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Abstract
Mobile wireless sensor networks (MWSN) are better in terms of coverage and it plays an important role in ubiquitous
wireless networks. We design Cellular Automaton (CA) based localized motion planning algorithms for mobile wireless
sensors. We propose cellular automaton based algorithms for both dispersion and gathering problems. The dispersion
algorithm is intended for self-deployment purpose with the goal of increasing the sensing coverage of the network. We
apply a probabilistic approach that maximizes the network coverage as well as maintains the connectivity of the network. In
addition, after finishing the dispersion, a gathering algorithm guides the sensors to round up to a single place for collection.
It is noteworthy that both algorithms are synchronous which means that all sensors run algorithms in parallel at the same
time. Moreover, our algorithms allow the sensors to avert obstacles in their path of movement. As cellular automaton
functions depend on the local information about the network strictly, they are suitable for MWSN in practice. We evaluate
the performance of our algorithm based on some defined metrics i.e., coverage, strongly connected coverage. We find that
our dispersion algorithm maintains better coverage than state-of-the-art algorithm. Furthermore, in case of synchronous
gathering, sensors get disconnected for some cases to form multiple clusters while using state-of-the-art algorithm, but our
proposed gathering algorithm is always able to provide the connectivity.

Keywords Self-deployment · Synchronous gathering · Mobile wireless sensor network (MWSN) · Local algorithms ·
Cellular automaton · IoT · Obstacles

1 Introduction

Internet of Things (IoT) is one of the popular technology
with enormous future possibilities. A wide range of
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applications of IoT, encourage the researchers to work on
different aspects of this technology. Mainly IoT devices take
smart decisions based on the collected data from the local
environment. Moreover, it is necessary to accumulate the
physical environmental data in case of infrastructural use
of IoT, where Wireless Sensor Network (WSN) comes into
play.

A number of sensor nodes formed a cooperated net-
work, termed as WSN, where each node is equipped
CPU, memory unit, transceiver, sensor array embedded [1].
Meanwhile, in MWSN, sensors are capable of movement,
enabling them to self re-positioning in a dire situation to
increase coverage or to track a target object. In a network,
the area covered by its sensors is the coverage of that net-
work. Various types of applications utilize sensor network-
ing technology, like military and defense applications (e.g.
battlefield surveillance, security operation, tracking border
intrusion, intruder ship detection in sea, target tracking etc.),
health care and medical applications (e.g. location track-
ing and activity monitoring of emergency respondents (ER),
telecare system etc.), industrial applications (e.g. intelligent
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transportation system, smart car parking, smart homes and
offices, industrial process, asset management etc.), environ-
mental and agricultural applications (e.g. indoor air quality
monitoring and fire detection, outdoor air pollutants mon-
itoring, wildfire detection, precision agriculture, livestock
monitoring etc.) and so on [2, 3].

Sensors are deployed depending on the type of appli-
cation and normally the deployment can be in a random
manner or follow a systemic approach [4]. Moreover, sen-
sors can be deployed based on the area-priority concept
for such regions that have different priority levels [5]. In
a dynamic deployment scenario, sensors are deployed in
one place densely which results in lower network cover-
age. To improve this coverage, dispersion algorithms are
used to guide the sensors’ movements. These algorithms can
be divided into centralized, distributed and strictly local-
ized. Various algorithms are proposed in [6–10] which are
mainly centralized or distributed algorithms. However, these
approaches are inapt in WSN as they are quite complex to
handle since sensor nodes have low memory as well as low
computational power [11].

On the other hand, after completing data collections
from an area the sensors nodes are needed to be collected.
So it is desired that sensor nodes will gather into one
place for easy collection. This gathering method can
be divided into two category synchronous gathering and
asynchronous gathering [12]. In synchronous gathering,
all sensor nodes move simultaneously. Localized motion
planning algorithms are proposed for both sensor dispersion
and gathering problem in [13]. However, these algorithms
do not consider the presence of obstacle in the network.
Similar gathering problem has been studied in robotics [14–
16] and those algorithms are quite complex to implement in
sensors.

Different problems in WSN is solved with the help of
cellular automaton model in [4, 18–23, 25, 26, 39, 40]
with low complexity in terms of memory and computation.
Choudhury et al. in [20] propose a simple and strictly
localized algorithm based on cellular automaton model that
serves the dispersion problem. Additionally, Choudhury et
al. in [12] propose an algorithm to solve the gathering
problem to a common place. However, the model in [12, 20]
does not include obstacles in the path of movement which
makes it futile for practical scenarios.

In this paper, we design cellular automaton based strictly
localized algorithms where sensors disperse themselves
autonomously in order to maximize the network coverage
by maintaining connectivity and after finishing dispersion
they synchronously gather themselves at a single location.
We consider that the system contains obstacles which need
to be avoided by the sensors at the time of movements.
We modify the algorithm in [20] at the commencement of
our study of dispersion of sensor nodes which confirms

that we need special rules to avoid these obstacles.
Additionally, we also modify the algorithm in [12] and
propose a synchronous gathering algorithm which guides
these dispersed sensors to a common place. The main
contribution of this research is a simple guiding algorithm
for dispersion and gathering, in the presence of obstacles
to improve the network coverage as well as maintain the
network connectivity. Moreover It should be noted that as
far we know, there is no CA based algorithm to solve the
problem we are addressing that works in an obstacle prone
system.

The rest of the paper is organized as follows. Section 2
overviews the state-of-the-art in WSN. In Section 3 we discuss
some of the basics of cellular automata. In section 4 we
describe the CA based motion planning algorithm. Section 5
defines the simulation tool and analyze the numerical
results. Finally, Section 6 concludes the paper with possible
future research directions.

2 Related works

Numerous research works have been done on the dis-
persion of MWSN. Various centralized and decentralized
algorithms are proposed to solve dispersion problems like
maximizing coverage of the network, object monitoring,
strengthening the connectivity of the nodes etc. In [6],
authors propose a “sweep coverage” technique where sen-
sors periodically monitor some points of interest (POI) and
make the coverage at each POI as time-dependent. Though
a small number of sensors are enough to cover a larger area
with this approach, it encumbers the sensors with a large
amount of stored data as the sensors are unable to send
data all the time. A game theoretic approach is discussed
in[8] and utilizes the binary log-linear learning to maximize
the coverage. They claim that their scheme asymptotically
maximizes the number of covered nodes, provided that the
agents have sufficient communication ranges.

An energy efficient minimum weighted trap coverage
problem in wireless sensor networks is introduced in [27]
where authors present a bounded approximation algorithm
and prove that the problem is an NP-hard problem. Gupta
et al. [7] study sensor positioning method in an anisotropic
network topology and complex terrain. They resort to a
stochastic sensor movement strategy to generate a trajectory
of the sensors. On the other hand, a node placement
strategy for ensuring connected coverage in sensor networks
is addressed in [4] where two types of scenarios are
considered. First one is to cover a certain region and the
second one is to cover a fixed set of nodes. Du et al. [28]
propose approximation algorithms for a minimum sensor
connected coverage problem. Several algorithms for barrier
coverage in sensor networks are also proposed in [29–31],
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. However, these works are not same as the problem we
are considering rather similar to our coverage problem.
Virtual force approaches for sensor deployment in WSN are
proposed in [10]. In virtual force approach, all sensors are
considered as an actual coordinate point where a repulsive
and attractive force acts among them. However, these
approaches are computationally quite complex to handle in
a WSN and also does not work for an unbounded area.

On the other hand, a CA based approach is presented
in [19] where it is argued that cellular automaton model
can be used with success to simulate a large network,
verifying the properties in a quick and objective way. CA
based algorithms use only local information in the algorithm
which suits very well for WSNs applications. In [11], a
cellular automaton based localized algorithm is proposed
to improve the coverage of the network with a minimum
number of moves utilizing dynamic deployment. Their
movement depends on the position of neighboring sensors
along four quadrants and two predefined parameters.
Mobile dispersion algorithm, based on cellular automaton
is proposed in [20] where the sensors are placed randomly
in an obstacle-free field and allow them to disperse.
Three transition rules drive their algorithm to maximize
the coverage and strengthening the connectivity. In [32],
authors propose an algorithm based on cellular automaton
to monitor mobile objects. The aim of their algorithm is
not to improve the coverage rather maximize the time of
monitoring targeted objects.

A fundamental problem for gathering autonomous robots
in one place is discussed in [33] where neighbors of a robot
are calculated using a constant euclidean distance. Similar
to this problem, an asynchronous gathering of robots is
also discussed in [34]. Choudhury et al. [12] propose a CA
based synchronous gathering localized algorithm for mobile
wireless sensor networks where the authors place sensors
in a 2-D grid randomly by maintaining connectivity and
gathers these sensors into one location. However, obstacles
in the path of movement was not considered here. Ando et
al. in [15] and Degener et al. in [14] work on the gathering
problem in the study of robotics. In [15], a local algorithm
is proposed where each sensor determines the smallest
enclosing circle that contains all of its neighbors and moves
towards the center of that circle. However, computing this
circle is complex compared to any CA based algorithm [12].
Degener et al. [14] prove that running time taken by a sensor
is tight which is O(n2) where n is the number of sensors. In
[13], localized motion planning algorithms are proposed for
both sensor dispersion and gathering problem where authors
do not consider the presence of obstacle in the network.
Saadatmand et al. [35] proposed a CA based local algorithm
for sensor gathering in obstacle free field which has the
worst case complexity of O(n) where n is the number of
sensors.

Moreover, in recent years, a number of problems are
solved by cellular automaton in the field of WSN. In
[36], a non-volatile two-dimensional cellular automaton
model is proposed to analyze the space-time dynamics of
a WSN. Sang et al. [37] propose a moving object tracking
CA based model in a distributed mobile wireless sensor
network. Furthermore, “The lightweight 2-dimensional (2-
D) cellular automata based symmetric key encryption”
algorithm (L2D-CASKE) is proposed in [23]. Intruder
detection system based on cellular automaton theory is
presented in [17] which is scalable, self-organized and
easily implementable. This system utilizes periodic wake
sensor barrier (wave) that sweep the sensor field and
able to endure frequent communication failures, obstacles,
and sensor failures. A cellular automaton based key
management scheme, CAB is proposed in [24] which allows
sensors to establish pairwise keys during any stage of the
network operation.

3 The cellular automatonmodel

A Cellular Automaton (CA) model is a biologically inspired
model which is used in different physical systems. We
can model a two dimensional cellular automaton, following
Moore neighborhood [38], as a two dimensional grid. Each
cell of the grid can be in a state from a finite set of states.
The states of the cells change after discrete time interval
and changes depend on the local information rather than
the global information. We define a cellular automaton as a
quadruple, CA = {C, Q, δ, N}. Here C represents the cells
of the grid, Q represents the states of the cells, δ represents
the rules for transition of the automation and last of all, N

is the neighborhood of a cell. At any moment t , each cell
c ε C has a state q ε Q. At time t + 1, the state of every
cell is determined by the transition rules (δ) and state of
the neighboring cells. Cells having less Chebyshev distance
than the radius i conform the neighbor N of a cell c. In a
typical cellular automaton, all cells check the status of its
neighbors and change their state according to the transition
rules synchronously.

4 Problem formulation and algorithms

We consider a 2-D cellular automaton model where a set
of homogeneous sensors � and some random obstacles are
deployed. The sensors can move within the 2-D grid which
is an unbounded area. Our goal is to disperse these sensors
in a fashion where they can maximize the area coverage by
maintaining connectivity and finally gather all these sensors
at a single location so that we can use them for later purpose.
In the following subsections, we discuss the characteristics
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of the cellular automaton model (cell, state, neighborhood),
existing localized algorithms and obstacle avoidance motion
planning algorithms.

4.1 Cell

A collection of cells are arranged in a 2-D square grid where
one square is considered as one cell. We consider that a
cell can contain more than one sensor as a typical CA cell
can hold multiple mobile sensors. The sensors can move to
one cell in one time step and, hence, they can move in the
positive and negative x-direction as well as in the positive
and negative y-direction.

4.2 State

We define states of each cell as a triplet (M, Sx, Sy).
Here M denotes the types of a cell as “sensors”,
“empty” and “obstacles” and Sx, Sy denotes the previous
movement position of a sensor in x-direction and y-
direction respectively. A set of types M ∈ {0, 1, 2} is
defined for a cell where 1 denotes the presence of sensors
in the cell, 2 represents the presence of obstacles in the
cell and 0 represents an empty cell. For M ∈ {0, 2}, we
replace Sx, Sy with ∅ as neither an empty cell nor a cell
with obstacle holds sensors. Hence, we define Sx, Sy ∈
{0, 1, −1, ∅} for a cell where 0 indicates that the sensor
in this cell is staying in the same cell from previous time
step, 1 and −1 implies that the sensor in this cell is moved
from positive and negative x and y-direction respectively.
The state of each cell changes in discrete time steps and
it depends on a set of self-deployment rules of mobile
sensors. In Fig. 1, we have shown the positions to which the
sensor s allowed to move in positive and negative x and y-
direction. The sensor can move to the positions of a+, b+
and c+ in positive x-direction and a−, b− and c− in negative
x-direction. Similarly, positions of positive and negative
y-direction are a−, a0, a+ and c−, c0, c+ respectively.

4.3 Neighborhood

The simplest neighborhood in our cellular automaton model
for any given cell is the cell itself and its eight adjacent
neighbors. A sensor has communication radius Rc and
within this communication radius, all cells are considered as
neighbors of the cell of that sensor. Two sensors are directly
connected if they are placed within their communication
radius and the network is connected if any two sensors can
be connected by a path of connected sensors. The sensors
also have sensing radius Rs which specifies the monitoring
function of the network and the cells within this sensing
radius is covered by the sensors. The area covered by
the largest connected sensors components of the network

Fig. 1 Positions to which the sensor s allowed to move in x and
y-direction

is called the total coverage of the network. In order to
avoid long chains in the network and maintain the strong
connectivity among sensors, we consider scenarios where
communication radius is greater than sensing radius [20].

4.4 Existing localized algorithms

A cellular automaton based mobile algorithms CAMPA for
sensor dispersion and synchronous gathering are proposed
in [20] and [12] where an obstacle-free field is considered
to deploy mobile sensors. Three local rules to define the
dispersion of the sensors in each of the time steps are
discussed in [20]. To gather all these sensors at a single
location, a synchronous gathering algorithm is proposed in
[12]. The local rules for the dispersion of the sensors are
: i) Rules for Movement of Sensors ii) Rules for Blocking
Movement and iii) Rules for Moving back. In the following
subsections, we describe these three rules and synchronous
gathering rules with their behavior while facing obstacles.
However, details explanation of these rules is discussed in
[20] and [12] respectively.

4.4.1 Rules for movement of sensors

CAMPA algorithm determines the movement of a sensor
s based on the weighted number of neighbors of s. The
weights for the neighbors of s depends on the distance
between neighbors and s. As distance gets increased
between a neighbor and s, the amount of weight of that
neighbor gets lower. As an example, in case of Rc = 3,
the weights of the neighbors of s at distance 1, 2, 3 are
4, 2, 1 respectively. Let, the sum of weights of neighbors
of s in the negative x-direction and positive x-direction are
wx− and wx+ , respectively. Similarly, the sum of weights
of neighbors of s in the negative y-direction and positive
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y-direction are wy− and wy+ , respectively. The decision of
movement of s in the x-direction is defined as

(i) if wx− = wx+ then, s does not move in the x direction
(ii) if wx− > wx+ then, s moves to the positive x direction

(iii) if wx− < wx+ then, s moves to the negative x

direction

Here, movement in y- direction is calculated analo-
gously.

4.4.2 Rules for blocking movement

Two rules for blocking movement are introduced in CAMPA
algorithm to prevent the network from losing connectivity.
First one is Rc − 1 blocking rule where a sensor s does
not move in the positive x-direction if it does not see any
neighbors within distance Rc −1 in the negative x-direction
and other three directions follow the same rule. Another one
is square blocking rule where if two sensors are connected
diagonally with the distance of Rc and all other cells of the
square with this diagonal are empty, then this two sensor
does not move any of the places outside of that square. In
case of Rc − 1 and square blocking rule, if multiple sensors
are placed into one cell then only one sensor applies the
blocking rule and others apply the movement rule to move
any other directions.

4.4.3 Rules for moving back

As we are concerned about the connectivity of the network,
CAMPA algorithm introduces a move back rule which
decreases the hop-distance between individual sensors to
ensure the strong connectivity of the network. In move back
rule, a sensor remembers only whether or not there were
neighbors in the direction opposite to the current movement.
At any given time t , before moving to the positive x-
direction, a sensor s remembers if there are any neighbors
in the negative x-direction. If the sensor does not see any
neighbor in the negative x-direction at t + 1 time but it had
at least one neighbor at time t in negative x-direction, then
the sensor moves back to the negative x-direction. Move
back in y-direction is calculated correspondingly. In case of
multiple sensors in one cell, move back rule is applied for
only one of them and rest of them apply movement rule to
move any direction.

In CAMPA algorithm, these rules are giving good
result in terms of coverage if there is no obstacle in the
field. However, in case of obstacles, these rules do not
perform well to maximize the coverage. In the following
example in Fig. 2, all the sensor are failed to move any
directions in CAMPA algorithm (cell marked as red contains
obstacles). Here, some cells are in state 0 where sensors
can move and increase the coverage as well as maintain

Fig. 2 Sensors are failed to move in any directions for CAMPA
algorithm

the connectivity, but CAMPA algorithm fails to make these
movements. In this paper, we propose obstacle-avoidance
movement rules where sensors can move around obstacles
and increase the total network coverage by maintaining
network connectivity.

4.4.4 Rules for synchronous gathering

A large number of sensors are dispersed to increase
the coverage of the network but these sensors need to
move independently to a single location where they can
be collected for later use. A cellular automaton based
synchronous gathering rules are discussed in [12] where
a set of mobile sensors are deployed sparsely in a two-
dimensional obstacle free grid and their movement rules
gather all the sensors into one cell. In this movement rule,
if a sensor sees any neighbors within distance Rc in the
positive x-direction and does not see any neighbors within
distance Rc in negative x-direction then the sensor moves
towards the positive x-direction. If a sensor does not see any
neighbors within distance Rc in both positive and negative
x-direction or sees at lest one neighbor within distance Rc

in both positive and negative x-direction then the sensor
does not move in the x-direction. The same rules apply
to the y-direction. In this rule, when the enclosing sensors
make a 2 × 2 square or a 1 × 2 rectangle, the sensors enter
into a cycle. Only for this cases, if a sensor sees a sensor
directly to the positive x-direction and no sensor in negative
y-direction, then the sensor moves directly to the positive x-
direction. Similarly, if a sensor sees another sensor directly
to the negative y-direction and no sensor in directly or
diagonally (c+) positive x-direction, then the sensor moves
directly toward negative y-direction. Finally, if a sensor sees
another sensor diagonally (c+) towards positive x-direction
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Fig. 3 Obstacle avoidance movement in the only positive x-direction

then the sensor moves diagonally (c+) to the positive x-
direction. Nevertheless, details description of these rules is
discussed in [12].

4.5 Obstacle avoidancemovement rules

The main contribution of this paper is discussed in this
section. We propose an obstacle avoidance movement rules
for both sensor dispersion and gathering movement where
the rule is applied in three different scenarios. These
scenarios are discussed in the following.

4.5.1 Scenario 1

In this scenario, a sensor s wants to move only positive x-
direction (position of b+) and gets blocked by obstacles.
In this case, our movement rule considers the movement
in y-direction to avoid the obstacle. As the movement
on b+ is blocked, our algorithm immediately checks the
other two positions in positive x-direction (a+ and c+)
for the movement of the sensor. If these positions are not
blocked by an obstacle or any blocking rules then, the sensor
chooses any of this positions randomly. It is noted that, our
algorithm is localized and choosing any position between
two available positions generates same results in terms of
network coverage and connectivity. If both the positions (a+
and c+) are blocked then, the sensor does not move in any
directions. Figure 3 shows an example of obstacle avoidance
movement in only positive x-direction where cell marked
as red contains obstacles. Movement in the only negative
x-direction is determined analogously.

4.5.2 Scenario 2

In this scenario, a sensor s wants to move only positive y-
direction (position of a0) and gets blocked by an obstacle.
For the movement of the sensor, our movement rule checks

Fig. 4 Obstacle avoidance movement in the only positive y-direction

the other two positions in positive y-direction (a− and
a+) and chooses one position randomly if they are not
blocked by an obstacle or any blocking rules. Figure 4
shows an example of obstacle avoidance movement in the
only positive y-direction. Movement in the only negative y

direction is calculated correspondingly.

4.5.3 Scenario 3

In this case of obstacle blocking scenario where a sensor s

wants to move in both positive x and positive y-direction
(position of a+) and gets blocked by an obstacle. Here, our
movement rule considers the other two positions in positive
y-direction and positive x-direction (a0 and b+ respectively)
and chooses one position randomly if they are not blocked
by an obstacle or any blocking rule. Movement in a−, c+
and c− is determined in the same fashion. Figure 5 depicts
an example of obstacle avoidance movement in positive x

and positive y-direction.

4.6 Obstacle avoidancemotion planning algorithms

Obstacle avoidance motion planning algorithm for sensor
dispersion and synchronous gathering is presented in
Algorithm 1. In this algorithm, at each time step, all the

Fig. 5 Obstacle avoidance movement in both positive x and y-direction
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sensors run the algorithm locally in order to determine
their next position. Thus, the algorithm runs synchronously
at all sensors. At the beginning of the Algorithm 1, all
the sensors disperse themselves until they reach at a time
period tthreshold . After tthreshold time period, all the sensors
synchronously gather themselves into one location. In
Algorithm 1, dispersion of all the sensors is executed in
line 2–8 where we call Algorithm 2 at each time period
to calculate the dispersion rule for each of the sensors.
The sensors within the radius of communication Rc are
considered as neighbors of a sensor. In Algorithm 2, each
sensor checks whether it breaks the connectivity with
previous sensors at the previous state using the “Moveback”
rules. If the “Moveback” condition is satisfied in line 2 of
Algorithm 2, a sensor steps back to its previous state. It
is noteworthy that, at the initial stage there is no previous
state thus no move back action occurs. Mainly this move
back action strengthens the connectivity. If the “Moveback”
condition is not satisfied (i.e. connectivity has not broken)
then Movement rule is applied in line 5 of Algorithm 2.
However, that calculated position might be an obstacle. In
that case, the next location is updated based on the rule for
the obstacles in line 7 of Algorithm 2. Even after that, a
sensor may end up in a position where it can not move due to
the blocking rules. In line 10 of Algorithm 2, next location
is checked, whether it is blocked by any blocking rule. Only
if the next location is not blocked, the sensor moves to the
next location.

At tthreshold time period, all the sensors are dispersed
to maximize the network and we need to gather all these
sensors into one cell so that we can use them for later
purpose. In Algorithm 1, synchronous gathering of all the
sensors is executed in line 2–8 where we call Algorithm 3 at
each time period to calculate the gathering rule for each of
the sensors. A “synchronous gathering movement rule” is
applied in line 2 of Algorithm 3 to calculate the next location
for a sensor s. However, this calculated position might be
an obstacle. In that case, the next location is updated based
on the rule for the obstacles in line 4 of Algorithm 3. If the
calculated next location is also blocked by obstacle then the
sensor does not move to any directions.
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Fig. 6 Comparison of final
configurations with 16 mobile
sensors (Rc, Rs = 3, 1): a Initial
configuration b Final
configuration after the
deterministic approach of our
dispersion algorithm (coverage
100) c Final configuration after
the probabilistic approach of our
dispersion algorithm (coverage
144)

4.7 Analysis

We consider a deterministic and probabilistic approach for the
sensor dispersion algorithm. In the deterministic approach,
one sensor checks all the rules at each time period to
determine whether it should move from the current cell
or not. In the probabilistic approach, each sensor verifies
the rules with some probability at each time period and
probabilistic approach in dispersion algorithm provides
better coverage than the deterministic approach similar to
[20]. However it takes more time than the deterministic
approach to reach a final configuration. In Fig. 6, an
example of deterministic and probabilistic approach of our
proposed dispersion algorithm is shown where probabilistic
approach outperforms the deterministic approach in terms
of coverage. However, in case of synchronous gathering we
consider a deterministic approach to gather all the sensors
into one cell.

We examine the same example of Fig. 2 for our obstacle
avoidance dispersion movement rules. Figure 7 shows the
final configuration of Fig. 2 for proposed algorithm. It is

Fig. 7 Final configuration of Fig. 2 for proposed algorithm

clear that in our proposed movement rule sensors can move
around the obstacles and increase the network coverage.

Theorem 1 The synchronous gathering rules never increase
distance among the sensors with the presence of obstacles.

Proof In synchronous gathering rule at any given time t ,
a sensor moves closer to another sensor because it moves
away from the empty direction. If this movement is blocked
by an obstacle, the sensor looks for another cell in the same
direction (away from empty direction). Here, consider the
scenario of Fig. 8 where the next location of sensor 1 and
3 is in 1‘ (south-east) and 3‘ (north-west) respectively. If
the cell labeled with 1‘ is blocked by an obstacle then the
scenario matches with the scenario 3 of obstacle avoidance
movement rule. According to the scenario 3 of obstacle
avoidance movement rule, the sensor should move to any
cell between directly right or directly below from its current
location. If the sensor moves directly right, then the distance
between sensor 2 and 1 remains same. The distance between
2 and 1 decreases if sensor 1 moves directly below from
its current location. It is noted that, if all three potions
are blocked then the sensor remains in its current cell.
Movement of sensor 3 is also calculated in the same

Fig. 8 Scenario for synchronous gathering
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Fig. 9 Comparison of final
configurations with 100 mobile
sensors: a Initial Configuration
b Final Configuration of
Proposed Algorithm c Final
Configuration of CAMPA

fashion. Similarly, for other scenarios, we can show that
a sensor always moves opposite to the empty region with
the presence of obstacles. Since a sensor never moves to an
empty direction, it never increases the distance with other
sensors.

5 Performance evaluation

The aim of this paper is to propose a decentralized algorithm
that disperses sensors to maximize the area coverage as

Fig. 10 Comparison of the total coverage for different probabilistic
algorithms (Scenario of Fig. 9)

well as maintain the connectivity of the network and then
gathers all the sensors into one location after reaching to
the final configuration. All the sensors maintain a threshold
time tthreshold which determines the time of dispersion
of each sensor. It is noted that all the sensors start the
execution of gathering rules at the same time. We measure
the performance of dispersion algorithm using the coverage
and connectivity of the network. The performance of
synchronous gathering algorithm is measured based on the
state of the cells. It is noted that synchronous gathering
algorithms run in deterministic approach [12]. We consider
different scenarios to evaluate the coverage of the network
where (Rc, Rs) is (3, 1) and (3, 2). In some cases, the
sensor deployment can create long chains to maximize the
coverage of the network which is not useful in practice.
Therefore, we determine the performance of our algorithm
in terms of the strongly connected coverage of a network

Table 1 Comparison of the no of cells in the state of having sensors in
synchronous gathering rules with 100 mobile sensors

Time Proposed CAMPA

2000 100 100

2010 67 85

2020 41 60

2030 23 36

2040 14 19

2050 1 6

2100 1 6

2200 1 6
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Fig. 11 Comparison of final
configurations with 200 mobile
sensors: a Initial Configuration
b Final Configuration of
Proposed Algorithm c Final
Configuration of CAMPA

(aSCC). The value of aSCC consisting of n sensors is
the ratio between the average coverage of the network
(aCOV ) and the average hop distance of the network
(aHD) [20]. Here, the average hop distance of a network
(aHD) consisting of n sensors is

aHD =
∑

s1 �=s2
hd(s1, s2)

n(n − 1)
, (1)

where hd(s1, s2) represents the length of the shortest path
of sensors connecting s1 and s2. We compare the result of
our algorithm with the CAMPA algorithm. It is noted that

Fig. 12 Comparison of the total coverage for different probabilistic
algorithms (Scenario of Fig. 11)

we distribute obstacles within maximum possible coverage
area randomly. We apply the probabilistic approach with
probability 0.1, 0.2 and 0.3 where 0.1 probability takes more
time than 0.2 probability to reach the final configuration
and 0.3 probability has more chances of sensors being
disconnected. In Fig. 6, performance comparison between
deterministic and probabilistic approach is discussed. In
case of sensor deployment, probabilistic approach provides
better network coverage than the deterministic approach
[20]. We find that the probabilistic approach with 0.2
probability gives a better result than all other variants.
We implement all the algorithms using the programming
language python (Version 3.6). Next, we describe some of

Table 2 Comparison of the no of cells in the state of having sensors in
synchronous gathering rules with 200 mobile sensors

Time Proposed CAMPA

1500 200 200

1510 170 176

1520 147 164

1550 122 143

1600 102 122

1620 86 93

1650 58 69

1700 23 29

1750 1 29

1780 1 29

1800 1 29
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Fig. 13 Comparison of coverage of final configuration between two
probabilistic algorithms for various amount of obstacles with 100
mobile sensors

the input scenarios and results of our algorithm. It should be
noted that all results are calculated based on 20 experiments.

We place 100 mobile sensors in the middle of the grid as
in Fig. 9 where the value of (Rc, Rs) is (3, 1). Figure 9 also
shows the final configuration of CAMPA and our proposed
algorithm. In case of CAMPA algorithm, most of the sensors
get blocked and can not avoid obstacles to maximize the
coverage. In our proposed algorithm, sensors move around
the obstacles due to the obstacle avoidance movement rule
and maximize the total network coverage. Figure 10 shows
the coverage of the algorithms through time. We calculate
the optimal coverage considering CAMPA algorithm in an
obstacle-free field. Therefore, it is clear that total coverage
for our algorithm is very close to the optimal coverage
as well as provides much better result than the CAMPA

algorithm. We measure the performance of synchronous
gathering algorithm using the number of the cell which
contains mobile sensor at each time period. In Table 1
we show the total number of cells that contains sensors
in the 2-D grid for our proposed algorithm and CAMPA
algorithm. At time 2000 all the sensors are in their final
configuration for dispersion algorithm. After that, they
initiate the synchronous gathering and all the sensors try to
gather into one cell. In our proposed algorithm finally, one
cell remains which contains all the sensors which indicate
that all the sensors are gathered in one location. Meanwhile,
in CAMPA finally all the sensors move to 6 different cells.
From Fig. 9 we can see that for CAMPA algorithm most
of the sensors remain inside the free spaces covered by
obstacles. Therefore, for synchronous gathering algorithm
most of the sensors able to meet in one location as in the
final configuration they meet in 6 different locations.

To get different scenario we place 200 sensors (as Fig. 11)
in the center divided into two clusters but in communication
range. Here, for CAMPA algorithm, sensors placed on
the bottom left side fail to avoid the obstacles in the
final configuration but in our proposed algorithm sensors
avoids the obstacles and maximizes the coverage. Figure 12
shows the coverage rate for this scenario where our algo-
rithm provides better coverage than CAMPA algorithm.
Table 2 shows the performance between proposed algorithm
and CAMPA algorithm for synchronous gathering problem.
Here, in our proposed algorithm all the sensors are able to
meet in one cell whereas CAMPA fails to gather them in
one location due to the presence of obstacles. From Tables 1
and 2 it is clear that our algorithm outperforms CAMPA
algorithm in terms of synchronous gathering problem.

Figure 13 shows the comparison of coverage of final
configuration between two algorithms for various amount
of obstacles with the same initial configuration of 100

Fig. 14 Comparison of aSCC between two probabilistic algorithms for various numbers of mobile sensors
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Fig. 15 Comparison between
synchronous gathering
algorithms with 100 mobile
sensors: a Initial Configuration
b Final Configuration after
gathering using Proposed
Algorithm c Final Configuration
after gathering using CAMPA
algorithm

mobile sensors. Here, in case of CAMPA algorithm, the
total coverage of final configuration gets decreased with the
increasing amount of obstacles, but our proposed algorithm
maintains better coverage than CAMPA algorithm in this
cases.

Figure 14a and b show the comparison based on the
metric of average strongly connected coverage (aSCC) with
Rc, Rs = (3, 1) and Rc, Rs = (3, 2) respectively. These
figures indicate that our proposed algorithm maintains
pleasant result with compare to CAMPA algorithm. It should
be noted that in some cases, sensors got disconnected to
form multiple clusters while using CAMPA algorithm, but
our proposed algorithm does not face that type of problem.
In some cases, sensors are more strongly connected in
CAMPA algorithm as most of the sensors cannot pass
through obstacles and remain close to each other.

In Fig. 15 we show the final configuration after
completing synchronous algorithm for both proposed
algorithm and CAMPA algorithm. Here, we distribute
all the sensors randomly in a 2-D grid and run only
synchronous gathering portion of both the algorithms.
Figure 15b and c shows the final configuration of our
proposed algorithm and CAMPA algorithm respectively. Our
algorithm gathers all the sensors into one cell whereas
CAMPA algorithm fails to gather them due to the presence
of obstacles. Summarizing above simulation results, we
can conclude that our proposed algorithm outperforms
existing algorithms in both the coverage maximization and
synchronous gathering problem.

6 Conclusion and future work

We consider a locomotion problem in presence of obstacles
for MWSN where the main goal is to increase the network
coverage while maintaining the connectivity of the network
and finally gather all the sensors into one location. A cellular
automaton based model is considered where mobile sensors
are placed in a 2-D square grid. We propose a probabilistic
approach in our coverage maximization algorithm where

mobile sensors can avoid obstacles and disperse them to
maximize the coverage area of the network. Our experiment
shows that our algorithm outperforms existing cellular
automaton based algorithm and provides result near to
optimal result. We also propose a deterministic synchronous
algorithm where all the sensors move around the obstacle
and meet in one location. However, our algorithm provides
a better result than the existing algorithm for synchronous
gathering problem. In our future work, we want to study the
behavior of the system where obstacles are also in motion.
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