
Resource discovery in the peer to peer networks using an inverted ant
colony optimization algorithm

Saied Asghari1 & Nima Jafari Navimipour1

Received: 7 September 2016 /Accepted: 2 March 2018 /Published online: 15 March 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In recent years, the attractiveness of Peer-to-Peer (P2P) networks has been grown rapidly due to the easiness of use. The P2P
system is a decentralized relationship model in which every party has the analogous abilities and either party can start a
relationship session. In these networks, due to the high number of users, the resource discovery process becomes one of the
important parts of the P2P networks. But, in many previously proposed methods, there is a common problem that is called load
balancing. If the balance of workload is inefficient, it reduces the resource utilization. Therefore, in this article, we propose the
Inverted Ant Colony Optimization (IACO) algorithm, a variety of the basic Ant Colony Optimization (ACO) algorithm, to
improve load balancing among the peers. In the proposed method, the effect of pheromone on the selected paths by ants is
inverted. In this approach, ants start to traverse the graph from the requester peer and each ant chooses the best peer for moving.
Then, requirements and pheromone amount are updated. Finally, we simulate the method and evaluate its performance in
comparison to the ACO algorithm in different terms. The obtained results show that the performance of the IACO is better than
the ACO algorithm in terms of load balancing, waiting time and resource utilization.

Keywords Peer-to-peer . Resource discovery . Inverted ant colony optimization . Load balancing .Waiting time

1 Introduction

Along the last decades, outstanding improvements in
Information and Communication Technology (ICT) have per-
mitted the human generation to create, process, and share a
growing quantity of information [1–5]. Peer-to-Peer (P2P)
networks are networks of interconnected peers where some
services are provided whereas others want to get them [6].
P2P networks overcome the challenges of client/server sys-
tems, including scalability, points of failure, cost, and com-
plexity [7]. These networks are widely applied and studied in
recent years [8]. In these systems, unlike the traditional client-
server models, every peer can at the same time operation as a
server or a client [9]. Thus, the peer is allowed to share re-
sources directly with other peers, which makes P2P networks
quite famous [10]. Resource sharing, real-time data streaming,
and cycle stealing are some popular representative services
presented by P2P networks [11]. Other applications of P2P

networks are the sharing of storage and content distribution
[12, 13].

Resource discovery is one of themost important challenges in
any distributed system like grid [14, 15], cloud [16–21], P2P
network [9], and social network [22–24]. It is a key service to
discover the system resources through a huge-scale distributed
system [25]. Also, it is one of the important and interesting
components of P2P systems and becomes more difficult in such
multi-hop networks [26]. It can be considered in four fundamen-
tal categories: unstructured, structured, super-peer and hybrid
techniques [27]. Unstructured P2P networks usually use
flooding methods to search resources [28, 29]. They are widely
used over the Internet and Gnutella is one of the practical
implementations of unstructured P2P [30, 31]. But, unlike un-
structured networks, structured P2P systems make bandwidth
utilizationmore efficient by imposing limits on resource location
andmachine topology [32]. Structured P2P networks use distrib-
uted Hashtable to increase the efficiency, but they are inflexible
under a dynamic environment [33, 34]. Compared to unstruc-
tured P2P networks, structured networks generate more over-
heads for locating famous content. The super to peer-based net-
works, as a novel method to facilitate the convergence of P2P
networks, include a few peers in the overlay network as super-
peers to perform more powerfully on behalf of the peers [35].

* Nima Jafari Navimipour
jafari@iaut.ac.ir

1 Young Researchers and Elite Club, Tabriz Branch, Islamic Azad
University, Tabriz, Iran

Peer-to-Peer Networking and Applications (2019) 12:129–142
https://doi.org/10.1007/s12083-018-0644-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-018-0644-2&domain=pdf
http://orcid.org/0000-0002-5514-5536
mailto:jafari@iaut.ac.ir

The super-peers have much greater resource capacities
than other peers. Peers are assigned to at least one super-
peer and they route all their queries via this super-peer such
as searching and routing [36], like [37–42]. Hybrid P2P
networks combine structured and unstructured strategies
to overcome some weakness while retaining benefits and
advantages of each approach, like [43, 44]. Furthermore,
one of the major challenges in P2P networks is load
balancing among the peers, however, some methods such
as ACO algorithm [6] suffer from this problem.

Therefore, in this paper, we propose an IACO algorithm to
improve the loads among the peers. In the presented method,
updated pheromone in each iteration has an important effect in
order to improve load balancing among the peers. After ap-
plying updated pheromone, ants try to select the new paths to
traverse and satisfy requester requirements. The presented
method follows the classical concept of an unstructured P2P
system because this system is suitable for the proposed meth-
od. Then, we compare obtained results of the proposed meth-
od in terms of load balancing and waiting time in comparison
with the ACO algorithm. Briefly, the main objectives of the
presented method are as follows:

& Establishing load balancing among the peers in P2P
networks.

& Reducing the waiting time of the requester peer for receiv-
ing requirements.

& Evaluating the execution time and the resource utilization
of the proposed method.

The remainder of this paper is organized as follows. The
related work is provided in the next section. In Section 3, the
proposedmethod is discussed. Section 4 describes experimen-
tal dataset and the simulation results. Finally, in the last sec-
tion, the conclusion and future work are provided.

2 Related work

In this section, some important methods for resource discov-
ery in P2P networks along with the advantages and disadvan-
tages of each are depicted and discussed.

Napster1 as a famous type of unstructured network [45]
includes a central server which stores the indicator of all re-
sources shared by the peers. To find a resource, a user queries
utilizing the name of the resource and as a result, the IP address
of a peer is received. Then, a direct connection between the
requester peer and the peer contains the resource being
downloaded. For example, when peer A wants to search for
some resource, it contacts the central server. The server returns
some peers that hold the resource, for instance, peer B. Then

peer A begins to download the file from peer B. Napster is
simple and provides low response time but it is difficult to scale
the central indicator server and it has a single point of failure.

Gnutella2 implements searches via a flooding strategy with a
fixed scope to determine a way in which servants communicate
over the network. It comprises a set of descriptors used to com-
municate data among servants and a set of rules governing the
inter-servant exchange of descriptors. For resource discovery, a
flooding technique is used. Peer Awants to search for some file.
It floods its search query to its neighbors. When a peer receives
the query, it checks whether it holds the matching file itself. If
not, it forwards the query to its neighbors. If a peer holds the file
that peerAwants, it returns a response to the peer that sends it the
query and that query continues forwarding the response to the
query sender. Finally, peer A contacts the peer that hold the
requested file to download [46]. This method will be efficient
if it produces fewer numbers of redundant queries. Gnutella is
highly effective for finding famous items. This approach has an
enormous delay and false negative error. Furthermore, it suffers
from extreme traffic due to utilizing flooding technique.

Likewise, a strong and trust based search structure is pre-
sented by Mashayekhi and Habibi [47]. This technique keeps
limited size routing indexes composing search and trust data
to direct queries to most reputable peers. Each peer uses the
semantic and trust information to create limited size indexes
on its inks. Utilizing these indexes, the structure can guide
query messages to the most famous peers that contain query
search results. By dynamically choosing trustworthy peers as
score managers, the plan tracks the reputation of participating
peers. The presented method offers high robustness and dyna-
mism, but it suffers from low response time and load
balancing. Likewise, because of utilizing the Time To Live
(TTL), the false negative error can happen.

Furthermore, Zaharia and Keshav [48] have proposed a
search technique called Gossip Adaptive Hybrid (GAB) on
hybrid P2P networks which are used gossip method to gather
the network’s statistics. It uses the concept of a Gnutella where
end peers store the ultra-peers index content. It lets peers pre-
dict the best search technique for a query. Then this prediction
is compared to an actual measurement of search effectiveness.
Furthermore, the design of GAB does not depend on the
choice of the DHT or the unstructured flooding network. It
offers suitable response time and query bandwidth usage
whereas it suffers from low reliability and load balancing.

Also, HybridFlood as a new technique in unstructured P2P
networks has been proposed by Barjini, et al. [49]. This tech-
nique combines the merits of flooding and super peer and lim-
iting their drawbacks. It divides flooding pattern into two phases.
At the first phase, the algorithm follows flooding by a limited
number of hops. In the second phase, it chooses nosey peers3 in

1 www.napster.com

2 www.Gnutellaforums.com
3 The nosey peers are peers which have the most links to others.

130 Peer-to-Peer Netw. Appl. (2019) 12:129–142

http://www.napster.com
http://www.gnutellaforums.com

each searching horizon to maintain the data index of all clients.
HybridFlood extends the search efficiency by reducing redun-
dant messages in each hop. The authors have shown that
HybridFlood decreases the redundant messages and saves up
to 70% of searching traffic in comparison to flooding approach.
But, the robustness and dynamicity of the technique are not
evaluated.

Kumar, et al. [50] have proposed a mechanism for de-
signing an efficient query routing. In this article, a query
routing protocol that permits low bandwidth consumption
during query forwarding utilizing a low-cost mechanism to
build and keep data about nearby objects was presented. To
obtain this goal, the proposed protocol maintains a light-
weight probabilistic routing table at each node that offers
the location of each object in the network. Following the
corresponding routing table entries, a query can reach the
destination in a small number of hops with high probabil-
ity. A data structure called an Exponentially Decaying
Bloom Filter (EDBF) was designed that encodes routing
tables in a highly compressed manner and allows for the
effective aggregation and propagation. The search primi-
tives presented by the proposed system can be utilized to
search for single or multiple keywords. The analytical
modeling of the proposed design forecasts the improve-
ments in search efficiency and is verified through extensive
simulations. This method requires low bandwidth, low cost
and offers high reliability and trust. But, due to using TTL,
it suffers from false negative error and also it suffers from
imbalanced load problem.

Finally, Chawathe, et al. [51] have modified the Gnutella
approach to include flow control, dynamic topology adapta-
tion, and node heterogeneity. Retaining Gnutella’s simplicity
was advocated while presenting new techniques that greatly
boost its scalability. Several modifications were proposed to
Gnutella’s design that dynamically adapt the overlay topology
and the search algorithms to accommodate the natural hetero-
geneity present in most peer-to-peer systems. The proposed
design was tested through simulations and the results illustrate
three to five orders of magnitude improvement in system ca-
pacity. This method retains significant robustness and scalabil-
ity. It improves system download capacity, but, due to using
TTL, it suffers from false negative error and also it is not
suitable for file sharing.

3 Proposed method

In order to improve load balancing among the peers in P2P
networks, we use an IACO algorithm. In this section, at first,
the ACO algorithm is briefly introduced. In the following, the
network model is described and then an IACO algorithm is
proposed for resource discovery in P2P networks. Finally, a
case study is described and evaluated.

3.1 ACO algorithm

ACO is a swarm intelligence technique to problem-solving
which is proposed by Dorigo, et al. [52]. The core idea of
ACO is to utilize a swarm of basic and stochastic automata
to solve complex issues. Such a communication method has
shown to provide interesting results, especially with the em-
phasis on finding the shortest path or paths optimizing a given
function [53, 54]. The automata, or agents, in ACO, are called
ants. Each ant has the simple task of locating the needed re-
source (search section) and bringing it back to its nest
(returning phase). ACO for resource discovery in P2P net-
works is provided in [6]. According to our observations, in
this method there is not a central server; therefore, this method
is a decentralized one according to the proposed method.
Furthermore, in this method, Hashtable is not used for
searching resources. Also, there is not any solution about the
placement of resources. Therefore, this method is an unstruc-
tured method according to the proposed method.

3.2 Network model

P2P network has emerged as a famous way to share data
across a large peer population and offers several advantages
over the centralized methods [28]. P2P system comprises a
dynamically changing set of peers with symmetric roles con-
nected through the Internet [55, 56]. Formally, a P2P network
is defined as a non-directed graphG = (P, E), where P is a non-
empty set of peers in the network and E demonstrates the set
of edges in the graph, such that e = {pi, pj}∈ E represents an
edge between peers pi and pj. A sample of P2P network
consisting of six peers that each of them can act as a client
and server is shown in Fig. 1. Some definitions of P2P net-
works is shown in the following.

Peer: a peer in the P2P network is usually a computing node
that performs as a node for sharing files within the group.

Fig. 1 A sample of P2P networks with all possible connections.

Peer-to-Peer Netw. Appl. (2019) 12:129–142 131

Instead of having a central server to perform as a shared
drive, a peer performs as the server for the files stored on it.
Query: the original mechanism for searching the distribut-
ed network that is sent via a requester (a peer that request
to meet their needs) to other peers. Other peers receive a
query descriptor and then respond to the query message.
Request sender (requester): every peer in P2P networks
contains a number of resources. But, sometimes the avail-
able resources of each peer, could not satisfy its require-
ments. Therefore, this peer decides to send a request to
neighbor peers to obtain needed requirements. After that,
this peer waits to receive the responses from neighbor
peers and based on the received responses decides to
select one or more of peers in order to satisfy require-
ments. In this paper, we define this peer as a request
sender or requester.

3.3 Resource discovery using an IACO

In this section, the proposed method that is presented in the
next paragraph is described. The proposed approach acts
through four steps. Based on the proposed method, there are
pieces of information related to pheromone and heuristic.
These features are essential in the proposed method.
Therefore, we need to define these features along with the
equations used by them. Especially the heuristic information
is defined according to the system conditions. In the equations
used by the pheromone and heuristic, there are different pa-
rameters that determine the selected paths by the ants.
Therefore, these parameters will be defined and the reason
why they were used will be given. The flowchart used by
the proposed method will be described and the steps will be
shown in order. Finally, we are interested in evaluating the
effectiveness of the proposed method by solving an example.
We will describe the mentioned goals separately and present
the used equations with the description about them below.

An IACO algorithm is applied to improve the load
balancing among the peers. The IACO algorithm is a variation
of the basic ACO algorithm that converts its logic by inverting
the attraction of ants towards pheromones into a repulsion
effect [57]. The pheromone scent in this method will create a
repulsion effect instead of an attraction effect for the other ants
[58]. The proposed resource discovery process uses this algo-
rithm through four steps shown as follows:

Step 1: At first, a message that is known as a query is sent
from the requester to the neighbor peers that are
connected to the requester by the direct edge. The
requester is a peer that wants to satisfy its
requirements.

Step 2: The neighbor peers that receive the query message
start to respond the query and the response messages
are sent to the requester. The response message

contains enough information about the peer condi-
tion and whether it contains the target resources or
not.

Step 3: The requester starts to connect with one of the neigh-
bor peers which has more probability of being select-
ed. The requester selects from among peers that con-
tain target resources. The requester selects the neigh-
bor peer to move through the use of Eq. (1).

Step 4: After the first ant moves to the selected peer, require-
ments are updated and the pheromone amount of the
traversed edge is updated according to Eq. (2).

In the proposed method, there is a graph in the formG = (P,
E) in which P represents the peers and E represents the edges.
Ants start the graph traversal from the requester and each ant
chooses its path according to the pheromone and heuristic
information on the edges of the path according to Eq. (1).
The pheromone and heuristic information are primary features
of the IACO algorithm. These features have a significant ef-
fect on the chosen paths by the ants. Therefore, these features
should be used in the basic equation (Eq. (1)). The best peer is
selected to move by the first ant and the pheromone is updated
according to Eq. (2) causing the algorithm to establish load
balancing among the peers. Therefore, the traveled route by
the previous ant might not be followed by the second ant
because the available pheromone in the edge traveled by the
previous ant has caused aversion. In each iteration, ants select
the next peer among peers that have more probability. If the
calculated probability for a peer is zero, the peer will not be
selected by any ant. If two peers available in the similar con-
dition, one of them will be chosen randomly. If all of the
available edges of the requester that contain requirements for
reaching neighbor peers are traversed to satisfy the require-
ments, the remaining ants choose the traversed paths from the
first ant in order. Figure 2 shows a scenario of the proposed
method that is used for the resource discovery employing the
four steps mentioned above.

Equation (1) is the probability formula that is used to select
the traversed paths by the ants. This formula consists of two
values: τkj(t) is the pheromone on edge ekj that has an initial
value. This initial value cannot be zero because all obtained
probabilities will be zero. Therefore, at first, the pheromone
value for all edges is one. ηk J̇ tð Þ is the heuristic information
on edge ekj. The obtained probability must be between [0, 1],
therefore, the basic equation or Eq. (1) must have a denomina-
tor. This equation is shown below where t is the current itera-
tion and α and β are values that show the amount of the im-
pression of the pheromone and heuristic information respec-
tively. It is assumed that the value of these parameters is one.

pikj tð Þ ¼
τkj tð Þα
� �

ηkj tð Þβ
h i

∑n
l¼1p

i
kl tð Þ τ kl tð Þα½ � ηkl tð Þβ

h i ð1Þ

132 Peer-to-Peer Netw. Appl. (2019) 12:129–142

The pheromone is a chemical substance produced and re-
leased into the earth by an ant, influencing the conduct or
physiology of ants when they need to move for food.
Equation (2) shows the updated pheromone amount in each
iteration. k is the number of visited peers that increments 1
value in each iteration. Every iteration moves one peer to
another peer. k must increase in each iteration that the ants
could establish load balancing.

τ t þ 1ð Þ ¼ τ tð Þ � 1

k
ð2Þ

Equation (3) is referred to as the heuristic relation. A
heuristic is any way to deal with critical problems, learning,
or discovery that utilizes a functional technique not ensured to
be optimal or perfect, but sufficient for the immediate goals.
The heuristic information in the proposed method consists of
the profit amount and the Quality of Service (QoS) parame-
ters. QoS elaborates the non-functional features. QoS of peers
can be provided by providers, computed based on the execu-
tion and monitored by other peers. Two sorts of QoS criteria
can be recognized: positive and negative. The high values for
positive criteria are beneficial for requesters, such as reliability
and reputation, but and the low values of negative criteria are
beneficial for requesters such as cost and execution time. In
this method, four basic QoS criteria are considered. P depicts
the positive quality of services and N depicts the negative
quality of services.

ηkj tð Þ ¼ Q� P
N

� �
ð3Þ

Q is described as the number of required resources for i − th
ant in the next selection among peers that is shown in Eq. (4)
[59]. pj is the next peer that will be selected and the available
resources of this peer compare with all needed resources to
satisfy requirements where are available in sr(ⅈ). The profit

amount is considered to know that in the next peer how much
of needed requirements could be satisfied.

Qi
j tð Þ ¼ pj∩sr ið Þ�� �� ð4Þ

The positive quality of services is shown in Eq. (5) that
consists of the availability and reputation. These criteria are
very important when one peer among all peers is supposed to
be selected. These criteria are described in Table 1 [60].

P ¼ availabilityþ reputation ð5Þ

The negative quality of services that consists of the price
and response time is shown in Eq. (6). These criteria like
positive criteria are very important when one peer among all
peers is supposed to be selected. These criteria are described in
Table 2 [60].

N ¼ priceþ response time ð6Þ

Another parameter considered in comparing algorithms is
called the waiting time. The waiting time refers to the time that
each requester demand spends to gather requirements and it is
assumed that 1 ms time is needed to use the resources of each
peer that contain requirements. It is assumed that if a common
peer is needed to respond the requester demands, this peer will
be provided to the requester demands in order; thus other
requester demands will wait for 1, 2, 3 and… ms, respective-
ly. Therefore, to calculate the waiting time, the number of

Ant moves to the selected peer and the

pheromone is updated.

A peer which has more probability

among the peers containing

requirements is selected.

Query messages are sent to the

neighbors.
Response messages are returned to the

requester.

Requester

Requester Requester

Requester

Fig. 2 Resource discovery during
four steps using the IACO
algorithm

Table 1 Positive QoS criteria

QoS criterion Unit Description

Reputation Percent A measure of service trustworthiness.

Availability Percent The probability that a service is accessible.

Peer-to-Peer Netw. Appl. (2019) 12:129–142 133

common demands is important and crucial. It is assumed that
each ant performs a requester demand.

The waiting time for each requester demand is calculated
according to Eq. (7) in which n is the number of peers, t is the
time that each requester demand to spend to take control over
other peers and WE is the waiting time for each requester
demand.

WE ¼ ∑n
i¼1tPi ð7Þ

Equation (8) describes the total time that the requester de-
mands have spent to meet their needs in which T is the number
of demands,WEi is the obtained waiting time for each request-
er demand and WA is the waiting time for all requester de-
mands.

WA ¼ ∑T
i¼1WEi ð8Þ

A flowchart of the proposed method is shown in Fig. 3.

3.4 A case study

In this section, an example will be solved to show the perfor-
mance of the proposed method. In this example, there are six
peers which are produced randomly and P = {p1, p2, p3, p4,
p5, p6}. A multiple peer environment with considered values
for the QoS parameters for each peer is shown according to
Table 3. The QoS parameters and the considered values for

them are based on [60]. The parameters in the order of repu-
tation, availability, price, and response time are also described
in Tables 1 and 2. Also each of the peers has resources in the
form {R1, R2, R3, R4, R5 and R6} that is shown in Table 4. A
request is given to the system to satisfy requirements by peer 2
or p2. Assume that p2 needs the resources {R4, R5} to satisfy
requirements. Also, it is assumed that M =6 (the number of
ants). A graph of P2P network for this example is shown in
Fig. 4.

In this example, node p2 is considered as a requester. All
ants (six ants) start the graph traversal from this peer and
satisfy the needed requirements. The next peer will be selected
among the peers that include required resources. Sc(i) is the
solution constructed by the i − th ant and Sc(i) = {} at first.
When the ant selects a peer to move, the related peer is added
to Sc(i). Also, Sr(i) is a set of needed resources that have not
been meted by the i − th ant and at first is equal with the
needed resources that in this example Sr(i) = {R4, R5}.
When Sr(i) = {}, in fact the graph traversal is finished by the
i − th ant. The first ant tries to choose the best peer to move
from the other peers (p3, p4, p5 and p6) according to Eq. (1).
The first ant chooses node p4 because it has more probability
to be selected according to Eq. (1) and Sc(1) = {p4}. After that
the first ant moves to node p4, the pheromone amount of edge
e14 is updated according to Eq. (2) and due to the satisfaction
of p2 requirements, the first ant leaves the system. When the
first ant leaves the system, Sr(1) = {}, since all of the needed

Table 2 Negative QoS criteria
QoS criterion Unit Description

Price Dollar The money that the requester has to pay to the service provider
for the use of service.

Response time Millisecond The execution duration between the moment when a request
arrives and the moment when the result is obtained.

Yes
No

Begin

All ants start the

graph traversal of the

requester peer

Ant out of the system and

call for a new ant and the

new ant begins graph

traversal from the

requester peer

The traversed edge

pheromone is updated

according to Eq. (5)

Select the next peer

according to Eq. (1)Finish

Fig. 3 Flowchart of the proposed
method

134 Peer-to-Peer Netw. Appl. (2019) 12:129–142

resources are meted by the first ant. Then, the second ant will
begin the traversal from the source node and chooses the next
peer that has more probability according to Eq. (1). The sec-
ond ant selects at first p5 and Sc(2) = {p5}. Now, R4 is met and
because Sr(2) = {R5}, it continues graph traversal until re-
quirements are satisfied. In the following, the second ant
chooses p6 according to Eq. (1) and Sc(2) = {p5, p6} and
Sr(2) = {}. The selected peers are in the order of m3= {p6,
p4},m4= {p4},m5= {p3, p6},m6= {p5, p4} for the third, fourth,
fifth and sixth ants respectively. The obtained conclusions
show that the proposed method improves load balancing
among the peers that is elaborated in the next section.

4 Evaluation and analysis

In this section, we compare the presented approach with the
ACO mechanism [6]. At first, we describe the simulation tool
and then propose the used datasets. After that, we present
comparative parameters and explain each of them. Finally,
we evaluate the simulation results.

4.1 Simulation tool and environment

The Java programming language is used for the simulation in
the eclipse environment. The Eclipse is an Integrated
Development Environment (IDE) utilized in programming
and is the most broadly utilized Java IDE. A set of standard
metrics is utilized to measure the effectiveness of the proposed
method in comparison with the ACO algorithm. The standard
metrics are as follows: load balancing, waiting time, resource
utilization and execution time. The experimental environment
is shown in Table 5. Tests will be run on Intel Pentium 4630 at
3.00 GHz with 6 GB of RAM on a 64 bits Windows 7 ma-
chine. We explain a summary paragraph about how to
simulate.

We use two methods for receiving the number of the ants
and the number of the peers separately. The Scanner class is

used to receive the number of the ants and the peers. We used
the HashMap structure to save the available resources of each
peer. The HashMap structure consists of two elements, Key
and Value. The Key is a String and the Value is an ArrayList
String for saving the available resources of each peer. We use
an ArrayList String for saving the target resources and the
target resources are added to the ArrayList by the add
command.

4.2 Experimental datasets

We use three groups of experimental datasets to evaluate the
proposed method in comparison with the ACO method. We
propose each group of experimental datasets separately. These
groups are called the first group or original dataset, the second
group or random dataset and the third group or huge dataset.
The proposed method is compared with the ACO method in
all experimental groups.

4.2.1 Original dataset

At first, the mentioned dataset in [59] is considered to compare
the existing methods as shown in Table 6. This group called a
first or original group of experimental datasets. Suppose that
p3 requires the resource {R3} to satisfy the requirements. We
consider M =5 (number of ants) and will be started the graph
traversal. Heuristic information for four peers is presented
according to Table 3.

4.2.2 Random dataset

The second group of the experimental dataset wheraie six
peers are randomly generated is called the random dataset
which is illustrated in Section 3.4. Tables 3, 4 and Fig. 4
contain the related information that shows the second group
of experimental dataset.

Table 3 One multiple peer environment with QoS parameters

MPE p1 p2 p3 p4 p5 p6
QoS

Reputation 0.8 0.8 0.9 0.9 0.7 0.8

Availability 0.98 0.96 1 0.99 0.97 0.97

Price 3 4.5 2 2.5 4 3.5

Response time 80 75 100 90 70 80

Table 4 A group of peers with
available resources Set of peers p1 p2 p3 p4 p5 p6

Resources {R1,R6} {R2,R3} {R2,R4} {R2,R4, R5} {R1,R4} {R1,R3,R5}

Fig. 4 P2P graph for the supposed example

Peer-to-Peer Netw. Appl. (2019) 12:129–142 135

4.2.3 Huge dataset

The third group of the experimental dataset is called huge
dataset where it is conducted in an environment with 100,
1000, 5000 and 1,000,000 peers. It is assumed that the number
of the target resources for 100, 1000 and 5000 peers based on
N � 1

2 is 50, 500, 2500 respectively. Also, the number of the

target resources for 106 peers based on N � 1
3 is almost

333,333. Furthermore, the obtained results for 4 and 6 peers
will be shown in this group. Table 7 shows the experimental
dataset for the third group of the experimental dataset. When
the number of peers is 100, the considered graph is complete;
but in other cases, the considered graph is incomplete.

4.3 Comparative parameters

In this section, the comparative parameters including the load
balancing, waiting time, resource utilization and execution
time are elaborated separately.

4.3.1 Load balancing

In computing, load balancing improves the distribution of
workloads across multiple computing resources, such as
computers, a computer cluster, network links, central
processing units, or disk drives. Load balancing aims to
optimize resource use, maximize throughput, minimize
response time, and avoid the overload of any single
resource. Using multiple components with load balancing
instead of a single component may increase reliability and
availability through redundancy. Load balancing usually
involves dedicated software or hardware, such as a
multilayer switch or a domain name system server process.
Load balancing is calculated according to Eq. (9) in which LB
is obtained load balancing for each environment and PU is the

amount of used peers in the related environment. More
explanations will be mentioned in the following sections.

LB ¼ PU
100

ð9Þ

4.3.2 Waiting time

This parameter was defined in Section 3.3. The waiting time
refers to the time that each requester demand spends to gather
requirements and it is assumed that 1 ms time is needed to use
the resources of each peer that contain requirements. It is
assumed that if a common peer is needed to respond the re-
quester demands, this peer will be provided to the requester
demands in order; thus other requester demands will wait for
1, 2, 3 and … ms, respectively. Therefore, to calculate the
waiting time, the number of common demands is important
and crucial. It is assumed that each ant performs a requester
demand. The waiting time for each requester demand and all
requests are calculated according to Eqs. (7) and (8) that in
Section 3.3 was described.

4.3.3 Execution time

The execution time or running time is the time during which a
program is executing or running.

4.3.4 Resource utilization

Eventually, we decide to calculate the average resource utili-
zation for the proposed method in comparison with the ACO
algorithm. For the resource utilization, there are many defini-
tions in different aspects. But, we define resource utilization in
computer aspect. Resource utilization is a way to track how
busy various resources of a computer system are when

Table 5 The experimental
environment Experiment variables Values (range)

Number of peers 4, 6, 100, 1000, 5000, 1,000,000

Number of ants 4, 6, 100, 1000, 5000, 1,000,000

Number of available peers from each peer (neighbor peers) 3,4, …, 99

Number of available resources in each peer 1, 2, 3, 4, 5

Number of needed target resources 1,2,3, …, 333,333

Table 6 The first group of the
experimental dataset Set of peers p1 p2 p3 p4

Set of environments

Environment 1 {R1,R3,R4} {R3} {R2,R4} {R3,R5}

Environment 2 {R2,R4} {R1,R2} {R1} {R3,R4,R5}

Environment 3 {R1,R2,R3} {R1,R5} {R1,R2,R4} {R3,R5}

Environment 4 {R1,R2,R4} {R3,R5} {R1,R5} {R1,R2,R3,R4}

136 Peer-to-Peer Netw. Appl. (2019) 12:129–142

https://en.wikipedia.org/wiki/Workload
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Disk_drives
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Redundancy_%28engineering%29

running a performance test. In other words, the resource utili-
zation is a process that has been planned to use different re-
sources for satisfying a certain goal instead of using one re-
source. In the proposed method, we try to utilize the resource
efficiency to satisfy requirements with the help of the IACO
algorithm. Equation (10) calculates the resource utilization in
which RU is resource utilization, TR is the total percentage of
used peers in all environments and E is the number of envi-
ronments. More explanations will be mentioned in the next
sections.

RU ¼ TR
E

ð10Þ

4.4 Comparative analysis

In this section, the obtained results of executing the proposed
method and the ACO on the different groups of datasets are
shown. We evaluate different groups of datasets separately
and at first show the obtained results for the first group of
experimental datasets.

4.4.1 The obtained results for the original dataset

In this section, the effectiveness of the proposed method and
the ACOmethod in terms of the load balancing, waiting time,
execution time and resource utilization are evaluated.

The obtained results in Fig. 5 show that the proposed meth-
od in three environments of Table 6 uses more peers to satisfy
requirements. Since in E1, E3, and E4 of Table 6 there is more
than one peer that contains the target resource (R3), therefore,
the proposed method uses different peers to satisfy requester
(p3) requirements. For example, in E1 environment, the first
ant selects p4 to satisfy requester requirements, the second ant

chooses p2 and the third ant selects p1. While the ACOmethod
for all environments uses only one of the peers to satisfy
requester requirements, it can be seen that, the proposed meth-
od has a better load balancing in comparison with the ACO
algorithm. The performance of the proposed method and the
ACO are equal in E2 because the target resource is only one
peer. The performance of the proposed method is more effi-
cient in E3 and E4 because the target resource is available on
two different peers.

The existing results in Fig. 6 show that in the proposed
method in three cases the requests are processed in less time
in comparison with the ACO algorithm. In other words, in
three cases the performance of the proposed method is better
than that of the ACO algorithm in terms of the waiting time.
The performance of the proposed method and the ACO are
equal in the case of E2 because like the ACO method the
proposed method uses only one peer to satisfy requirements.
It is assumed that five common requests are given to the sys-
tem by the requester or p3 to calculate the waiting time.

The comparisons of the execution time of the proposed
method and the ACO method for the mentioned dataset in
[59] is shown in Fig. 7. The obtained results show that the
execution time of the ACO method is less than that of the
IACO method. Only in E2, the effectiveness of the proposed
method and the ACO method is equal because there is only
one peer that contains requirement resources. Unfortunately,
the effectiveness of the presented method is weaker than that
of the ACO method in terms of the execution time.

In the following, the average resource utilization for the
proposed method and the ACO method is calculated. The
obtained results show that the proposed method has a better
average resource utilization in comparison with the ACO

Table 7 The third group of the
experimental dataset The number of peers 100 1000 5000 1,000,000

Available resources 1,…, 5 1,…, 5 1, …, 5 1,…, 5

The number of target resources 50 500 2500 333,333

The number of neighbors (complete and incomplete graph) 99 Random Random Random

10 10 10 10

2

10

4 4

0

5

10

E1 E2 E3 E4

W
a
it

in
g
 t

im
e

(m
s)

Environments

ACO IACO

Fig. 6 The comparison of the algorithms in terms of the waiting time in
the original dataset

25% 25% 25% 25%

75%

25%

50% 50%

0%

25%

50%

75%

100%

E1 E2 E3 E4

P
er

ce
n

ta
g
e

o
f

u
se

d

p
ee

rs

Environments

ACO IACO

Fig. 5 The comparison of the algorithms in terms of the percentage of
used peers in the original dataset

Peer-to-Peer Netw. Appl. (2019) 12:129–142 137

method. Table 8 shows that the proposed method of 50%
peers and the ACO of 75% peers have not been utilized.

4.4.2 The obtained results for the random dataset

In this subsection, the second group of the experimental
dataset that refers to the mentioned example in Section 3.4 is
considered. This group of the dataset was produced randomly.
As it is evident in Fig. 8, the percentage used by each peer in
the graph traversal by six ants’ shows that the performance of
the proposed method is better than that in the ACO algorithm
in terms of load balancing among the peers. The IACO meth-
od uses four peers to respond p2 requirements, whereas the
ACO algorithm uses only one peer to respond p2 require-
ments. Figure 9 shows the general percentage used peers for
M=6 (number of ants). As it is clear, the IACO algorithm has a
better load balancing than that of the ACO algorithm.

Figure 10 shows that the proposed method takes less time
in comparison with the ACO algorithm for processing re-
quests. In other words, the proposed method spends less time
to respond the requester requirements. It is assumed that six

common requests are given to the system by p2 to calculate the
waiting time.

The comparisons of the execution time of the proposed
method and the ACO for the mentioned example in
Section 3.4 are shown in Fig. 11. The obtained results show
that the execution time of the ACO method is less than that of
the IACO method. A comparison of the results of the two
algorithms also shows that the execution time in the proposed
method increases and that is considered as a disadvantage of
the proposed method.

Furthermore, we evaluate the average resource utilization
for the proposed method and the ACO method. The obtained
results show that the proposed method has a better average
resource utilization in comparison with the ACO method.
Table 9 shows that the proposed method of 34% peers and
the ACO of 84% peers have not been utilized.

4.4.3 The obtained results for the huge dataset

Final experiments were conducted in an environment with
100, 1000, 5000 and 1,000,000 peers. The obtained results
for load balancing, waiting time, execution time and resource

19 18 18 17

23

18

21 20

0

5

10

15

20

25

E1 E2 E3 E4

E
x
ec

u
ti

o
n

 t
im

e
(m

s)

Environments

ACO IACO

Fig. 7 The comparison of the algorithms in terms of the execution time in
the original dataset

0% 0% 0%

100%

0% 0%0% 0%

16%

66%

34%

50%

0%

20%

40%

60%

80%

100%

peer 1 peer 2 peer 3 peer 4 peer 5 peer 6

P
er

ce
n

ta
g
e

o
f

u
se

d
p

ee
rs

Set of peers

ACO IACO

Fig. 8 The comparison of the algorithms in terms of the percentage of
used peer (by peer) in the random dataset

16%

66%

0%

20%

40%

60%

80%

100%

ACO IACO

P
er

ce
n

ta
g

e
o

f
u

se
d

p
ee

rs

Algorithms

Fig. 9 The comparison of the algorithms in terms of percentage of used
peers (by algorithms) in the random dataset

Table 8 The obtained
results in average
resource utilization in the
original dataset

Algorithms Resource utilization

ACO algorithm 25%

IACO algorithm 50%

15

10

0

10

20

ACO IACO

W
a
it

in
g
 t

im
e

(m
s)

Algorithms

Fig. 10 The comparison of the algorithms in terms of the waiting time in
the random dataset

23

30

0

10

20

30

ACO IACO

E
x

ec
u

ti
o
n

 t
im

e
(m

s)

Algorithms

Fig. 11 The comparison of the algorithms in terms of the execution time
in the random dataset

138 Peer-to-Peer Netw. Appl. (2019) 12:129–142

utilization have been shown in Fig. 12, Table 10, Table 11 and
Table 12 respectively. The obtained results show that with the
increase in the number of the peers, the proposed method
performance gets more efficient in terms of load balancing
among the peers in comparison with the ACO algorithm. In
the IACO algorithm, as the number of the peers increases, the
number of the visited nodes also increases and therefore, the
waiting time decreases in comparison with the ACO algo-
rithm. When the number of peers increases, the number of
available peers of each peer (neighbor peers), the number of
resources for each peer and the number of target resources also
increases in a certain scope according to the considered values
in Table 5. Therefore, the obtained results may be different in
each iteration (program run). The number of target resources
is evaluated based on certain conditions described in
Section 4.2.3. If the number of target resources to satisfy re-
quester requirements is 50, the maximum number of peers that
is needed to satisfy the requirements is 50 for the ACO meth-
od. But in the proposed method, due to the updated phero-
mone, it can be different. These results are a basis to calculate
the next experiments. The percentage of used peers is shown
in Fig. 12. As the number of the peers increases, the perfor-
mance of the proposed method in terms of load balancing
among peers would certainly be better in comparison with
the ACO algorithm.

Of course, when the number of peers is 4, 6 and 100, the
considered graph to calculate load balancing is complete. But
when the number of peers increases, or in other words, when
the number of peers is 1000, 5000 and 1,000,000 peers, the
considered graph to calculate load balancing is incomplete,
because the scalability of P2P systems can only be achieved
with incomplete graphs. It is clear that when the graph is

incomplete, the effectiveness of the proposed method in terms
of the load balancing is decreased, especially, when the num-
ber of the peers is low. Therefore, the effectiveness of the
waiting time is decreased. In other words, the total waiting
time of the requests to receive requirements is increased.
Also, the effectiveness of the ACO algorithm is almost con-
stant in terms of the load balancing and waiting time when the
graph is complete or incomplete.

It is assumed that four common requests are given to the
system by the requester peer to calculate the waiting time for
the proposed method and the ACO method for 100, 1000,
5000 and 1 million peers. As the number of the peers in-
creases, the performance of the proposed method in terms of
waiting time would certainly be better in comparison with the
ACO algorithm. The obtained results are shown in Table 10.

But, in terms of the execution time, the proposed method
acts weaker than the ACO algorithm. The obtained results are
shown in Tables 11.

In the following, we attempt to get the average resource
utilization for the huge dataset. The obtained result in Fig. 12
is considered for different numbers of the peers. It can be seen,
there are six environments that consist of N = 4, N = 6, N =
100, N = 1000, N = 5000 and N = 1,000,000. When the num-
ber of peers is 4, 6 and 100, the considered graph is complete.
But when the number of peers is 1000, 5000 and 1,000,000

Table 9 The obtained
results in the average
resource utilization in the
random dataset

Algorithms Resource utilization

ACO algorithm 16%

IACO algorithm 66%

25%

16%

40%
45%

50%

33%

50%

66%
60% 60%

68%

55%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N = 4 N = 6 N = 100 N = 1000 N = 5000 N = 1000000

s
ree

p
des

u
f

o
e

g
at

n
ec

re
P

The number of peers

ACO IACOFig. 12 The comparison of the
algorithms in terms of the
percentage of used peers in the
huge dataset

Table 10 The comparison of the algorithms in terms of the waiting time
in the huge dataset

Algorithms ACO IACO
The number of peers

4 10 4

6 15 10

100 240 180

1000 2700 2250

5000 15,000 12,300

1,000,000 1,999,998 1,320,000

Peer-to-Peer Netw. Appl. (2019) 12:129–142 139

peers, the considered graph is incomplete. Table 12 indicates
the obtained results and, as has been shown, the performance
of the IACOmethod is certainly better in comparison with the
ACO algorithm. It is clear, almost 40% of peers is not used in
the proposed method and 65% of peers is not used in the ACO
method.

5 Conclusion and future work

In this paper, we proposed amethod for the resource discovery
in P2P networks using an IACO algorithm that consisted of
four sections. In the first section, the query message of the
requester was sent to the neighbor peers, neighbor peers tried
to respond the query and the response message returned to the
requester. In the third section, the optimal peer which
contained the best value of probability was selected. Finally,
the pheromone amount and requirements were updated caus-
ing the proposed method to improve load balancing among
the peers. In the cases of completed and incomplete graphs,
the performance of the proposed method was evaluated using
Java. The obtained results showed that the proposed method
had a better performance among different groups of experi-
mental datasets in terms of load balancing, waiting time and
average resource utilization in comparison with the ACO al-
gorithm. The obtained results in all experiments depended on
the number of the peers, the number of the target resources,
the available resources in each peer, the number of the neigh-
bor peers, the fullness of the graph and the number of ants.
Therefore, it could not be said with certainty that the obtained
results in the previous section were always stable and in each
program execution, it could be different, especially when the
number of peers increased. But it could be said with certainty
that the IACO was superior to the ACO algorithm in terms of

load balancing, waiting time and resource utilization. Also,
since there wasn’t a central server, the problem of a single
point of failure didn’t happen. Furthermore, since in the pro-
posed method the flooding strategy was not used, the huge
overhead problem did not happen due to the exponential in-
crease of query packets.

Unfortunately, in the evaluation, parallelism and network
latency were not considered. Therefore, in the future, using the
peersim or equivalent simulation toolkit for parallelism and
network latency calculation are very interesting. Also, the ef-
fectiveness of the proposed method in terms of the execution
time was weaker than the ACO method. Considering the pro-
posedmethod in different network topologies can be challeng-
ing. Furthermore, using the other meta-heuristic algorithms
and evaluating the performance of them in terms of the load
balancing, waiting time and execution time will be interesting.

References

1. Asghari S, Navimipour NJ (2016) Service composition mecha-
nisms in the multi-cloud environments: a survey. Int J New
Comput Archit Appl (IJNCAA) 6:40–48

2. Asghari S, Navimipour NJ (2016) Review and comparison ofmeta-
heuristic algorithms for service composition in cloud computing.
Majlesi J Multimed Process 4

3. Ashouraie M, Jafari Navimipour N (2015) Priority-based task
scheduling on heterogeneous resources in the expert cloud.
Kybernetes 44:1455–1471

4. Navimipour NJ, Rahmani AM, Navin AH, HosseinzadehM (2015)
Expert cloud: a cloud-based framework to share the knowledge and
skills of human resources. Comput Hum Behav 46:57–74

5. Afrooz S, Navimipour NJ (2017) Memory designing using
quantum-dot cellular automata: systematic literature review, classi-
fication and current trends. J Circ Syst Comput 26:1730004

6. Krynicki K, Jaen J, Mocholi JA (2013) On the performance of
ACO-based methods in p2p resource discovery. Appl Soft
Comput 13(12):4813–4831

7. Mirtaheri SL, Sharifi M (2014) An efficient resource discovery
framework for pure unstructured peer-to-peer systems. Comput
Netw 59:213–226

8. Navimipour NJ, Milani FS (2015) A comprehensive study of the
resource discovery techniques in peer-to-peer networks. P2P Netw
Appl 8:474–492

9. Akbari Torkestani J (2012) A distributed resource discovery algo-
rithm for P2P grids. J Netw Comput Appl 35(11):2028–2036

10. Han X, Cuevas Á, Crespi N, Cuevas R, Huang X (2014) On
exploiting social relationship and personal background for content
discovery in P2P networks. Futur Gener Comput Syst 40(11):17–
29

11. Deng Y, Wang F, Ciura A (2009) Ant colony optimization inspired
resource discovery in P2P grid systems. J Supercomput 49:4–21

12. Wang L (2011) SoFA: an expert-driven, self-organization peer-to-
peer semantic communities for network resource management.
Expert Syst Appl 38(1):94–105

13. Beydoun G, LowG, Tran N, Bogg P (2011) Development of a peer-
to-peer information sharing system using ontologies. Expert Syst
Appl 38(8):9352–9364

Table 11 The comparison of the algorithms in terms of the execution
time in the huge dataset

Algorithms ACO IACO
The number of peers

4 19 ms 22 ms

6 23 ms 30 ms

100 2000 ms 2015 ms

1000 18,300 ms 18,650 ms

5000 78,850 ms 79,550 ms

1,000,000 150,400,000 ms 153,120,000 ms

Table 12 The obtained
results for average
resource utilization in the
huge dataset

Algorithms Resource utilization

ACO algorithm 34.83%

IACO algorithm 59.83%

140 Peer-to-Peer Netw. Appl. (2019) 12:129–142

14. Navimipour NJ, Rahmani AM, Navin AH, HosseinzadehM (2014)
Resource discovery mechanisms in grid systems: a survey. J Netw
Comput Appl 41:389–410

15. Navimipour NJ, Asghari S (2017) Energy-aware service composi-
tion mechanism in grid computing using an ant colony optimization
algorithm. 대한전자공학회 학술대회, pp 282–286

16. Aznoli F, Navimipour NJ (2016) Cloud services recommendation:
reviewing the recent advances and suggesting the future research
directions. J Netw Comput Appl 77:73–86

17. Navimipour NJ (2015) A formal approach for the specification and
verification of a trustworthy human resource discovery mechanism
in the expert cloud. Expert Syst Appl 42:6112–6131

18. Keshanchi B, Navimipour NJ (2016) Priority-based task scheduling
in the cloud systems using amemetic algorithm. J Circ Syst Comput
25:1650119

19. Vakili A, Navimipour NJ (2017) Comprehensive and systematic
review of the service composition mechanisms in the cloud envi-
ronments. J Netw Comput Appl 81:24–36

20. Azad P, Navimipour JN (2017) An energy-aware task scheduling in
cloud computing using a hybrid cultural and ant colony optimiza-
tion algorithm. Int J Cloud Appl Comput 7:20–40

21. Milani BA, Navimipour NJ (2017) A systematic literature review of
the data replication techniques in the cloud environments. Big Data
Res 10:1–7. https://doi.org/10.1016/j.bdr.2017.06.003.

22. Sharif SH, Mahmazi S, Navimipour NJ, Aghdam BF (2013) A
review on search and discovery mechanisms in social networks.
Int J Inf Eng Electron Bus 5:64–73

23. Asghari S, Azadi K (2017) A reliable path between target users and
clients in social networks using an inverted ant colony optimization
algorithm. Karbala Int J Mod Sci 3(3):143–152. https://doi.org/10.
1016/j.kijoms.2017.05.004.

24. Bakratsas M, Basaras P, Katsaros D, Tassiulas L (2017) Hadoop
mapreduce performance on SSDs for analyzing social networks.
Big Data Res. https://doi.org/10.1016/j.bdr.2017.06.001

25. Merz P, Gorunova K (2007) Fault-tolerant resource discovery in
peer-to-peer grids. J Grid Comput 5:319–335

26. A. Arunachalam and O. Sornil (2015) "Issues of Implementing
Random Walk and Gossip Based Resource Discovery Protocols
in P2P MANETs & Suggestions for Improvement," Procedia
Comput Sci, 57:509–518

27. Meshkova E, Riihijärvi J, Petrova M, Mähönen P (2008) A survey
on resource discovery mechanisms, peer-to-peer and service dis-
covery frameworks. Comput Netw 52:2097–2128

28. Trunfio P, Talia D, Papadakis H, Fragopoulou P, Mordacchini M,
Pennanen M, Popov K, Vlassov V, Haridi S (2007) Peer-to-peer
resource discovery in grids: models and systems. Futur Gener
Comput Syst 23:864–878

29. Gaeta R, Sereno M (2011) Generalized probabilistic flooding in
unstructured peer-to-peer networks. IEEE Trans Parallel Distrib
Syst 22:2055–2062

30. Lua EK, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey
and comparison of peer-to-peer overlay network schemes. IEEE
Commun Surv Tutorials 7:72–93

31. Kirk P (2003) Gnutella protocol development. Retrieved June, vol.
27, pp 2011

32. Ghamri-Doudane S, Agoulmine N (2007) Enhanced DHT-based
P2P architecture for effective resource discovery and management.
J Netw Syst Manag 15:335–354

33. Maymounkov P, Mazieres D (2002) Kademlia: a peer-to-peer in-
formation system based on the xor metric. In: Peer-to-peer systems
Springer, pp 53–65

34. Stoica I, Morris R, Karger D, KaashoekMF, Balakrishnan H (2001)
Chord: a scalable peer-to-peer lookup service for internet applica-
tions. ACM SIGCOMM Comput Commun Rev 31:149–160

35. Yang B, Garcia-Molina H (2003) Designing a super-peer network.
In: Data engineering, 2003. Proceedings. 19th international confer-
ence on, pp 49–60

36. Tan Y-H, Lü K, Lin Y-P (2012) Organisation and management of
shared documents in super-peer networks based semantic hierarchi-
cal cluster trees. P2P Netw Appl 5:292–308

37. Stokes M (2002) Gnutella2 specifications part one. Rapport
technique

38. Stokes M (2003) Gnutella2 specification document–first draft.
Gnutella2 website http://www.gnutella2.com/gnutella2_draft. htm

39. Haasn MI (2011) Semantic technology and super-peer architecture
for internet based distributed system resource discovery. Int J New
Comput Archit Appl (IJNCAA) 1:848–865

40. Ali HA, Ahmed MA (2012) HPRDG: a scalable framework
hypercube-P2P-based for resource discovery in computational grid.
In: Computer Theory and Applications (ICCTA), 2012 22nd
International Conference on, pp 2–8

41. YangM, Yang Y (2010) An efficient hybrid peer-to-peer system for
distributed data sharing. IEEE Trans Comput 59:1158–1171

42. Liu M, Harjula E, Ylianttila M (2013) An efficient selection algorithm
for building a super-peer overlay. J Internet Serv Applic 4:1–12

43. Loo BT, Huebsch R, Stoica I, Hellerstein JM (2004) The case for a
hybrid P2P search infrastructure. In: Peer-to-peer systems III.
Springer, pp 141–150

44. Papadakis H, Trunfio P, Talia D, Fragopoulou P (2008) Design and
implementation of a hybrid P2P-based grid resource discovery sys-
tem. In: Making grids work. Springer, pp 89–101

45. Napster L (2001) Napster. URL: http://www.napster.com
46. Jin X, Chan S-HG (2010) Unstructured peer-to-peer network archi-

tectures. In: Handbook of peer-to-peer networking. Springer, pp
117–142

47. Mashayekhi H, Habibi J (2010) Combining search and trust models
in unstructured peer-to-peer networks. J Supercomput 53:66–85

48. Zaharia M, Keshav S (2008) Gossip-based search selection in hy-
brid peer-to-peer networks. Concurr Comput Pract Exper 20:139–
153

49. Barjini H, Othman M, Ibrahim H (2010) An efficient hybridflood
searching algorithm for unstructured peer-to-peer networks. Inf
Comput Appl:173–180

50. Kumar A, Xu J, Zegura EW (2005) Efficient and scalable query
routing for unstructured peer-to-peer networks. In: Proceedings
IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies, pp 1162–1173

51. ChawatheY, Ratnasamy S, Breslau L, LanhamN, Shenker S (2003)
Making gnutella-like p2p systems scalable. In: proceedings of the
2003 conference on applications, technologies, architectures, and
protocols for. Comput Commun:407–418

52. Dorigo M, Maniezzo V, Colorni A (1991) The ant system: an au-
tocatalytic optimizing process

53. Jaén J, Mocholí JA, Catalá A, Navarro E (2011) Digital ants as the
best cicerones for museum visitors. Appl Soft Comput 11:111–119

54. Mocholi JA, Martinez V, Jaen J, Catala A (2012) Amulticriteria ant
colony algorithm for generating music playlists. Expert Syst Appl
39:2270–2278

55. Krauter K, Buyya R, Maheswaran M (2002) A taxonomy and sur-
vey of grid resource management systems for distributed comput-
ing. Softw Pract Exper 32:135–164

56. Souri A, Navimipour NJ (2014) Behavioral modeling and formal
verification of a resource discovery approach in grid computing.
Expert Syst Appl 41:3831–3849

57. Asghari S, Navimipour J (2017) Cloud services composition using
an inverted ant colony optimization algorithm. Int. J. Bio-Inspired
Comput in press. Google Scholar

58. Dias JC, Machado P, Silva DC, Abreu PH (2014) An inverted ant
colony optimization approach to traffic. Eng Appl Artif Intell 36:
122–133

Peer-to-Peer Netw. Appl. (2019) 12:129–142 141

https://doi.org/10.1016/j.bdr.2017.06.003
https://doi.org/10.1016/j.kijoms.2017.05.004
https://doi.org/10.1016/j.kijoms.2017.05.004
https://doi.org/10.1016/j.bdr.2017.06.001
http://www.gnutella2.com/gnutella2_draft
http://www.napster.com

59. Yu Q, Chen L, Li B (2015) Ant colony optimization applied to web
service compositions in cloud computing. Comput Electr Eng 41:
18–27

60. Wang D, Yang Y, Mi Z (2015) A genetic-based approach to web
service composition in geo-distributed cloud environment. Comput
Electr Eng 43:129–141

Saied Asghari received his B.S.
in computer engineering, software
engineering, from Khoy Branch,
Islamic Azad University, Khoy,
Iran, in 2014; theM.S. in comput-
er engineering, software engineer-
ing, from Tabriz Branch, Islamic
Azad University, Tabriz, Iran, in
2016. His research interests in-
clude Cloud Computing, Peer-to-
Peer Networks, Social Networks
and Grid Computing.

Nima Jafari Navimipour re-
ceived his B.S. in computer engi-
neering, software engineering,
from Tabriz Branch, Islamic Azad
University, Tabriz, Iran, in 2007;
the M.S. in computer engineering,
computer architecture, from Tabriz
Branch, Islamic Azad University,
Tabriz, Iran, in 2009; the Ph.D. in
computer engineering, computer
architecture, from Science and
Research Branch, Islamic Azad
University, Tehran, Iran in 2014.
He is an assistance professor in
the Department of Computer

Engineering at Tabriz Branch, Islamic Azad University, Tabriz, Iran. He
has published more than 100 papers in various journals and conference
proceedings. His research interests include Cloud Computing, Social
Networks, Fault-Tolerance Software, Computational Intelligence,
Evolutionary Computing, and Network on Chip.

142 Peer-to-Peer Netw. Appl. (2019) 12:129–142

	Resource discovery in the peer to peer networks using an inverted ant colony optimization algorithm
	Abstract
	Introduction
	Related work
	Proposed method
	ACO algorithm
	Network model
	Resource discovery using an IACO
	A case study

	Evaluation and analysis
	Simulation tool and environment
	Experimental datasets
	Original dataset
	Random dataset
	Huge dataset

	Comparative parameters
	Load balancing
	Waiting time
	Execution time
	Resource utilization

	Comparative analysis
	The obtained results for the original dataset
	The obtained results for the random dataset
	The obtained results for the huge dataset

	Conclusion and future work
	References

