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Abstract
Today, wireless sensor networks (WSNs) have been widely used in monitoring various applications, such as environment,
military and health-care, etc. The explosive growth of the data volume generated in these applications has led to one of
the most challenging research issues of the big data era. To deal with such amounts of data, exploring data correlation and
scheduling strategies have received great attention in WSNs. In this paper, we propose an efficient mechanism based on
the Euclidean distance for searching the spatial-temporal correlation between sensor nodes in periodic applications. Based
on this correlation, we propose two sleep/active strategies for scheduling sensors in the network. The first one searches
the minimum number of active sensors based on the set covering problem while the second one takes advantages from
the correlation degree and the residual energy of the sensors for scheduling them in the network. Our mechanism with
the proposed strategies were successfully tested on real sensor data. Compared to other existing techniques, the simulation
results show that our mechanism significantly extends the lifetime of the network while conserving the quality of the
collected data and the coverage of the monitored area.

Keywords Periodic sensor networks (PSNs) · Big-data sensing · Spatial-temporal data correlation · Scheduling sensors ·
Clustering topology · Real data readings

1 Introduction

Nowadays, wireless sensor networks (WSNs) can be consid-
ered as one of the most important source of big data era.
In some applications, such as healthcare services and atmo-
spheric conditions monitoring [21] and commercial flights
[22], the volume of data generated by sensors nodes reaches
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the order of petabytes every day. Moreover, the sensor nodes
have a limited energy supply. Therefore, the problems of
energy constraint and data redundancy emerge inevitably at
the core of WSNs challenges.

To deal with big data generated in WSNs, recent studies
[23–25] pay a great attention to inter-nodes data correlation
techniques and scheduling nodes strategies. The aim of
such approaches is to schedule sensors that generate high
spatial-temporal correlation into sleep/active mode thus,
enhancing the network lifetime. In this paper, we focus on
periodic real-time data collection model in WSNs based
on clustering architecture. In one hand, periodic model has
been used over a wide range of areas [26, 27] where each
sensor periodically collects local readings of interest then
transmitting them toward the sink. On the other hand, recent
works have mainly focused on the clustering architecture as
an efficient topology of WSNs that organizes data traffic
and improves scalability of the network [28, 29]. Hence, our
main goal in this paper is to minimize the huge amount of
data generated in clustering-based periodic sensor networks,
by searching the spatial and temporal correlation between
neighboring nodes. When correlated nodes are detected, we
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propose two scheduling strategies in order to switch sensors
in each cluster into sleep/active modes. The first strategy is
based on the set cover problem while the second strategy
takes into account the correlation degree and the residual
energy of the sensors when scheduling nodes in the cluster.

The remainder of this paper is organized as follows.
Section 2 presents the related work on data correlation
and scheduling techniques in sensor networks. Section 3
describes our mechanism, based on the Euclidean distance,
for searching spatially-temporally correlated nodes. In
Section 4, we propose two strategies for scheduling sensors
in the network. Simulation results based on real data
readings are exposed in Section 5. Finally, we conclude
our paper and we provide our directions for future work in
Section 6.

2 Related work

In WSNs, a lot of techniques have been proposed in order
to explore the spatial-temporal data correlation between
sensors [12–14]. The main objective of such techniques is
to reduce the energy consumption in data collection and
minimize the redundancy existing in the network. Recently,
the authors in [10, 11] present a comprehensive overview
about different spatial-temporal data correlation techniques
and sleep scheduling methods proposed in the literature for
WSNs.

Some works, such as [15–18], study the spatial-temporal
correlation between sensor readings as the aggregation pro-
cess of similar data. In [15], the authors propose a spatial-
temporal correlation based fault-tolerant event detection
scheme, called STFTED, which leverages a two-stage deci-
sion fusion and exploiting spatial-temporal correlation of
sensor nodes. In [17], the authors propose an architecture
for dynamic and distributed data-aware clustering, and the
Dynamic Data-aware Firefly-based Clustering (DDFC) pro-
tocol to handle spatial similarity between node readings.
The DDFC operation takes into account the biological prin-
ciples of fireflies to ensure distributed synchronization of
the clusters’ similar readings aggregations.

In other works, such as [2, 5, 19, 20], the spatial-temporal
correlation between sensors have been studied in order to
schedule sensors in the network. In [5], the authors propose
an Efficient Data Collection Aware of Spatial-Temporal
Correlation (EAST) for energy-aware data forwarding in
WSNs. In EAST, nodes that detected the same event
are dynamically grouped in correlated regions and a
representative node is selected at each correlation region
for observing the phenomenon. In [2], the authors propose
a centralized algorithm design and an optimizing protocol
for scheduling the sensors during a specified network
lifetime. The objective is to maximize the spatial-temporal

coverage by scheduling sensors activity after they have been
deployed.

Recently, the authors in [9] propose a spatial-temporal
model to extend the network lifetime based on three sim-
ilarity metrics: Euclidean Distance, Cosine Similarity and
Pearson Product-Moment Coefficient (PPMC). Then, they
propose a scheduling algorithm for switching correlated
sensor nodes to the sleep mode. By performing real exper-
iments, the authors show that PPMC gives the best results,
in terms of conserving network energy, compared to other
similarity metrics. However, PPMC has several disadvan-
tages: 1) it does not search the similarity at the sensor node
level. 2) it does not take into account the residual energy of
the sensors when switching them to the sleep mode. 3) it
assumes that all the correlated sensors have the same degree
of correlation. Hence, aiming to overcome these disadvan-
tages, we propose, in this paper, a new mechanism based on
the Euclidean distance for searching inter-node data corre-
lation. Once high correlation between inter-node is noticed,
we propose two sleep/active strategies for scheduling sen-
sors in the network. Through simulation, we will show that
our mechanism, with the two proposed strategies, can sig-
nificantly outperform PPMC in terms of saving the sensors
energies and extending the network lifetime.

3 Spatial-temporal correlationmechanism

In WSN, sensors are deployed densely in order to monitor
some phenomenon which leads to have high spatial-
temporal correlation between sensed data. In the section, we
propose a new mechanism, based on the Euclidean distance,
in order to exploit spatial-temporal correlation bewteen
sensed data in WSN.

3.1 Local temporal correlation

In periodic applications, each sensor node collects a vector
of readings in each period then it send it to the CH at the
end of the period. Mostly, consecutive readings collected
from the sensor, in each period, are temporally correlated
depending from how the monitored condition varies. We call
this correlation a local temporal correlation. Let us consider
a vector of readings Ri collected by the sensor Si during
period p as follows: Ri = [

r1, r2, . . . , rT −1, rT
]

where T
is the total number of readings captured during p. Thus,
our objective is to explore temporal correlation between
readings in Ri in order to reduce the amount of data readings
that need to be transmitted and thus to save the energy in Si .
Hence, we propose “LocT mp” function to identify if two
consecutive readings rt and rt+1, captured by the sensor Si

during a period p, are similar or not. LocT mp function is
defined as follows:
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Definition 1 (LocT mp function) We define the LocT mp

function between two consecutive readings rt and rt+1 as:

LocT mp(rt , rt+1) =
{

1 if |rt − rt+1| ≤ δ,
0 otherwise.

where the threshold value δ is a user defined and
it depends on the application. Two consecutive readings
captured by a sensor are considered similar if and only if
their LocT mp function is equal to 1.

In order to maintain a desired data accuracy for the
transmitted data, we define the weight of a reading as
follows:

Definition 2 (Reading’s weight, wgt(rt )) The weight of
a reading rt is defined as the number of equal or similar
(according to LocT mp function) consecutive readings,
rt−1, previously collected in the same period.

Therefore, after searching local temporal correlation,
LocTmp allows Si to transform the initial vector of
readings, Ri , to a set of readings, R′

i , associated to
their corresponding weights as follows: R′

i={(r ′
1, wgt (r ′

1)),

(r ′
2, wgt (r ′

2)), . . . , (r ′
k, wgt (r ′

k))}, where k ≤ T .
Based on the set R′

i , we provide the following definitions:

Definition 3 (Cardinality of the set R′
i , |R′

i |) The cardinal-
ity of the set R′

i is equal to the number of elements in R′
i ,

i.e. |R′
i | = k.

Definition 4 (Weighted Cardinality of the set R′
i , wgtc(R

′
i ))

The weighted cardinality of the set R′
i is equal to the

sum of all reading weights in R′
i as follows: wgtc(R

′
i ) =

∑|R′
i |

j=1 wgt(r ′
j ) = T , where r ′

j ∈ R′
i .

3.2 Spatial correlation between sensors

In WSNs, data sensed by the sensor nodes are spatially
correlated due to their densely deployment. Hence, it is
important to exploit the spatial correlation of data in sensor
network in order to reduce the energy consumption in
sensors, while conserving the integrity of these data.

Mostly, a sensor node Si is represented by its position
(xi, yi), its sensing range (Sr ) and its transmission range
(Tr ). In this paper, we assume that all sensor nodes has
the same sensing and transmission range. Then, we use
the Euclidean distance (Eg) to calculate the geographical
distance between two nodes Si and Sj as follows:

Eg(Si, Sj ) =
√

(xi − xj )2 + (yi − yj )2

After that, we define the neighboring nodes of Si :

Definition 5 (neighbor): Sj is a neighbor node of Si if the
Euclidean distance between Si and Sj is less than the twice
of sensing range as follows:

Eg(Si, Sj ) ≤ 2 × Sr

Finally, we assume that Vi is the set of neighbors of Si .
Generally, there are three main categories to search the

spatial correlation between neighboring sensors. The first
category, such proposed in [1, 2], exploits the overlap area
between two sensor nodes (Fig. 1a). The second category,
such in [3], calculates the spatial correlation based on the
distance overlap between the sensors (Fig. 1b). The last
category, such as [4], defines a number of primary points
in the circle disk of the sensing range, then it calculates
the number of points in the common area between the two
sensors (Fig. 1c).

In this paper, we focus on the second category of spatial
correlation which is simple and more flexible compared to
other categories. However, in order to make the constraint
for the spatial correlation between sensors more difficult to
satisfy, we define a spatial correlation threshold called Csp.
Therefore, the spatial correlation between two sensors is
defined as follows:

Definition 6 (Spatial correlation between two sensors):
Two given sensors Si and Sj , where Sj is a neighbor node
of Si (i.e. Sj ∈ Vi), are spatially correlated if and only if:

Eg(Si, Sj ) ≤ Csp (1)

where Csp is a threshold determined by the application and
it takes values in [0, 2 × Sr ]. Then, we assume that V ′

i is the
set of all spatially correlated nodes with Si .

Based on the Definition 6, we can dynamically change
the threshold Csp depending on the criticality of the
monitored environmental; if the phenomenon is critical, the
decision makers can decrease Csp in order to decrease the
number of spatially correlated nodes for each node, i.e.
|V ′

i | decreases; else, the decision makers can increase the
threshold Csp when the phenomenon is less critical.

3.3 Temporal correlation between sensors

In addition to the local temporal correlation in each sensor,
the readings collected by nearby sensor nodes can be
also temporally correlated. The temporal correlation among
sensor nodes is to find out the sensors that collect similar
readings at the same period time. Similarity metrics, such
as Euclidean and Cosine distances, is one of the methods
which can be used to identify sensor nodes that are
temporally correlated. These metrics are generally used at
the CHs level. Once high temporal correlation between two
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Fig. 1 Spatial correlation techniques between two sensors

sensors is found, the CH should schedule these sensors in
order to remove the redundancy in the network. In this
paper, we focus on the Euclidean distance which is widely
used in various domains.

In mathematics, the Euclidean distance is the straight line
distance between two vectors of data. Let us first consider
two data sets R′

i and R′
j generated by the two sensor nodes

Si and Sj respectively in the same period p. Then, in order
to compute the Euclidean distance between R′

i and R′
j , we

must retransform the set R′
i (resp. R′

j ) to a vector as follows:

R′
i =

⎡

⎢⎢
⎣ r ′

1, . . . , r
′
1︸ ︷︷ ︸

wgt(r ′
1) times

, r ′
2, . . . , r

′
2︸ ︷︷ ︸

wgt(r ′
2) times

, . . . , r ′
k, . . . , r

′
k︸ ︷︷ ︸

wgt(r ′
k) times

⎤

⎥⎥
⎦

where |R′
i | = |R′

j | = T .
Finally, we can calculate the Euclidean distance between

the two vectors R′
i and R′

j based on the following equation:

Ed(R′
i , R

′
j )=

√√√√√
T∑

k=1

(r ′
ik

− r ′
jk

)2 wherer ′
ik

∈R′
i and r ′

jk
∈R′

j

3.3.1 Distance normalization

The normalization of data is an essential process when using
the distance functions. The objective of the normalization
process is to scale all vectors of data to have the same
variation then, to perform an exact comparison among these
vectors. In this paper, we use Gaussian normalization to
normalize data generated by the sensors. First, we calculate
the Euclidean distance for each pair of data vectors in the
network:

Ed = {Ed(R′
1, R

′
2), Ed(R′

1, R
′
3), . . . , Ed(R′

N−1, R
′
N)}

where N is the total number of sensors. Then, we can apply
the Gaussian normalization using the following formula:

E′
d(R′

i , R
′
j ) = Ed(R′

i , R
′
j ) − Y

6 × σ
+ 1

2
(2)

where Y is the mean of all distances and σ is the standard
deviation of pairwise distance over all data.

Thus, R′
i and R′

j are said to be redundant if E′
d(R′

i , R
′
j ) ≤

Ctp, where Ctp is a user defined threshold for the temporal
correlation.

3.4 Spatial-temporal correlation between sensors

In PSNs, the spatial-temporal correlation happens when two
nodes that are close geographically take similar readings in
a period [5]. In this section, our objective is to search all
pairs of sensors that are spatially-temporally correlated then
to switch, in a later time, some sensors to the sleep mode in
order to reduce redundant sensing and communication.

Based on Eqs. 1 and 2, we say that two sensors Si and
Sj , collecting the set of readings R′

i and R′
j respectively, are

spatially-temporally correlated at the period p if and only if:

Eg(Si, Sj ) × E′
d(R′

i , R
′
j ) ≤ Csptp (3)

where Csptp = Csp × Ctp and Eg(Si, Sj ) ≤ Csp and
E′

d(R′
i , R

′
j ) ≤ Ctp.

Algorithm 1 describes our technique to find pairs of sensors
that are spatially-temporally correlated. The CH searches
which neighbors of each sensor Si are spatially (line 6) and
temporally (line 8) correlated with Si .

3.5 Selection of thresholds

Obviously, the efficiency of our technique is highly related
to the selection of thresholds δ, Csp and Ctp. In a
realistic application, these thresholds allow us to define an
appropriate level of service. For instance, increasing the
values of such thresholds leads to decrease the accuracy
of the sent information and reduces more the size of data
sent. On the other hand, the lowest the values of these
thresholds are, the better relevant decisions and analysis
could be made but the LocT mp function will not be
efficient in reducing the amount of sent data. Therefore,
selecting the appropriate values of thresholds is very
essential in our technique. Indeed, we believe that these
values should be determined by the decision makers or
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experts depending on the application requirements. For
instance, in disaster monitoring applications, like volcano or
seismic, thresholds must be lower than weather monitoring
applications. Therefore, these parameters are based on the
application criticality and the studied phenomenon. On the
other hand, these parameters can also be adapted online and
using the context aware sensing.

4 Sleep scheduling strategies

After searching all pairs of spatially-temporally correlated
sensors into a cluster, we propose, in this section,
two scheduling strategies that allow sensors to work
alternatively. The first strategy is based on the set cover
problem while the second takes into account the correlation
degree and the residual energy of sensors when searching
the set of active sensors. In each strategy, a set of sensor
nodes is selected, based on some criteria, to collect data in
the network while switching other sensors into sleep mode.

4.1 Set cover (SC) strategy

The first strategy for scheduling sensor nodes is based on
the Set Cover (SC) problem. In general, the SC problem
consists in organizing sensor nodes into mutually exclusive
subsets that are activated successively, where each subset
ensures the coverage of the area of interest. Some real-world
applications of SC problem include railway and airline crew
scheduling, network discovery and phasor measurement
unit placement [6]. In our case of PSNs, we apply the SC
over the set of correlated sensors in order to divide all

sensors into disjoint sensor subsets while every subset being
able to completely cover the whole area of interest.

The SC problem can be formally defined in this paper as
follows:

Given a set of N sensors S = {S1, S2, . . . , SN } and the
list L = {(Si, Sj )/ Eg(Si, Sj )×E′

d(R′
i , R

′
j ) ≤ Csptp} of all

pairwise spatially-temporally correlated sensors. The goal
of SC is to find the list D which contains all the subsets
X ⊆ S, where each X will cover, in terms of spatial-
temporal correlation, all the sensors in S. In other words,
organizing sensor nodes into mutually exclusive subsets X

where X ensures the coverage of the whole area of interest.
Then, these subsets are activated successively.

Theoretically, the SC can be formulated as a binary
integer programming problem as follows:

Minimize
N∑

j=1

Sj

Subject to
N∑

j=1

aij Sj ≥ 1, i = {1, . . . , N}

Sj ∈ {0, 1}, j = {1, . . . , N}
Our startegy operates into rounds, where each round

is composed of |D| successive periods where |D| is the
number of disjoint subsets found after applying the set cover
technique. At each period only one subset is activated while
the remaining nodes go to sleep mode. After each round,
where all the subsets have been activated for one period and
successively, the list of subsets will be updated based on the
new spatio-temporal correlation between nodes.

Illustrative example we consider a set of 6 sensors:
S = {S1, S2, S3, S4, S5, S6}, with the list of spatially-
temporally correlated sensors: L = {(S1, S2), (S1, S3),

(S1, S4), (S1, S5), (S2, S6), (S3, S4), (S3, S6), (S4, S5)}.
This leads to the following mathematically formulation of
SC problem:

Minimize: S1 + S2 + S3 + S4 + S5 + S6

Subject to: S1 + S2 + S3 + S4 + S5 ≥ 1
S1 + S2 + S6 ≥ 1
S1 + S3 + S4 + S6 ≥ 1
S1 + S3 + S4 + S5 ≥ 1
S1 + S4 + S5 ≥ 1

S2 + S3 + S6 ≥ 1

By applying the SC problem [7], we can find two feasible
scheduling where evey sensor Si equals to 1 (in active mode)
in at most one scheduling:1

– Scheduling 1: S1 =S6 =1 and S2 = S3 =S4 = S5 =0.
– Scheduling 2: S2 =S4 =1 and S1 = S3 = S5 =S6 =0.

1The values 0 and 1 of the sensor mean that it can be on sleep or active
mode respectively.
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Therefore, we can divide S into two disjoint subsets of
sensors as follows: L = {L1 = {S1, S6}, L2 = {S2, S4}}.
Consequently, the current round will consist, by applying
our SC strategy, in three periods where in each period the
sensors in one subset Li wil be active. Otherwise, all the
sensors are active in the first period. Figure 2 shows the
active sensors in each period in the Round1.

At the begining of each perio the CH is reponsible to send
notifications to activate or switch off the nodes. Finally, we
note that the number of periods during a round can be fixed
based on the temporal variations and observations.

4.2 Correlation degree and residual energy (CDRE)
strategy

In this section, we propose a second strategy for scheduling
in sensor networks based on spatio-temporal correlation
while taking into account the residual energy. We call this
strategy Correlation Degree and Residual Energy (CDRE)
strategy.

The CDRE strategy also operates into rounds where each
round is fixed to two periods. In the first period of each
round, the CH searches the set of sensors to be active in
the second period, based on the CDRE strategy. For this we
consider the following notations:

– The list of spatially-temporally correlated sensors with
their correlation degrees: L = {((Si, Sj ), Cij (Si, Sj )

)

such that Cij (Si, Sj ) = Eg(Si, Sj ) × E′
d(R′

i , R
′
j )

and Cij (Si, Sj ) < Csptp}.
– Eri , the residual energy of the sensor Si .

The CDRE strategy can be expressed using the Algo-
rithm 2. First, we order the pairs of sensors according to the
increasing order of their spatial-temporal correlation degree.
Therefore, we start with the pair of sensors having the high-
est correlation degree (line 2). Then for the first period of
each round, for each pair of nodes (Si, Sj ), we selct the sen-
sor which has the higher residual energy to be an active
sensor in the second period, and the second one will go to
sleep mode (lines 4-14). The objective of this part of the
algorithm is to select from correlated nodes the nodes to be
activated in the next period and having the highest remain-
ing energy. In a second step, for the nodes that do not have
any correlation with other sensors, they must be in active
mode for next rounds (lines 15-19). After that, all the nodes
in set E will send their readings of the first period to the sink
and be activated for the next period, while the others do not
sen d their readings and go to sleep node for the next period.
The objective here is to remove the redundancy among the
data sent to the sink in the first period, contrarily to the SC
strategy which sends all the readings sets.

Illustrative example Recall the sensors S1 to S6 in the set
S in the example above with the ordered list of correlated
pairs degree as follows: L = {((S1, S3), C1,3 = 0.5),

((S4, S5), C4,5 = 0.9), ((S3, S4), C3,4 = 1.8), ((S3, S6),
C3,6 = 2.1), ((S1, S5), C1,5 = 2.5), ((S1, S2), C1,2 =
2.9), ((S1, S4), C1,4 = 3.3), ((S2, S6), C2,6 = 3.5)}. Then,
we consider that the sensors have the following residual
energies at the beginning of the round i: Er1 = 8.1 mJ ,
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Fig. 2 Active sensors during
periods in the round

Er2 = 8.3 mJ , Er3 = 7.6 mJ , Er4 = 6.9 mJ , Er5 =
7.8 mJ , Er6 = 7.9 mJ .

– Step 1: We start by the correlated pair (S1, S3).
Since S1 has more energy than S3, S3 will be
switched to the sleep mode in the next period
while S1 will be added to the list of active sensors:
E = {S1}. Then, we remove the pairs of sensors
that contains S3, i.e. (S3, S4) and (S3, S6). The
remaining elements in L = {(

(S4, S5), C4,5 = 0.9
)

,(
(S1, S5), C1,5 = 2.5

)
,
(
(S1, S2), C2,6 = 2.9

)
,(

(S1, S4), C1,4 = 3.3
)
,
(
(S2, S6), C1,2 = 3.5

)}
.

– Step 2: The first element in L, i.e. (S4, S5), is
treated similarly to (S1, S3): we add S5 to the
list of active sensors and we switch S4 to the
sleep mode then, we remove all elements that con-
tains S4 from L. Therefore, E = {S1, S5} and
L = {(

(S1, S5), C1,5 = 2.5
)
,
(
(S1, S2), C2,6 = 2.9

)
,(

(S2, S6), C1,2 = 3.5
)}

.
– Step 3: Since S1 and S5 are both in E, we

remove the pair (S1, S5) from L because they
will be both in active mode. Therefore, L ={(

(S1, S2), C2,6 = 2.9
)
,
(
(S2, S6), C1,2 = 3.5

)}
.

– Step 4: Independent from residual energies of the
sensors S1 and S2, S2 should be switched to the sleep
mode because S1 will be considered as active sensor in
the next period. Hence, we remove elements from L that
contains S2: L = {}.

– Step 5: We add the sensor S6 to the set E since it does
not have any correlated sensor in E.

Finally, the set of active sensors and the readings sets sent
from the CH to the sink, at each period in the round i, are
shown in Fig. 3a and b respectively. In the first period, all the
sensors are active while the CH only sends the sets which
are not redundant, i.e. sensors ∈ E. On the other hand, all
readings sets coming from the active sensors will be send to
the sink in the second period in the round.

5 Simulation results

In this section, we look at the performance of our spatial-
temporal correlation mechanism under the two proposed
scheduling strategies. In our simulations, we implemented

both strategies based on a Java based simulator. We ran
the simulator based on real sensor readings of temperature
collected by 46 sensors and provided by the Intel Berkeley
Research lab [8]. Figure 4 shows a map of the placement
of sensors in the lab. The sensors are Mica2Dot with
weather boards that collect temperature values once every
31 seconds. We assume that the network is divided into
two clusters, which have CH1 and CH2 as cluster-heads
respectively, where the sensors send their data periodically
to their appropriate cluster-head. We compared our results
to those of PPMC proposed in [9]. Table 1 shows the
parameters used in our simulations.

5.1 Performance evaluation at sensor node

In this section, we evaluate the performance of our
mechanism with SC and CDRE strategies at the sensor
nodes level, compared to the PPMC [9] and the naı̈ve
method (i.e. the classic method where all readings collected
by the sensors are sent to the sink without any processing).
Indeed, we present only the results for one cluster, i.e. the
second cluster with CH2, in the case when the performance
metric gives similar results for the two clusters. In addition,
the results for each metric shown in the next figures
represent the average of all sensors in each cluster. At this
level, we have considered three performance metrics.

Fig. 3 Illustrative example of the actives sensors and their readings
sets during a round
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Fig. 4 Distribution of sensors
and CHs in the Intel Laboratory

5.1.1 Percentage of data readings sent from each sensor
to its CH

In this section, our objective is to show how our mechanism
can decrease the data readings collected by each sensor node
and then sent to the CH2. Figure 5 shows the percentage of
data collected, then sent, by each sensor node when varying
one parameter each time and fixing the others as shown
in Fig. 5a to e. The obtained results show that PPMC can
reduce from 25% to 33% the data sent to the CH2, while,
our mechanism with SC and CDRE strategies can reduce,
respectively, up to 93% and 90% the data sent, compared to
the naı̈ve technique which always sends all data collected
(i.e. 100%) . This means that our approach can effectively
eliminate the redundancy in data collection while searching
all sensors that generate spatially-temporally correlated
data. Furthermore, we can also notice that the SC strategy
gives better results, in terms of reducing the data sent by
each sensor, than CDRE strategy in all cases.

Several observations can be made based on the results in
Fig. 5:

Table 1 Simulation environment

Parameter Description Value

T Number of readings per period 200, 500, 1000

Sr Sensor sensing range 5, 10, 15, 20 meters

δ LocT mp similarity threshold 0.03, 0.05, 0.07, 0.1

Csp Spatial correlation threshold 2 × Sr , 5×Sr

3 , 4×Sr

3 , Sr

Ctp Temporal correlation threshold 0.35, 0.4, 0.45, 0.5

n Number of sensors in each
cluster

23

tPPMC Similarity threshold used for
PPMC

0.9

Ei Initial energy for each sensor 10 mJ

– By increasing the threshold δ in Fig. 5a, each sensor
can reduce, using the SC and CDRE strategies, up to
90% and 87% respectively the readings sent to the CH2

compared to PPMC. These results are obtained due to
the fact that LocT mp will find more similar readings
when δ increases.

– By increasing its sensing range as shown in Fig. 5b,
each sensor sends less readings to the CH2 using the two
proposed strategies. For instance, when Sr increases
from 5 to 20, a sensor node decreases its readings sent
from 11.4% to 8.4% using SC strategy. This happens
because, when Sr increases, each sensor will have more
neighboring, thus correlated, sensors. Consequently,
more sensors will be switched to the sleep mode, thus,
decreasing the percentage of the collected and sent
readings.

– By increasing T from 200 to 1000 in Fig. 5c, the per-
centage of readings sent decreases using SC and CDRE
strategies while it increases using PPMC. The reason
for this is that the δ threshold used in LocT mp in the
two strategies which finds, then eliminates, more redun-
dancy when T increases. Contrarily, PPMC does not
apply any processing on the collected data which increases
the readings sent to the CH2 when T increases.

– By decreasing the spatial correlation threshold (Csp)
in Fig. 5d, the percentage of readings sent to the
CH2 increases in the three approach, i.e. SC, CDRE
and PPMC. This result is logical since we make the
constraint for the neighboring sensors more difficult to
satisfy (see definition 6). Consequently, the number of
active sensors in each period will tend to increase. It is
also important to notice that our strategies reduce, in all
cases, the readings sent to CH2 as compared to those
sent using PPMC.

– By increasing the temporal correlation threshold (Ctp)
in Fig. 5e, SC and CDRE strategies allow each sensor
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Fig. 5 Percentage of data
readings sent from each sensor
to the CH2

a b

c

e

d

node to decrease its data readings sent to the CH2.
This is because, the Euclidean distance between sets of
readings will be more easily satisfied therefore, more
sensors will be switched to the sleep mode.

5.1.2 Lifetime of the sensor node

In this section, our objective is to study the energy
consumption at the sensor nodes level. Therefore, we fixed
the initial energy for all sensor nodes to Ei . Then, we
applied our strategies, PPMC and Naı̈ve approaches while
varying, each times, one parameter and fixing the others
as done in Fig. 5. Figure 6 shows the lifetime of each
sensor in terms of number of periods in which the sensor is
operational, i.e. its residual energy is positive. The obtained
results show clearly that our mechanism, with the proposed

strategies, can efficiently reduce the energy consumption
of the sensor and extend its lifetime. This is because, our
mechanism eliminates the redundancy among collected data
and reduces the readings sent to the CH (see Fig. 5).
Although the PPMC can extend, in the best case, the lifetime
of a sensor by two times compared to the Naı̈ve approach,
our strategies significantly outperform the results of PPMC.
We can also notice that, the SC strategy gives better results
in terms of keeping the sensor node operating for long time
compared to CDRE strategy.

In WSNs, the energy consumption in the sensor node
is proportionally to the amount of data sent by the sensor.
Consequently, when the sensor sends more data the CH, its
energy will be more consumed and vice versa. Hence, the
observations made based on the results of Fig. 5 can be
similarly made for the energy consumption in the sensor in
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Fig. 6 Lifetime of each sensor
in the second cluster (CH2) a b

c

e

d

the Fig. 6. Table 2 shows how many times the sensor node
can extend, using our strategies, its lifetime in the worst and
the best cases by fixing one parameter as shown in Fig. 6a
to e, compared to PPMC and Naı̈ve approaches.

5.1.3 Variation of the state and the energy of the sensor
during periods

In this section, we show an example of a sensor activitiy
variation during periods by applying our strategies, PPMC
and Naı̈ve approaches. We take the sensor that has an id
equals to 35 located in the second cluster, then we study
the variation of its state, i.e. active or sleep, and its residual
energy during the periods, for some fixed parameters shown
in Fig. 7. Based on the results of Fig. 7a, we can see that
the state of the sensor varies, when applying our strategies,

from 1 (i.e. active mode) to 0 (i.e. sleep mode) during
the periods more dynamically than with other techniques.
Our strategies confirm also the efficient reduction of the
redundancy between the sensors correlated to the sensor
‘35’ by switching it to the sleep mode more often than
with the other techniques. On the other hand, Fig. 7b shows
how the residual energy of the sensor varies depending on
the state of the sensor; if the sensor is in active mode, its
residual energy decreases in order to collect the data and
send it to the CH; else, it remains fixed until the next period.
We can also observe that the residual energy of the sensor
can remain fixed using the SC strategy in many successive
periods, i.e. from periods 18 to 22 in Fig. 7b for example.
This happens because the number of periods in each round
changes dynamically using the SC strategy where the sensor
can be active at most in two periods in a round.
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Table 2 Lifetime comparisons
between our strategies, PPMC
and Naı̈ve approaches. (Worst
case → Best case)

Our Strategy Compared Strategy δ Sr T Csp Ctp

SC PPMC 4 → 9 6 → 7 7 → 8 6 → 7 5 → 8

Naı̈ve 8 → 18 11 → 14 12 → 16 12 → 14 11 → 16

CDRE PPMC 3 → 7 5 → 6 5 → 6 5 → 6 4 → 6

Naı̈ve 6 → 14 10 → 11 9 → 11 10 → 11 10 → 11

5.2 Performance evaluation at CH nodes

In this section, we evaluate the performance of our approach
at the CHs level. We have taken four performance metrics.

5.2.1 Data accuracy

Scheduling sensor nodes in the network without losing the
integrity of the information is an important challenge for
the WSN. Data accuracy usually represents the “data loss
rate” measure. It is an evaluation of the readings taken
by the sensor nodes whose values (or similar values) do
not reach the sink. Figure 8 shows the results of data
accuracy for SC, CDRE and PPMC for different values of
parameters considered in our simulation. We can observe
that our strategies always give better results for data
accuracy compared to PPMC. This is because, the Pearson
coefficient used in PPMC calculates the distance between
two data sets based on the summation of readings while
the Euclidean distance, used in our strategies, calculates the
distance between every two readings in the data sets. This
makes the loss of data in our strategies less than that in
PPMC. We can also notice that the results of data accuracy
using CDRE strategy is better, in the most cases, than those
obtained using SC strategy. The reason for that is the sensor
sends, using the two strategies, at most two data sets in a
round while the round in SC contains more periods than
that in CDRE (see illustrative examples for SC and CDRE
strategies).

In general, the data accuracy dependent on the percentage
of data sent by the sensors (see results in Fig. 5) and on the
number of active sensors during the periods; when the data

sent to the sink or the number of active sensors increase,
the data accuracy increases. Therefore, the following
observations can be made based on the results of Fig. 8:
(1) data loss measure increases when the sensing range of
the sensor (Sr ) or the temporal correlation threshold (Ctp)
increase (Fig. 8b and e). (2) the data accuracy increases
when the number of collected readings during a period (T )
increases or the spatial correlation threshold (Csp) decreases
(Fig. 8c and d).

5.2.2 Variation of periods number during rounds

In this section, we show how the number of periods changes,
using our proposed strategies, after each round for the two
clusters in the network, for some fixed parameters. Using
SC strategy, the CH calculates, at the beginning of each
round, the maximum number of periods for the current
round based on the set covering problem. Otherwise, the
number of periods is always equal to 2 for each round
using CDRE strategy. The obtained results of the two
clusters, represented by their cluster-heads CH1 and CH2

respectively, are shown in Fig. 9a and b respectively. While
each round always consists of two periods using CDRE,
the number of periods dynamically varies in each round
using SC as shown in the figures. We can also observe that:
(1) the round can up to 7 periods using SC strategy. This
reflect the high level of redundancy existing in the network
where SC can efficiently eliminate this redundancy. (2) the
sensors in the first cluster are more spatially-temporally
correlated compared to those in the second cluster. This
leads to extend, using the two strategies, the lifetime of the
first cluster more than that of the second cluster.

Fig. 7 Variation of sensor
activity during periods, Sensor
id = 35, T = 500, Sr = 15,
δ = 0.07, Csp = 2 × Sr ,
Ctp = 0.45

a b
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Fig. 8 Data accuracy at the CH2 a b

c d

e

5.2.3 Variation of active sensors number during periods

In this section, our main goal is to show how our strategies
are able to schedule the activities of the sensor nodes for

the two clusters. Figure 10 shows the number of active
sensors in each cluster and in each period using SC and
CDRE strategies, for the fixed parameters shown in the
figure. The number of active sensors can affect the lifetime

Fig. 9 Variation of periods
number in each round,
T = 500, Sr = 15, δ = 0.07,
Csp = 2 × Sr , Ctp = 0.45

a b
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Fig. 10 Variation of active
sensors number during each
period, T = 500, Sr = 15,
δ = 0.07, Csp = 2 × Sr ,
Ctp = 0.45

a b

of the network, the data latency and the coverage of the
monitored area. As we can see, each strategy successfully
schedules the sensor nodes in each cluster dynamically after
each period according to its own scheduling mechanism.
We can notice that, the SC strategy reduces the number
of active sensors, in each cluster, at each period to the
minimum while the CDRE strategy selects the set of active
sensors that balance the energy distribution in each cluster.
Consequently, the obtained results confirm the proper
behavior of our strategies.

5.2.4 Coverage variation during periods

Conserving the network energy while preserving the
maximal coverage of the region of interest is an important
challenge in WSNs. In Fig. 11, we show how much of the
area of each cluster is covered after each period by applying

our strategies. The sensing range of a sensor is varied from
10 in Fig. 11a and b to 15 in Fig. 11c and d, while the other
parameters remain fixed. The obtained results show that
the two proposed strategies provide sufficient coverage for
the clusters during each period. Therefore, we can consider
that our mechanism with the two proposed strategies can
efficiently extend the network lifetime while preserving the
integrity of data and the coverage of the observed area.

Based on the results in Fig. 11, several observations can
be made

– the CDRE strategy provide more coverage for the two
clusters compared to SC strategy. This is because, the
number of active sensors in each period using CDRE
strategy is greater than that using SC strategy.

– the coverage ratio for each cluster increases when the
sensor sensing range increases.

Fig. 11 Coverage ratio for each
cluster, T = 500, δ = 0.07,
Csp = 2 × Sr , Ctp = 0.45

a b

c d
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5.3 Further discussions

In this section, we give further consideration to our proposed
mechanism. We compare the obtained results for both
strategies SC and CDRE. We give some directions to
which strategy to choose and under which conditions and
circumstances of the application.

From the sensor lifetime point of view, both strategies SC
and CDRE significantly improve the lifetime of the sensor
(Fig. 6). However, SC allows sensor to extend more its life-
time, from 7% to 45%, compared to CDRE. Therefore, if the
application needs to conserve the energy and extend the net-
work lifetime as long as possible, SC strategy is more suitable.

From the data accuracy point of view, CDRE can save,
in the most cases, the integrity of the collected data more
than SC. This is because the number of active sensors
in each period using CDRE is greater than that in SC,
which increases the accuracy of the data sent to the sink.
Consequently, when the priority of the application is to
ensure a high level of data accuracy, CDRE is more suitable.

From the coverage of the interest area point of view,
CDRE can practically cover the whole monitored area
during all periods of the network lifetime, while SC
can ensure a satisfactory coverage, i.e. more than 70%
in the most cases, of the network area. Hence, if the
application does not permit flexibility regarding coverage of
the network, CDRE is more suitable.

6 Conclusion & future work

In this paper, we proposed an efficient mechanism in order
to search the spatial and temporal correlation between data
collected by the sensors in a periodic sensor network.
Then, in order to schedule sensors to work alternatively,
we proposed two scheduling strategies in order to switch
the sensors into sleep/active mode during the periods. The
first strategy, called SC, is based on the set cover problem
while the second strategy, called CDRE, takes into account
the correlation degree and the residual energy of the sensors
when scheduling the network. We demonstrated through
simulation on real data readings the efficiency of our
mechanism, under the two proposed strategies, in sensor
networks in terms of extending network lifetime while
conserving the quality of the collected data and the coverage
of the monitored area.

As future work, we will adapt our proposed mechanism
to take into consideration reactive periodic sensor network,
where sensor nodes operate with different sampling rates.
In periodic applications the dynamics of the monitored
condition or process can slow down or speed up; the sensor
node can further save energy by adapting its sampling rates
to the changing dynamics of the condition or process.
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