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Abstract
Mutualcast is a one-to-many (peer-to-peer) scheme for content distribution that maximizes the overall throughput during a
broadacast session. It is based on a fully-connected graph (full mesh topology), which introduces benefits such as robustness
or simultaneous transmission from/to multiple devices. The main disadvantage of Mutualcast is scalability; it is constraint to a
small P2P group for content distribution. In this paper, we make Mutualcast scalable. We propose a highly collaborative and
scalable P2P tree-based architecture made of two main components: 1) Peer grouping or clustering and 2) Hierarchical tree-based
content distribution. In step 1), peer nodes (content receivers) are grouped into equal-size clusters by using a proposed heuristic
size-constrained algorithm based on k-means. In step 2), clusters (which become the nodes of the tree) are organized into a single
hierarchical n-ary tree-based architecture, in which the root of the tree (Root Cluster) is the one closest to source peer, while
intermediate and leaf clusters are positioned in the tree according to their delay-proximity to previously inserted clusters. During
content distribution, the root cluster receives the blocks of content before any other cluster in the tree and directly from (and only
from) the source peer; blocks are then passed on to the next hierarchical level down the tree in order (higher levels of the tree
receive the content before lower levels). Inter-clusters and intra-clusters content distribution is performed concurrently and takes
into account peers upload/download capacities to relay blocks of content. The evaluation of our hierarchical P2P architecture
concentrates on the following metrics: scalability of the systems, overall end-to-end delay distribution, and efficient cluster size.
Finally, our architecture is compared against two well-known P2P technologies in the literature, Super-Peer and Kademlia.
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1 Introduction

Multimedia content distribution over the Internet has in-
creased at a very fast rate with significant impact on today’s
global economy. Popular services such as videoconferencing
and Internet Protocol Television (IPTV) markets are expected
to reach USD 7.94 and 95.9 global Billion by the 2020s,
respectively [1, 2]. These services make use of media
multicast technologies where information is addressed to a
group of destination computers simultaneously using one-to-
one (unicast) or one-to-many (multicast) schemes. Research
teams in academia and industry worldwide are making signif-
icant efforts to innovate multicast architectures to address the
challenges of a rapidly increasing market.

Traditionally, Internet Protocol Multicast (IPM) has been
proposed as an efficient solution for one-to-many media dis-
semination [3]. IPM is more efficient than unicast due to its
reduced transmission overhead from the sender to all re-
ceivers. IPM decreases traffic by simultaneously distributing
a single copy of data packets to thousands of users through
networks routers. However, IPM has not been fully deployed
in the Internet due to network control and management issues
raised by Internet Service Providers (ISP). Thus, the deploy-
ment of IP multicast is currently limited to local area net-
works, and a handful of ISPs networks [4]. To address these
issues, researchers have proposed an application level solution
as an alternative to implement IPM [5, 6]. For example, in
Application Layer Multicast (ALM), all tasks are implement-
ed by collaborative work in the end-users exclusively, while
the network infrastructure is kept fixed. ALM approaches pro-
vide more flexibility and are easier to deploy than those re-
quiring network router multicast support.

In addition to ALM technology, peer-to-peer (P2P) com-
puting technology has emerged as a novel paradigm to face
some of the limitations of the client-server model [7]. The end
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users provide all the communication infrastructure needed, so
dedicated infrastructure is not required. Each user provides a
communication node, and all the nodes comprise a network
abstraction on top of the physical network known as an over-
lay network, which is independent of the underlying hardware
network implementation. In the P2P systems, each peer can
take the role of both server and client at the same time, so there
is no need for dedicated servers. Due to the sharing of peer
resources, the ALM scheme is an effective means for
conducting the cooperative P2P communications. Namely,
during a multicast session, peers contribute their resources to
relay the media to others. In this way, as a new peer arrives to
the P2P system, the demand is increased, but the overall ca-
pacity also increases. This feature is not available in a system
based on a client-server model. In a P2P multicast system, the
media must be delivered to all requesting peers with high
quality and minimal delay. An overlay P2P multicast does
not require any router support and is the most flexibility and
adaptable to diverse requirements from these applications.

Most P2Pmulticast implementation algorithms can be clas-
sified according to the data structure used to support packet
distribution (i.e. trees, forests, or fully-connected graph) [5]. In
conventional tree-based distribution algorithms, the peers
placed as interior nodes redistribute data content, while the
peers placed as leaf nodes only receive data. Although the
multicast-tree based scheme is highly scalable [8–10], it is
not maximally efficient in collaborative environments, be-
cause the upload capacity of the leaf peers is not used during
amulticast session. The full upload capacity of all participating
peers is required in order to achieve maximum throughput. A
possible solution to increase efficiency consists on construct-
ingmultiple concurrent trees, where peers contribute with their
upload capacity in at least one tree or in the construction of a
fully-connected network. A drawback of using a fully-
connected graph (or mesh architecture) is that the number of
connections is proportional to the number of peers, because
each peer has to forward its received blocks from source to all
other peers. Mesh-based approaches also have high control
overhead due to data scheduling and limitations for delay sen-
sitive applications when the participating peers are located in
different geographical locations. On the other hand, the dy-
namic behavior of peers in P2P systems is one of the major
challenges. Since peers are transient in nature, once a parent
peer departs from the multicast system [5], the receivers re-
ceiving streaming content from that parent peer might suffer a
temporal interruption in the content transmission.

In this paper, we propose a fully collaborative and scalable
P2P architecture which involves strong cooperation between
participating peers during the content distribution from a
source to multiple peers. Participating peers are organized into
different clusters or groups based on delay-proximity. Peer
delay-proximity is exploited in our proposed scheme in order
to form a fully hierarchical cluster of peers interconnected via

a single n-ary tree [11], with excellent content propagation
time. The source-peer (root of the tree) divides the content
into blocks and distributes different blocks to all peers in the
highest hierarchical cluster (root cluster), so that each peer
within the cluster contributes its redistribution capacity by
forwarding the receiving blocks to the rest of peers within its
own group and receiving at the same time the rest of blocks
not directly obtained from the source peer. An n-subset of
peers within the cluster is designated as source for the n lower
clusters in the next set of clusters down the hierarchy tree
structure, that is, one peer is designated as source for each
receiving cluster. The process continues in the same way, until
all cluster leaves are reached. We evaluate our proposed archi-
tecture based on the overall end-to-end delay distribution to all
peers, tree-based scalability, and cluster size. A comparison
against two well-known P2P technologies in the literature,
such as Super-Peer [12] and Kademlia [13] is presented.

The remainder of this paper is organized as follows. We
introduce and discuss some collaborative multicast ap-
proaches in Section 2. We briefly explain how to build the
collection of clusters connected via a simple tree in our pro-
posed architecture in Section 3. How the collaborative archi-
tecture is implemented in the simulator is explained in Section
4. In Section 5, we evaluate the performance of our collabo-
rative architecture against other content distribution schemes.
Section 6 concludes the paper.

2 Collaborative multicast schemes

In this section, we describe the main technologies our scheme
is based on: mesh-based approaches (such as Mutualcast) and
tree-based approaches. Mutualcast has shown to be a scheme
that maximizes the overall throughput during a multicast ses-
sion. In addition, Mutualcast is based on a fully-connected
graph (full mesh topology), which introduce benefits such as
robustness or simultaneous transmission from multiple de-
vices. On the other hand, a tree-based scheme introduces sev-
eral benefits such as scalability, reduced end-to end delay and
easy maintenance. Our aim is to reach shorter end-to-end de-
livery time, improve scalability and low resources consump-
tion by merging these two technologies into an efficient con-
tent distribution scheme.

2.1 Tree-based approaches

In a tree-based approach, an overlay construction mechanism
organizes participating peers into a single tree whose root is
located at the source node. The participating peers are orga-
nized into a single tree following their classification as interior
node or leaf node. In a tree-based topology, the source peer
sends the data to the requesting peers on the first level, which
then forward the data to the requesting peers located on the
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following level down the tree structure and so on until
reaching the leaf peers. In this configuration, a video stream
is pushed from a parent router to its children routers along a
well-defined route. In this way, the multicast tree for content
distribution uses the upload capacity of the peers located on
the intermediate levels. However, the upload capacity of the
leaf peers is not used. Although a tree approach probably
represents the most effective distribution structure in terms
of bandwidth and delay optimization [14], this configuration
has an inherent drawback because all the burden generated by
forwarding multicast messages is carried out by a relative
small number of interior nodes.

2.2 Mesh-based approaches

In a mesh-based overlay, a peer can concurrently receive data
from different senders, each contributing a portion of its up-
load capacity. Additionally, the requesting peers can send and
also receive data from each other. Video data in a mesh-based
P2P multicast is available in multiple neighboring peers, with
a node having to pull data to avoid significant redundancies,
while in a forest based overlay the data is pushed from a parent
peer to many child peers. Due to the dynamic and unpredict-
able behavior of peers, the main challenge of a mesh-based
overlay is how to select the proper senders [15] and how to
cooperate and schedule the received data in the requesting
peers. In a collaborative environment such as a P2P network,
the participating peers contribute with resources proportional
to the benefits they obtain from the system. Specifically, in an
application layer multicast, the peers expect that the
forwarding load will be shared among all participants [6].
However, a multicast based on a single tree does not match
well with these cooperation expectations, because a small
number of interior peers carries the forwarding multicast traf-
fic, while the upload capacities of a large number of leaf peers
are not used. This is a critical problem for applications with
high bandwidth requirements such as video or bulk file distri-
bution, because many interior nodes in the multicast tree may
not have the required upload capacity. To face these chal-
lenges, our proposed scheme adopts a tree structure as the
global structure but incorporates small mesh clusters on each
level of our single distribution tree. Clusters are an elementary
unit in this hierarchical architecture, which involves one
source peer and several requesting peers. The peers inside a
cluster are fully connected, and each peer inside a cluster is a
receiving and forwarding peer at the same time. Due to the fact
that the upload capacity of all peers is also used, the bandwidth
consumption from the source can be reduced.

2.3 Hierarchical clustering approaches

Tree and mesh overlay topologies have been found not suitable
for large scale dynamic P2P networks; they become inefficient

and involve high control overhead. The concept of hierarchical
clustering has emerged as a new alternative in which, peers are
grouped into clusters and clusters into an organized tree topolo-
gy. In NICE scheme [9], a balanced tree of clusters is built, in
which all peers are part of the lowest layer including the source
peer. Higher layers of the tree are represented by corresponding
cluster centroids of lower layers, in this way the root of the tree
is the centroid of all cluster centroids of lower layers. Thismodel
simplifies the insertion of peers in the hierarchical tree. NICE
uses the head to forward the content to its subordinates, thus
incurring a high bottleneck. Additionally, NICE tree-structure is
fixed and not optimal; it does not provide the best low-latency
distribution tree. Broadly speaking, it becomes a special case of
our proposed hierarchical scheme. An extension of NICE is
presented in [16], called Zigzag protocol. It is derived from
the same balanced multicast tree developed in NICE, with a
modified intra-cluster communication strategy. In this new strat-
egy, intra-cluster peer communication is not allowed and each
peer must relay completely to subordinate cluster or peers.
Zigzag extends the nomenclature of the administrative organi-
zation of peers, claiming a reduced control overhead compared
to NICE. One of the main drawbacks of Zigzag is peer-inser-
tions, which occurs whenever there is place available in a clus-
ter, affecting the transmission delay. A more recent scheme
named TURINstream [17], combines a tree structured P2P vid-
eo streaming scheme with Multiple Description Coding (MDC)
to achieve low-delays, robustness to peer dynamics and limited
protocol overhead. In MDC, video is composed by independent
and complementary descriptions which can be decoded inde-
pendently, yielding the base video quality (themore descriptions
are received the better the quality of the video). The advantage
of MDC is playback continuity despite peers´ departures, fail-
ures, and churning. The algorithm for building the tree is very
simple, clusters must provide the upload capacity for a continu-
ous transmission; it does not pay attention to optimal transmis-
sion delays efficiency. This is the main problem of
TURINstream; a peer can be joined at any level of the network,
it just needs to follow a path along the control tree until it finds a
cluster that can host it (just based on the upload capacity).

Our scheme, is focused on improving the deficiencies of
the above algorithms by building a new hierarchical tree to-
pology that improves transmission efficiency in several ways:
it reduces upload bandwidth usage, peer communication
stress, and increases transmission robustness.

3 Proposed approach

Our underlying ground on proposing a new scalable scheme is
thatpeerscangreatlybenefit fromthecapacityofother requesting
peers via collaboration. Collaboration becomes a key factor for
efficient multicast applications over large-scale heterogeneous
environments. Based on these facts, we focus on developing a
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collaborative computing system considering both the dynamic
behavior and scalability of the networks. To achieve this goal,
our proposed architecture is mainly constructed with a superpo-
sition of two overlapping networks, one using the tree model,
which is the main structure (the body of the architecture), and
the other using themeshmodel (Mutualcast [18]).

3.1 Tree distribution model

Mesh-based P2P multicast (such as Mutualcast) can achieve the
maximum overall throughput but incurs scalability limitations
because all nodes are fully connected. To deal with these limita-
tions, our proposed architecture uses clusters of peers allocated in
a unique tree-rooted distribution at the source node. The hierar-
chical structure of our approach is shown in Fig. 1. The first level
of the network hierarchy is the peer source (root node) that con-
tains the original file. Initially, active peers in the system are
grouped into small clusters (see section 3.2 for details), ensuring
thatpeersclosest to therootnode(sourcepeerS)will formtheroot
cluster in the distribution tree (cluster 1). Peers with longer time
proximitytothesourcepeeraregroupedas intermediateandleave
clusters in the hierarchical tree. Leaves (cluster 2–4) have the
longest time proximity to source peer. In this work, we consider
clusters with the same number n of peers, but it can be easily
extended to unequal clusters size (as a future work). In Fig. 1,
peers P1, P2 and P3 form the cluster with the highest hierarchy
level in themulticast session, while the rest of clusters and corre-
sponding peers are subordinates. That is, information is first dis-
tributed from the sourcenode to the root cluster, and from the root
cluster totherestofclustersfollowingasequential top-downorder
along the tree. Each peer forwards the blocks received from the
source to the rest of the peers within the same cluster, and simul-
taneously receives the restof theblocks fromtheotherpeers in the
cluster. Peers in the same cluster share bidirectional communica-
tion.Concurrently, eachpeer in the first cluster acts as a source for

anewcluster locatedon the second level of ourhierarchical struc-
ture. Thus, peer P1 is a forwarding peer of cluster 1 and a source
peer of cluster 2 (which is formed by peers P4, P5 and P6) at the
same time.PeersP2andP3canalsoextend theirownclusters.We
denote cluster 2 as a child-cluster of peer P1.

The communication between peers located in the first clus-
ter and the requesting peers clustering on a second level is
unidirectional. In other words, in the hierarchical approach,
the blocks are distributed from one cluster to another, in a
top-down fashion. Using clustering, the peers can greatly ben-
efit from the capacity of other neighboring requesting peers
via local collaboration while the number of connections is
reduced in comparison to a fully connected overlay topology.
The total number of connections TC (for a constant cluster
size) in our hierarchical scheme can be represented by:

TC ¼ k*
nð Þ n−1ð Þ

2

� �
þ l*n þ pð Þ p−1ð Þ

2

� �

internal external residual½ �connections

ð1Þ

where n = ⌊N/k⌋ represents the cluster size, N is the number of
peers in the system, k is the number of clusters, l is the number
of links in the tree (external node-to-node + source-to-root
connections), and remaining peers p = (Nmod k) are allocated
in a final p-size cluster. In a multicast group with N= 150
requesting peers, k = 30, n = 5, and l = N, our proposed archi-
tecture needs 1050 connections to distribute all the blocks. In
contrast, using a fully-connected architecture (e.g. Mutualcast
[18]), the overlay network is formed with (N − 1)(N − 2)/2 =
11026 connections. In this way, our proposed architecture is
scalable and robust at the same time. The overall delay opti-
mization problem for minimizing the content distribution time
is more complex than just considering the number of connec-
tions. It involves N, n, peers´ upload and download capacity,
and the final structure of the distribution tree. In the next and

Fig. 1 Scalable collaborative
multicast
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experimental sections, we will address this problem in detail.
For the moment, we concentrate on a very important step in
our scheme, peer clustering.

3.2 Constraint clustering process

In this work, we use the Round-Trip Time (RTT) between two
peers as proximity information to build the local clusters.
Given a data set RTTi = {rtti, 1, rtti, 2,…, rtti, n}, i = 1, ⋯,
N, representing the Round-Trip-Time (RTT) from the ith peer
to all active peers in the system, our aim is to partition the
N(N-1) observations into k mutually exclusive clusters
S = {S1, S2,⋯, Sk} that minimize the sum of squares (within
the cluster) given by:

arg min
S

∑k
j¼1∑rttl;m∈S j

rttl;m−μ j

� �2
ð2Þ

where μj is the centroid of the cluster Sj, whose cardinality is
|Sj|. The solution of Eq.2 for a global minimum is an NP-Hard
problem, since there exist kN/k! different ways for grouping an
N(N-1) data set [19]. Instead, several heuristics have been
developed to provide local minimums or suboptimal solution
to this problem, the simplest and most widely known is the k-
means or Lloyd’s algorithm. Lloyd’s algorithm is based on the
simple observation that the optimal placement of a center is at
the centroid of the associated cluster. The algorithm proceeds
as follows [20]:

The k-means baseline algorithm has been modified to satisfy
the following constraints imposed in our hierarchical tree-base
model: a) the centroid of a cluster must always be a peer; b)
RTT values are nonsymmetrical; and c) the number of peers in
the clusters must be small and constant. The first constraint
avoids the use of fictitious peer centroids for which we cannot
measure RTT distances from/to any peer (because of the non-
linearity in the data). Amajor benefit of this constraint is faster
convergence time since the algorithm does not need to re-
compute the RTT values for each iteration as in the original
k-means. The second constraint (complements the first con-
straint) takes into consideration that RTT is not symmetric,
that is the distance from A to B is not necessarily the same
as the distance from B to A. Since RTT values are 1-D scalars
without intrinsic spatial distribution information, the way to
recalculate the new centroid position of cluster Sl in step 3 of
algorithm 1, is by finding the peer for which:

min ∑Sl
j¼1rtti; j

� �
;∀i; j∈Sl ð3Þ

as depicted in Fig. 2. Let us consider that all peers in Sl can be
spatially locatedas shown inFig. 2a (this isnotpossible in the real

world), and the distance frompeer i to all peer j’s can be schemat-
ically represented as shown in Fig. 2b. It is easy to see that the
minimum of Eq. 3 corresponds to peer i = 5, which becomes the
new centroid of the cluster. Figure 3 shows the final clustering
(one instance ofmany possible) of the k-means forN= 20 peers,
k = 4 clusters and n = 5. Figure 3a shows the initial peer distribu-
tion and Fig. 3b the corresponding clustering output.

The last constraint mentioned above (constraint c), is relat-
ed to Mutualcast mesh connection limits, which is approxi-
mately <15 nodes. There exist good solutions to this problem
in the literature (see [21]) with increased time and implemen-
tation complexity (requires the use of linear programming).
Instead, we developed a simple heuristic approach to satisfy
the cluster size constraint once k-means is applied (our scheme
takes advantage of the sub-optimal k-means output). It is
worth mentioning that more than finding an optimal partition
of peers, our main contribution is the hierarchical approach, in
which information is being transmitted in both ways, horizon-
tally and hierarchically vertical at the same time. Given the
output of algorithm-1 and cluster size |Sj| = n =N/k, j = 1,…k,
our size-constrained algorithm consists of the following steps
(If n =N/k is not integer, one of the cluster will have n + (N
mod k) peers):

Algorithm 1: k-means
1. Select k random centroids for the initial partition of the data space.
2. Assign each data point rtt to the cluster corresponding to the closest 

centroid:
a. For each cluster centroid , compute the distance between 

, , = 1, , ; = 1, , .

3. Calculate the new centroid of each cluster.
4. Repeat steps 2 and 3 until the algorithm converges (centroids do not 

change anymore).
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Generally speaking, algorithm-2 groups peers with mini-
mum distance to the centroid. The exception is the closest clus-
ter to source peer SP, for which it takes those peers closest to SP
without considering their distance to the centroid. Figure 4,
shows the output of algorithm-2 for N= 20, n = 5, and k = 4.

Clustering process is a centralized process (run by source
node or a dedicate server). However, we have also considered
its implementation in a distributed system where source node
(or a dedicated server) and cluster centroids participate in the

process. Arriving peers receive from source node (or dedicated
server) an ordered list of all cluster centroids they may join in;
peers select its closest cluster centroid and send a join-in re-
quest. If the cluster is full, it hands over its farthest peer (includ-
ing the new peer in the computation) to another cluster, and
receiving cluster repeats the peer insertion algorithm. When
cluster centroid changes after a peer insertion, parent and chil-
dren clusters are informed of the new changes (this is important
for the forwarding content and control parameters). This

Algorithm 2: Cluster size constraint

Input Data: k-means clustering (Algorithm-1)
Output Data: n-constrained peer clustering

1. Create a Cluster Distance Array CDA in ascending order using SP as a point 
of reference (closest clusters to SP are on top of the array). 

2. For each cluster Sj , j    1, . . . , k in CDA: 
a) If  Sj     n, Sj is done and not considered for further peer exchange 

process. 
b) If  Sj    n and j     1, hand over the n     Sj   farthest peers Pm (with 

respect to SP) to the closest cluster Si . Sj is done and not considered
member of CDA for further peer exchange process. Update the centroid 
of and .

c) If > > 1, pick the closest peers to the centroid (it may 

include peers from other surrounding clusters) such that , is 
minimum, and hand over the − peers to the closest clusters, 
such that ( , ), = 1, − ; is also a minimum.
d(X,Y) is the RTT distance from X to Y and are the peers staying in . 

is done and not considered member of CDA for further peer exchange 

process. Update the centroids of all modified clusters.
d) If < , take − peers from the closest cluster , such that the 

distance is a minimum. is done and 

not considered member of CDA for further peer exchange process.

.

.

.

1

2

5

9

2 3 4 5 7 6 8 9

3 41 5 7 6 8 9

7 846 32 9 1

68 7 5 4 32 1

8 67 9 5 4 32 1

.

.

.
1

2

7
5

9

4

6

8

3

New centroid

(a) (b)

Fig. 2 Locating the new centroid
from RTT measures. (a) Original
Cluster, and (b) Representation of
RTT distance from each peer i to
all peers
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distributed algorithm is highly scalable (the number of compar-
isons is at the most half of the number of centroids) and dy-
namically adapts (for optimal delay) on every single peer
insertion.

3.3 N-ary tree creation

In our n-ary tree creation process, we favor (if possible)
shorter communication links between peers and clusters for
robustness, in particular for TCP connections. The tree is cre-
ated in a top-down fashion with two pre-inserted nodes: the
root of the tree or Root Cluster (RC), which is the one closest
to the source peer (SP), and the first left child of RC,
representing the closest cluster to RC. Hereafter, tree node
insertions depend on the relative distance to their closest node
and corresponding parent. Since higher hierarchical nodes
send data to children, the RTT values considered for the in-
sertion to the tree are from current nodes distance in the tree, to
prospect nodes (already computed for the clustering process
described in previous section). Let Sj be the next node to be
inserted in the tree coming from a predefined node list (LC)

ordered from closest to farthest distance with respect to RC, Si
be its closest node (already in the tree), and P the parent of Si.
If d(P, Sj) < [d(P, Si) + d(Si, Sj)]/K, then Sj becomes a child of P
(or sibling of Si) (if the number of children of P is less than n),
otherwise is inserted as child of Si. A special case during the
insertion of cluster Sj is when P is RC; RC could take more
than one child if RC has enough upload capacity. This is
useful for reducing transmission delay when two clusters are
close to RC but in opposite sides. Depending on the value of
the constant K, it favors the creation of more balanced trees
(K> 1), deeper trees (K< 1), or no influence at all in the final
tree organization (K= 1). The example in Fig. 5 shows the
following information: centroid distances of the clusters, clus-
ters´ ordered list LC, and S2, the next cluster to be processed
(Fig. 5a). Since d(RC, S2) = 5 < 7 = [(d(P, Si) = 3) + (d(Si, Sj) =
4)] for K= 1, S2 is linked to RC (parent of S1) creating at this
point a 2-level tree (root and two children). For K= 1.5, S2
becomes a child of S1, creating a 3-level tree, one node per
level. The last iteration produces the final 5-ary tree shown in
Fig. 5b and c for K= 1 and K= 1.5 respectively.

The tree creation algorithm is described as follows:

As part of the control topology, every peer manages a peer
list with the following information: peer follower, peer source,
and peer consumer. Followers are members of the same clus-
ter who alertly watch a predefined partner; in the case of fail,
the follower will take over its duties. Figure 6 shows an ex-
ample of the information or control list carried out by all peers.
Peers in the current cluster column watch for themselves, in
this case, 1 is the follower of 2, 2 of 3, 3 of 4, and 4 of 1; if peer
3 fails or leaves, peer 2 takes over its functions including

receiving from peer 6 (source) and forwarding to peer 5 (con-
sumer). Peer 2 now watch for peer 4 in current cluster. Peers
periodically sends keep-alive packets (acks every n packets) to
its clustermates. When a peer fails or leaves, the cluster cen-
troid initiates a peer request (in order to maintain the same
number of peers) to children clusters. After the handover, the
child cluster repeats the same action with its children until a
leaf is reached. If current cluster is a leaf, it will stay as is. All
peers maintain the last packet correctly received, so when

Algorithm 3: n-ary tree creation

Input Data: n-constraint k-means clustering (Algorithm-2)

Output Data: Content distribution tree

1. Get the closest distance cluster from SP, it becomes the Root Cluster 

(RC).

2. Get an ordered distance list LC (closest to farthest) between RC and 

the rest of clusters. The first cluster in the list becomes RC left child. 

Clusters will be inserted in the tree following the order of LC.

3. Compute the distance from all nodes in the tree to , the next cluster 

in the ordered list LC. Let (in the tree) be the closest node to .

a. If is a child (has a parent P), compute ( , ), ( , ), 
, and make the following decision:
i. if ( , ) < [ ( , ) + , ] ,⁄ and < , 

becomes a child of current parent (or sibling 
of ); otherwise becomes a child of .

4. Repeat step 3 until all nodes in LC have been inserted in the 
tree.
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resuming transmission because of a peer fail, the algorithm
ensures that all content will be received.

3.4 Intra-cluster and inter-cluster communication

Once the tree of clusters is created, the source node divides the
content (e.g. a file or media stream) into small blocks, to be
sent out to the highest hierarchical cluster or root cluster in the
tree. Within the root, every peer is designated as receiver from
the source node and as sender to the next and closest hierar-
chical level of clusters (as shown in Fig. 1). Every peer re-
ceives different blocks, which are concurrently redistributed to
all peers within the cluster (intra-cluster communication) and
at the same time to the next level of clusters down the tree
hierarchy (inter-cluster communication). The same process is
performed by lower cluster levels until source content reaches
all peers in the leave clusters.

Similar toMutualcast [18], an optimal bandwidth allocation
strategy is implemented using redistribution queues between
the source and requesting peers. In each cluster, a fully con-
nected topology is built considering proximity information.
Within each cluster, content is distributed among all partici-
pating peers, which are also called requesting peers. Peers are
in fact receivers (Re) and senders (Se) at the same time. Each

source splits the original content into small blocks and one
unique peer is selected to distribute a block to the rest of the
peers. Each requesting peer forwards the blocks directly re-
ceived from a source to the rest of the participating peers in its
own cluster. Peers with different upload capacity distribute a
different amount of content.When the source peers have abun-
dant upload resources, each source additionally sends one
block directly to the receiving peers. Source sends one block
to each participating peer for redistribution, one block in par-
allel to all requesting peers. Each requesting peer forwards the
blocks received from the sources to the other requesting peers.
After this, each peer works as a source for its own cluster. Each
cluster is formed by the source S of upload capacity BS and N1

requesting peers Ri with an average upload capacity CR. Each
source S distributes its contents in two different routes: (1)
through the content-requesting peers and (2) directly from
the source. The route 2 is chosen only when the source still
has upload capacity after exhausting routes 1. Thus, the distri-
bution throughput Θ, which represents the amount of content
sent to the requesting peers per second is defined as

θ ¼
Bs; Bs≤BR

BR þ BS−BR

N 1
; BS ≤BR

(
ð4Þ

where

BR ¼ N 1

N1−1
CR ð5Þ

4 Implementation

This work adds scalability to the collaborative architecture
presented in [11] and compares its performance with other
similar architectures in the literature. To reach this objective
we make use of a scalable P2P simulator called PeerSim [22].
This simulator is an extremely scalable simulation environ-
ment that supports dynamic scenarios such as churn and other
failure models [22]. PeerSim has been written in JavaFig. 4 Cluster size constraint

Fig. 3 (a) Original peer
distribution, (b) k-means output
(centroids are marked in red and
SP is the Source Peer)
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programming language, and the simulator classes can be ex-
tended to implement new peer-to-peer protocols. PeerSim
consists of two simulation engines: cycle-based and event-
driven. In cycle-based mode, authors claim simulation may
reach 106 nodes. The engines are backed by many flexible
components with a configuration mechanism, which can be
fully configured and customized. The event-based engine is
less efficient in terms of computing resources, but more real-
istic in its approach.

The PeerSim simulator is based on several components,
which can be divided into protocols, nodes and controls. In

order to improve the work environment, we use the Eclipse
IDE due to its portability. To implement our collaborative
architecture in PeerSim, we have developed a protocol called
Hybrid Kademlia Protocol, which is a substrate between the
application layer and the transport layer. Some classes from
the Kademlia module [23] are taken as references and adapted
in order to implement our protocol. Adapted modules of
Kademlia protocol in Peersim are shown in Fig. 7.

The simulation module is customizable through a simple
context using configuration files. These allow us to manipu-
late the parameters of all networks in order to establish the

Fig. 6 An example of the control
list carried out by all peers

(a) (b)

(c)

Fig. 5 Cluster size constraint. 5-
ary tree creation process. (a)
Initial conditions; (b) final tree for
K = 1; and (c) final tree for K =
1.5
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various controls. Some of the parameters are BITS, which
specifies the length of the ID, K, which is the number of calls
to all replication system parameters, and ALPHA, which is the
number of simultaneous search actions allowed by the proto-
col. The configuration file can invoke the command line to
file. TXT, or can do so using the Eclipse IDE. The control
protocol is very important because it allows us to simulate
the dynamism and real scenarios of the nodes. These controls
allow us to manipulate the traffic and the turbulence in the
network, along with other events. Each control module allows
for the identification of the peers who are outside the network
or of the waiting time required for the distribution of content.
Many of these controls have been pre-designed for the simu-
lator. During the implementation of our architecture, a class
known as Cluster class was created, which generates the group
of nodes, distributes the content, and identifies the peer with
its corresponding fragments. This class also allows for the
manipulations of nodes within the hierarchical structure of
our collaborative architecture.

Message routing plays an important role in our protocol, be-
causewhenamessagearrivesatanode, thenodecandecidewhich
route to use to send themessage (a newnode or the nearest node).
Otherclassescreatedinourprotocolareusedtosimulatethenode’s
dynamicity, fragmentation of the content and the packet loss.

5 Results and discussions

We evaluate the scalability, intrinsic robustness, and cluster size
of our proposed architecture based on the content distribution
time to all peers using real and simulated experiments. Our first
experiment, compares the performance of Mutualcast and the
hierarchical collaborative multicast scheme using a small proto-
type over the PlanetLab Network [24]. Due to limitations of real
experiments regarding the number of participant peers, we ad-
ditionally simulated and evaluated the performance of our archi-
tecture in a second experiment using 500 and 1000 peers. Our
third and final experiment, compares our architecture against

PlanetLab nodes:
Source peer (SP):
SP – University of Pi�sburgh (planetlab2.cs.pi�.edu)
Reques�ng peers:
R1 – Worcester Polytechnic Ins�tute (WPI): (75-130-96-13.sta�c.oxfr.ma.charter.com)
R2 – University of Chicago (planetlab3.cs.uchicago.edu)
R3 – Massachussets Ins�tute of Technology (planetlab7.csail.mit.edu)
R4 – University of Toronto (pl2.csl.utoronto.ca)
R5 – LIP6 – Université Pierre et Marie Curie (planetlab-01.lip6.fr)
R6 – University College London – UCL (planetlab1.net.research.org.uk)
R7 – Wroclaw University of Technology (planetlab1.ci.pwr.wroc.pl)
R8 – TP-RD-Warsaw (planetlab1.warsaw.rd.tp.pl)
R9 – Warsaw University of Technology (planetlab3.mini.pw.edu.pl)

Fig. 8 PlanetLab experimental
set-up and content distribution
tree

Fig. 7 Adapted modules of
Kademlia protocol in PeerSim
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two well-known P2P technologies in the literature, Super-Peer
and Kademlia. In the experiments, 1.5 Mb and 5 MB files were
distributed among all requesting peers.

5.1 Scalability: Hierarchical tree vs Mutualcast

A limitation ofMutulcast is related to its scalability. Although,
part of our proposed architecture is inspired in Mutualcast,
scalability is considerably improved by using clusters of peers

organized into a unique distribution tree, that improves (in the
average) the content distribution time. Scalability between our
scheme andMutualcast is compared in terms of delivery delay
[24]. For this, a broadcast group of 10-peer PlanetLab [25]
topology was created as depicted in Fig. 8. The SP is located
at the University of Pittsburg, while requesting peers were
spread out in the following academic centers: University
College London (UCL), Worcester Polytechnic Institute
(WPI), LIP6 (UPMC), MIT, University of Toronto,
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University of Chicago, Warsaw-UT, Wroclaw-UT, and TP-
RD-Warsaw. The resulting hierarchical tree after applying al-
gorithm 1–3 (see section 3) is unary. That is, SP sends the
blocks of content to closest peers R2, R3, and R4 in RC; RC
forwards the receiving blocks to cluster S1 (R1, R5, and R6)
through R2 (the closest peer to S1 centroid), and finally, S1
forwards to S2 (R7, R8, and R9) through R5 (the closest peer to
S2 centroid). During the clustering process, WPI peer was
assigned to cluster S1 because of its PlanetLab connectivity

was too slow despite the fact that spatially speaking it is closer
to SP. Similarly, the connectivity of all nodes in Poland were
also too slow, reason for which they were grouped by our
clustering algorithm as the last cluster (S2).

Our Hierarchical Collaborative Topology (in Fig. 8) and
Mutualcast were compared in terms of content delivery delay,
in which thirty independent experiments were conducted over
different days and times. The time delay in receiving the com-
plete file content (of size 1.5 MB) at each peer was recorded,
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Fig. 11 Delivery delay. a) cluster size = 3 and b) cluster size = 12
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and the scheme with smallest average delivery delay is as-
sumed to present the best overall performance, as depicted
in Fig. 9. When our approach is used, the average peer deliv-
ery delay is reduced by around 56% with respect to
Mutualcast. This improvement is attributed to the fact that
the source is close to the cluster at the highest level of the
hierarchy. Thus, the throughput between the source and this
subset of requesting peers is larger than the throughput be-
tween the source and the rest of the requesting peers (peers
with slow connectivity are sent far down in the hierarchal tree
to avoid affecting the overall content delivery delay per peer).
The second fact is that using a hierarchical approach, the peers
in the local clusters avoid the connection to distant peers into
the overlay topology as in Mutualcast, wherein all requesting
peers are fully connected. Slow peers in fully connected to-
pologies (due to traffic, slow bandwidth, etc.), increase the
average content delivery delay per peer (system is as fast as
its slowest ink), as in the case of Poland, where all peers had
bad connectivity.

In order to test the scalability of our scheme at higher
levels with hundreds of peers, we simulated (see section
4 for details) the propagation delay of a 5 Mb file to all
nodes in the n-ary tree network. The experimental set up

consisted of N = 1000 peers, k = 333 clusters, cluster size
n = 3 yielding a 10-level binary tree after applying algo-
rithms 1–3 in section 3 (Mutualcast cannot handle this
number of peers). Figure 10 shows results for this exper-
iment, in which the first (1) and last peer (1000) in the
horizontal axis are the closest and farthest to SP respec-
tively. Our measurements of time (in milliseconds) were
taken from the construction of the message until the re-
construction of the content and its defragmentation to
generate a new hierarchical cluster level. Requests from
peers building the cluster were intermediate operations in
the protocol. Results show that the time spread of the
content into the clusters increased consistently; as the
tree architecture becomes deeper (increasing number of
levels), intermediate and end peers require more time to
regroup the total content of the transmitted media. The
first five hundred peers receive the full content of the file
more quickly than the rest of the peers, as expected.
However, for this simulation the difference is not signif-
icant, while the first node received the complete content
in 694 ms, the last node received it in 720 ms (all peers
in the simulation are considered to have good connectiv-
ity and small RTTs).

Fig. 12 Delivery delay comparison of Kademlia, Super-Peer and our Hierarchical (scalable) collaborative architecture. (a) cluster size = 8; (b) cluster
size = 8; and (c) cluster size = 12
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5.2 Cluster size impact

In this section, the impact of the size of the clusters during
content distribution is evaluated using clusters of size 3 and 12
to distribute the content to 1000 peers, as shown in Fig. 11.
These results represent the average measurements of ten sim-
ulations done with our proposed architecture. A collaborative
architecture with clusters of size 3 requires a n-ary tree with
333 clusters to distribute the complete content to all peers,
while an architecture with cluster of size 12 requires a n-ary
tree with 42 clusters. Cluster with 3 peers commonly generates
a deeper tree than cluster with 12 peers, causing a longer delay
in distributing the full content to all nodes. In this case, the first
peer received its complete content in 666 ms, while the max-
imum delay in which the last peer received its complete con-
tent was 686 ms. Clusters with size 12 had a better delivery
time than the size 3 cluster; the first peer received its entire
content in 634 ms, while the maximum delay to receive the
complete content for all peers was 642 ms.

The results from our simulations show that the size of
the cluster plays an important role in our architecture, be-
cause it introduces benefits in two important ways. The
first benefit is derived from the facts that having a larger
cluster means that there is a greater robustness and fault
tolerance in the group. The second benefit is that the archi-
tecture gains scalability, which means that most of the
requesting peers obtain the content more quickly. Traffic
and turbulence factors allow us to generate a more realistic
simulation of the network behavior. If a node loses com-
munication with other nodes, it does not interfere with the
reunification of the content because there are more nodes
in the cluster that would provide support. For smaller clus-
ters, a loss of content is more likely and peers have to
retrieve the contents from a higher level of the distribution
tree, which introduces a bigger delay. Architectures with
small cluster (e.g. with 3 peers) are not robust because the
clusters are very small, and if a peer left the cluster, it
would be inoperative. Also, this type of architecture gen-
erates many small clusters, and the distribution tree re-
quires many levels to organize all these clusters.

5.3 Comparison with other technologies

Finally, we compared the performance of our collabora-
tive infrastructure with Super-Peer [12] and Kademlia
[13]. We selected these protocols because of their similar-
ities to our architecture proposed in this paper. Our simu-
lation used a network with 500 nodes to evaluate these
three architectures. In our first test, our collaborative ar-
chitecture was constructed using a size 8 cluster. Figure
12a shows these results. In this case, we can see that
Kademlia presents the highest distribution delay, while
Super-Peer has the lowest distribution delay. The

distribution delay of our architecture is between that of
Kademlia and Super-Peer. Our second test considers a
size 10 cluster in the collaborative architecture. The re-
sults from this experiment are shown in Fig. 12b. We can
see how Kademlia continues with the same behavior, be-
cause its delivery times are high. However, delivery delay
in our collaborative architecture is now very similar to the
delivery delay in the Super-Peer architecture. In our last
test, the cluster size in our collaborative architecture is
increased to 12 peers as shown in Fig. 12c. In this case,
our scalable collaborative architecture presents better per-
formance than Kademlia and Super-Peer in terms of de-
livery delay, mainly in the farthest nodes (node 250 to
node 500). Our results demonstrate that cluster size has
an important impact on our scalable collaborative archi-
tecture, the bigger the cluster size the better the overall
delivery delay. Since internally our clusters work as in
Mutualcast, the cluster size is restricted to at the most
15 peers.

6 Conclusions and future work

In this work, we have developed a new hierarchical and
scalable P2P architecture for fast and robust content dis-
tribution from a source to multiple nodes. In our architec-
ture, we use time-proximity for grouping peers into clus-
ters and clusters into a hierarchical interconnected n-ary
tree in which, content is distributed concurrently within
clusters (horizontal distribution) and among clusters in a
top-bottom direction (vertical distribution). In the first
place, we concentrated on evaluating critical issues in de-
lay sensitive scalable computing systems, such as scal-
ability (as a number of receiving peers and cluster size),
robustness and delivery delay in our architecture. We
found that our scheme performance (scalability and ro-
bustness) is proportional to cluster size. That is, as the
number of receiving peers in a cluster increases the better
the content distribution time and robustness of the system.
In the second place, we compare our scheme against pop-
ular distribution schemes in the literature such as
Kademlia and Super-Peer. Results show that our scheme
provides a lower delivery time and better scalability,
maintaining a reduced number of connections. As a future
work, we are working on replacing Mutualcast content
delivery in our clusters by an efficient optimized multicast
scheme supporting a greater number of peers per cluster,
capable of more demanding data content delivery such as
video streaming.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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