
in Boundary Grids
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next moment and the direction of the current velocity. To a
certain extent, it improves the accuracy of judging the moving
trend of the target.

If the value ofWout (Gu) is larger than the threshold Wout ‘,
the target is likely to leave from the current grid. In order to
ensure the real-time and the accuracy of target tracking, the
nodes located at the vicinity of the area where the target may
move to at moment t +Δt need to be in active mode.
Moreover, these nodes should deduce that which grid the tar-
get is most likely to move to.

In this case, each grid, e.g., Gv, covered by circle O calcu-
late the value ofWin(Gv) according to formula (15).Win(Gv) is
regarded as the possibility of target’s moving into the region of
Gv at the next moment. It is easy to know that, the number of
this type of grids is at most three, as Gi, Gj and Gk show in
Fig. 10.

Win Gvð Þ ¼ S O;Gvð Þ=π v�Δtð Þ2 þ λ
0
cosμk ð15Þ

In formula (15), S(O, Gv) is the size of the area where circle
O is overlapped with Gv. μk is the angle between the velocity
vector of the target and the connection vector from the target
to the center of Gv (such as μ1, μ2 and μ3 in Fig. 10). λ′ is an
adjustable parameter.

The grid with the maximum value ofWin(Gv) then goes into
the prepared-tracking state (Gi in Fig. 11). Otherwise, it will be
in the preparing-tracking state (Gj and Gk in Fig. 11).

5.3 Grid’s state updating

At the moment of t +Δt, the target tracking strategy is de-
scribed as follows.

1) If the target moves intoGi, the state ofGi is changed from
prepared-tracking to tracking. At the same time, to reduce
the unnecessary energy consumption, the cluster head in
Gi broadcasts a message to Gu and other grids that in

Fig. 9 The Predicted Position of
the Target is outside the Network

Fig. 10 Target’s Position
Prediction with the help of Nodes
in Non-boundary Grids
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preparing-tracking state (e.g., Gj and Gk in Fig. 11).
Nodes in these grids will then change its working mode
into monitoring, as shown in Fig. 12.

2) If the target moves into Gk (Gk is now still in the
preparing-tracking state), the cluster head of Gk shall
notify all nodes in its area to change their working
mode into active. That is to say, the state of Gk is
changed from preparing-tracking to tracking, as shown
in Fig. 13. Similarly, the cluster head in Gk broadcasts
a message to Gu and other grids that in preparing-
tracking or prepared-tracking state (e.g., Gi and Gj in
Fig. 11). Nodes in these grids will then change its
working mode into monitoring, as shown in Fig. 13.

3) Under the conditions ofWout(Gu) >Wout′, if the target is
still in Gu at the moment of t +Δt (although this is
unlikely to happen), the cluster head in Gu broadcasts

a message to its neighbor grids that is in the preparing-
tracking or prepared-tracking state. Therefore, nodes in
these grids will then change its working mode into
monitoring, as shown in Fig. 14.

It is worth mentioning that, in case 1) and case 2), ifGu and
Gv are respectively the boundary and non-boundary grids, and
if all the boundary nodes are in active mode at t +Δt, the
cluster head of Gv needs to broadcast another message to the
cluster heads in all the boundary grids. The content of this
message is Bthe target is still in the network^. All the cluster
heads that receive this message then revert the nodes in their
own cluster to monitoring mode.

5.4 Tracking process recovery

In ETTA, if there are the following circumstances, it may
briefly appear the condition that the target is missing.

Fig. 12 The Target Enters into the
Grid that is in Prepared-tracking
State

Fig. 11 States Updating of the
Non-boundary Grids after
Target’s Position Prediction
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1) Node failure or energy depletion leads to the failure to
discover the target in time.

2) There is an error in predicting the position of the target,
which means no node is active in the grid where the target
moves to so that the system cannot detect the target.

3) The communication links between nodes are disturbed, so
that the corresponding nodes in the neighborhood grids
cannot be awakened to active mode, then losing the abil-
ity to track the target in real time.

The tracking recovery strategy in ETTA is described as
follows.

Step 1: When the target is lost, all nodes which have
completed target tracking at moment t send the message
BError(ID, t, vt, at)^ to their cluster head. In this message,
ID is the serial number of the node itself, and vt and at are
the coordinates of the velocity as well as position of the
target at moment t, respectively.

Step 2: When the cluster head receives this BError^ mes-
sage, it immediately delivers the message to the cluster
head in all the neighborhood grids.
Step 3: When the cluster head in the neighborhood grid
receives this BError^message, it wakes up all its member
nodes to carry out the search for the target. If the system
still cannot find the target, the BError^ message will con-
tinue to be forwarded to the other cluster heads, so as to
wake up more nodes to search for the target.
Step 4: Once a node finds out the target, it immediately
sends a response packet BFind(ID, t′, vt′, at′)^ to its cluster
head. vt’ and at’ are the coordinates of the velocity and
position of the target at moment t’. If the target cannot be
positioned, at’ can be empty. In the meantime, the grid
which the cluster head lies in changes into trackingmode.
Step 5: The cluster head in the grid which is in tracking
state transmits the BFind^ message to the cluster head in
all its neighborhood grids to indicate that it has
rediscovered the target. The cluster heads that received

Fig. 13 The Target Enters into the
Grid that is in Prepared-tracking
State

Fig. 14 The Target is still inGu at
the Moment of t +Δt
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the BFind^message then continue to send this message to
other grids that are still searching for the target.
Simultaneously, the cluster head restores itself and its
member nodes to monitor mode.

6 Simulation results and analysis

In order to verify the efficiency of ETTA in terms of target
tracking accuracy, target missing rate, tracking delay and net-
work energy consumption, experiments were carried out un-
der the Origin platform. Meanwhile, it is compared with two
typical target tracking algorithms (BPS [34] and EMTT [35])
in sensor networks.

BPS (target trackingwith Binary Proximity Sensors) [34] is
a type of tracking method which employed binary proximity
sensors to track moving target inWSN. Such sensors provided
only 1-bit information regarding a target’s presence or absence
in their vicinity, albeit with less than 100% reliability [34].
This method utilized the sensor outputs to estimate individual
positions in the path of the target in the near past and found the
line which best fitted the path points. This line was then used
to estimate the target’s current position. Different target track-
ing system can be established by different weight calculation
methods in this tracking algorithm framework, whose perfor-
mance depended on the algorithms used in weight calculation.

In addition, EMTT (Energy efficient Moving Target
Tracking) [35] is another typical target tracking algorithm in
sensor networks. It used a linear dynamic system with multi-
ple sensors to track the target andmonitor its surrounding area,
which established the fuzzy model for measurement condition
estimation. Firstly, the measurement possibility was calculated
based on the probability-possibility transformation. Then, the
measurements with high possibility and low possibility were
considered as the L-sensor linear dynamic system measure-
ments for position calculation via neighborhood function.
Finally, GKF (Generalized Kalman Filter) was utilized to pro-
duce the optimization of smoothed position estimates.

We randomly deploy 600–1000 nodes in 100 m × 100 m
and 200 m × 200 m networks, and it supposes that the loca-
tions of all nodes are known. The initial energy of the nodes is
40 unit, the sensing radius is between 5 and 10 m.

6.1 Target tracking accuracy

6.1.1 Tracking accuracy under different trajectories

In the 100 m× 100 m network, the target is in accordance with
the two different trajectories for the uniform movement re-
spectively, and the speeds are set to 4 m/s and 8 m/s. The
number of nodes in the network is set to 800, and the length
of its sensing radius is 8 m. Figures 15 and 16 are the predicted

trajectory and the real trajectory comparison results based on
ETTA, BPS and EMTT. In order to match the actual scene of
the moving target as far as possible, two types of moving
trajectories have been used in this experiment. One is the
relatively smooth trajectory (Fig. 15) and the other is the tra-
jectory with a greater degree of curvature and closer to the
edge of the network (Fig. 16). It can be seen that in the case
of different trajectories of the target, the predicted results of
the three algorithms are all close to the real one. However, the
degree of coincidence between the ETTA and the real trajec-
tory is higher than that of both BPS and EMTT, especially
when the direction of the velocity of the target is changed
greatly. This is because ETTA uses the virtual grid division
and self-clustering way to achieve distributed tracking.What’s
more, by setting the Bprepared-tracking state^ and Bpreparing-
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tracking state^ of the grid, this algorithm further ensures the
continuity of target tracking. According to section 5.3, it is not
difficult to know that regardless of which neighbor grid the
target will move to at the next moment, ETTA can continue to
track the target and update the grid’s status, that further im-
proves the tracking accuracy. In contrast, the BPS and EMTT
methods mainly use the historical trajectory of the target to
perform the curve fitting, and thus predict the next possible
reach. Therefore, when the direction of the velocity of the
target changes greatly, the reference value of the historical
track point will be greatly reduced, resulting in a larger pre-
diction error.

Moreover, through the comparison of Figs. 15 and 16, we
can find that the tracking accuracy of the three algorithms
decrease when the target velocity increases. However, the ac-
curacy decline range of ETTA is relatively low. This is also
because the Btracking state^, Bprepared-tracking state^ as well
as the Bpreparing- tracking state^ have ensured that wherever
the target goes, it can always be found by active nodes. In
addition, ETTA also proposed the improvedAPIT localization
algorithm, which enhances the positioning accuracy of the
target to a certain extent. Even if the target moves faster, the
target tracking effect will not show a significant decline.

In addition, it also can be seen from Fig. 16 that when the
target moves to the vicinity of the network boundary, the ac-
curacy of the three methods for trajectory prediction has de-
creased. For example, in Fig. 16, when the target moves from
one grid (the four vertexes of this grid is (90, 30), (100, 30),
(90, 40), (100, 40)) to the upper grid along the right side of the
network, BPS has been unable to predict the position of this
target at the next moment, that is, it mistakenly considered
Btarget lost^. Although the target tracking effect of EMTT is
slightly better than that of BPS, it also once appeared on the
Btarget lost^ misjudgment. In contrast, for the target’s trajec-
tory near the boundary, ETTA has higher tracking accuracy
than the other two methods. It is not difficult to know from
section 5.2 that, in ETTA, for the boundary grid, the Kalman
filter method is used to predict whether the target is moving
out of the boundary or not. Furthermore, ETTAwill wake all
the boundary nodes into activemodewhen the predicted result
is Bout of boundary .̂ This ensures the real-time, accurate
tracking of the target after it enters the network again.
However, it should be pointed out that in real physical scenar-
ios, the effect of these three target tracking methods is also
affected by terrain, interference sources and obstacles.We will
study it in depth in the future work.

6.1.2 Target tracking errors

For the convenience of explanation, the target tracking error is
defined as the Euclidean distance between the target’s real
coordinate and the predicted coordinate at a certain monitor-
ing time. Experiments are carried out in the 100 m × 100 m

and 200 m× 200 m network respectively and the internal grid
sizes are set to 10 m × 10 m and 13 m × 13 m. What’s more,
the node’s sensing radius is set to 8 m, and the target move-
ment speed is 4 m/s.

As can be seen from Fig. 17, regardless of the size of the
network, the target tracking error of ETTA decreases as the
number of nodes in the network increases. This is because in
the improved APIT localization algorithm, the more the num-
ber of beacon nodes, the more the ideal triangle produced.
Thus, the localization accuracy is improved. Furthermore,
the size of the grid also has a certain impact on target tracking
error. That is, the larger the size of the grid, the smaller the
error. As mentioned above, in ETTA, when the target enters
into a grid, the cluster head will wake up all the nodes in this
grid. In the case where the nodes are randomly and uniformly
distributed, more and more nodes are awakened to participate

Fig. 17 Average Tracking Error under Different Grid Sizes
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in target localization and tracking with the increase of the size
of the grid.

Besides, Fig. 17 also shows that when the number of nodes
and the size of grid are constant, the larger the network, the
higher the target tracking error. This is due to the decrease of
the number of active nodes that participate in target tracking
per unit area. However, in the larger network, the tracking
error caused by the increase of the grid’s size is more obvious.
For example, in the case of the same number of nodes, when
the length of the grid increases from 10 m to 13 m, the mean
value of the error in Fig. 17(b) (about 0.25 m) is significantly
larger than that in Fig. 17(a) (about 0.1 m).

Figure 18 shows the maximum target tracking error under
different number of nodes.Moving speed of the target is 4 m/s.
It is easy to see from the figure that the maximum error in
ETTA is less than that in the other two methods, especially
when the number of nodes is small. This is because ETTA
uses grids to achieve distributed target tracking which ensures
that a significant number of nodes are active in the vicinity of
the target. Moreover, with the help of the improved APIT
method, the accuracy of target localization is also improved.
In EMTT, the target tracking node needs a certain number of
neighbor nodes to assist in locating the target, and the topol-
ogy dependency between nodes is very strong. While, the
BPS method can only determine whether or not the target is
within the sensing range of the node and cannot measure the
distance between the target and the node. Thus, the localiza-
tion errors of these twomethods are greater than that of ETTA.

In order to further refine the target tracking effect at differ-
ent times, we give the experimental results of Fig. 19 (moving
speed of the target is 4 m/s and the number of nodes in the
network is 800). When the target is discovered for the first
time, the tracking error of ETTA is significantly lower than the
other two methods. This is because the network boundary
nodes are always active and they can accurately locate the

target. When the target moves into the network, the corre-
sponding grids immediately go into tracking state, which en-
sures the real-time performance of the target tracking (as
shown in Figs. 5 and 6). In addition, it can be found that the
target tracking error in the three algorithms is increased by a
certain amplitude at the three monitoring time points from the
21st to 23rd second. This is because the direction of the move-
ment of the target changes greatly during this period of time.
However, due to the prediction mechanism of ETTA, nodes in
the Bprepared-tracking state^ and Bpreparing-tracking state^
grids are awakened in advance, so that the tracking error can
be reduced. Thus, the increment of error of ETTA from the
21st to 23rd second is less than that of BPS and EMTT.

Of course, it is worth noting that both the experiments in
Figs. 18 and 19 are only simulated in a 100 m × 100 m net-
work. In real physical scenarios, the size of the network may
be much larger than that. In this case, the scattering, refraction
and diffraction phenomena of radio waves may be more ob-
vious, which will cause greater interference to the communi-
cation between nodes. So, the target tracking error is likely to
increase considerably. This problem may be solved by in-
creasing the transmission power or the deployment density
of nodes.

6.2 Target missing rate

In order to analyze the fault tolerance of these target tracking
algorithms, the target missing rate is further studied. The net-
work size and the target moving speed are set to 100 m ×
100 m and 4 m/s respectively. Here, the target missing rate is
defined as the ratio of the duration during which the target is
not monitored by any node to the total time period in which
the target stays in the network.

As can be seen from Fig. 20, when the monitoring time
interval Δt increases, the target missing rate in ETTA alsoFig. 18 Maximum Target Tracking Error (100 m× 100 m)
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increases. This is because at this time, the grid in Btracking
state^ may not be able to predict the Btarget is about to leave
the grid^, which failed to make the corresponding grids
change their states to Bprepared-tracking state^ or
Bpreparing-tracking state^. So, the temporary interruption of
target tracking occurs. However, it can be seen from section
5.4 that ETTA has established a recovery mechanism, which
ensures that target tracking can be restored in a short time. So,
the target missing rate is still acceptable. On the other hand, it
also can be seen from this figure that the more the nodes in the
network, the lower the target missing rate. The reason of this is
similar to that of Figs. 17 and 18.

What’s more, it can be seen from Fig. 21 that in the case
where the number of nodes in the network is constant, the
larger the sensing radius of the node, the lower the missing
rate of the target. In the case of a certain radius of sensing, the

greater the number of nodes, the lower the target missing rate.
That means the greater the value of node density and sensing
radius, the better the effect of target tracking. However, wheth-
er it is to increase the number of nodes or increase the length of
its sensing radius, it will undoubtedly consume more energy.
Therefore, it is often needed to consider the balance between
the two in the real-world.

In the real-world, in order to save energy, the monitoring
interval of active nodes tends to be larger than the value set in
Fig. 20. Similarly, the sensing range of nodes is also limited in
most cases. In this case, the target missing rate is bound to
higher than the experimental results in Figs. 20 and 21. To this
end, we can deploy more nodes in the network (of course, the
premise is not to cause excessive coverage redundancy). In
addition, we can appropriately reduce the size of the grid, so
that more grids can participate in target tracking.

Figure 22 shows the experimental results of the target
missing rate under the different moving speed of the tar-
get. The target’s velocity increases from 0 to 16 m/s,
which can basically match most of the current real target
tracking scenarios. The network size is still 100 m ×
100 m, and the number of nodes is 1000. The sensing
radius and monitoring interval are set to 10 m and 1 s,
respectively. It can be seen from Fig. 22 that as the tar-
get’s moving speed continues to increase, target missing
rate of these three algorithms is increasing as well. In
BPS, when the moving speed of the target increases from
8 m/s to 10 m/s, the missing rate is increased by 1%.
While in EMTT, when moving speed of the target grows
from 10 m/s to 12 m/s, the range of the target missing rate
rising by more than 1%. But in ETTA, only the target
moving speed increased from 14 m/s to 16 m/s, the target
missing rate increases by more than 1%. So, ETTA is
more adaptable to the velocity change.
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6.3 Target tracking delay

To verify the real-time performance of the three algorithms,
comparisons about target tracking delay are shown in Figs. 23
and 24. The Btarget tracking delay^ is defined as the interval
from the time when the target is captured by at least one node
to the first time it is successfully localized.

It can be seen that the target tracking delay in ETTA is
between 0.5 s and 1.6 s when the sensing radius is 5 m–
10 m, which shows good real-time performance. Moreover,
no matter what the number of nodes is, the tracking delay in
ETTA is always less than that in BPS and EMTT. This is
because when ETTA starts to run, the network boundary
nodes are active which ensures that the target can be quickly
captured after appearing, especially in the case where the sens-
ing radius is longer or the number of nodes is larger. For
example, when rs = 10 m or the number of nodes is 1000,
the tracking delay in ETTA is only 0.5 s. While in BPS, only a
few nodes could locate the target, and the network boundary
nodes are not always active. So, the real-time performance of
target tracking in BPS is not very good, especially when the
density of nodes is lower. In addition, EMTT needs to estab-
lish the neighborhood function and the target motion model to
locate the target, so that both communication and computing
space-time overhead are larger. Therefore, both BPS and
EMTT are inferior to ETTA in tracking real-time, but the
tracking delay of the two is also significantly reduced when
the sensing radius of node or the number of nodes increases.

6.4 Energy consumption on target tracking

Figure 25 shows the total energy consumption of nodes after
performing the target tracking process under a different num-
ber of nodes and different monitoring time intervals. It is easy
to see that the longer the monitoring interval, the lower the

total energy consumption. Obviously, this is caused by the
reduction of the number of times on localization and the state
switching. In the case of a certain monitoring time interval, the
total energy consumption of nodes is proportional to the num-
ber of them, but the growth rate is slower. This is because
ETTA uses a grid-based approach to achieve distributed target
tracking. The increase of the number of nodes will only in-
crease the number of the active nodes, but other nodes are still
in the listening mode. Therefore, the energy efficiency of
ETTA is higher.

Figure 26 shows the average residual energy of nodes after
completing a target tracking process. The network size is set to
200 m × 200 m and the target moving speed is 4 m/s. With the
increase of the number of nodes, the average residual energy
of nodes in the three algorithms is increased, because all of
them use localized target tracking strategies, that is, not all
nodes in the network are involved in target tracking. So, the
more the number of nodes is, the higher the average residual

Fig. 25 Energy Consumption of the Whole Network after One Round of
Target TrackingFig. 23 Target Tracking Delay under Different Sensing Radius

Fig. 24 Target Tracking Delay under Different Number of Nodes
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energy is. Moreover, ETTA not only uses the virtual grid to
further refine the tracking area of the target but also selectively
changing the working state of the node by accurately
predicting the moving position of the target. For example,
the grid in preparing-tracking state requires only the boundary
nodes to be active, without requiring all nodes to be active.
Thus, the average residual energy of ETTA is the highest.
When the number of nodes in ETTA is up to 1000, after a
round of target tracking, the average residual energy is higher
than 90% of the initial energy, which ensures the network’s
long-lasting, stable operation.

In the real physical world, the energy saving strategies can
only prolong the network lifetime to a certain extent. Once the
number of dead nodes exceeds a certain value, the whole
target tracking system will not work. In response to this po-
tential problem, we have carried out some research [7, 8]. In
future, we will research on the more reasonable energy sup-
plement strategy as well as the energy consumption optimiza-
tion algorithms according to the actual characteristics of the
target tracking system.

7 Conclusion

A virtual grids based energy-efficient target tracking strategy
for Wireless Sensor Networks is proposed in this paper. States
of the virtual grids are set to tracking state, prepared-tracking
state and preparing-tracking state that not only enhances the
accuracy of target tracking but also prolongs network lifetime.

However, in real-world scenarios, ETTA algorithm still has
some limitations, which need to be further improved in the
future.

The first problem is how to effectively reduce the complex-
ity of target localization. Although the improved APIT meth-
od improves the accuracy, it is undeniable that when the node

density is large, there may be more Bideal triangles^. Thus, the
time complexity of calculation will increase.

Secondly, the proposed algorithm does not take into ac-
count the diversity of the actual network environment for the
time being. However, in real physical scenarios, the commu-
nication effect between nodes may be affected by terrain, in-
terference sources and obstacles. Moreover, in large-scale net-
works, the connectivity between nodes may also be reduced.
All of these may affect the real-time and robustness of target
tracking.

Finally, the energy consumption rate of the target tracking
system is higher than that of theWSNwhich only senses. This
is because the former requires a lot of computation and com-
munication between nodes. Although the ETTA algorithm
reduces energy consumption to some extent by setting the
grids to different states, how to maintain the long-term stabil-
ity of the target tracking system is still one of the key problems
that need to be solved in the future.
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