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Abstract
Distributed multi-controller deployment is a promising method to achieve a scalable and reliable control plane of Software-Defined
Networking (SDN). However, it brings a new challenge for balancing loads on the distributed controllers as the network traffic
dynamically changes. The unbalanced load distribution on the controllers will increase response delay for processing flows and
reduce the controllers’ throughput. Switch migration is an effective approach to solve the problem. However, existing schemes focus
only on the load balancing performance but ignore migration efficiency, which may result in high migration costs and unnecessary
control overheads. This paper proposes Efficiency-Aware Switch Migration (EASM) to balance the controllers’ loads and improve
migration efficiency. We introduce load difference matrix and trigger factor to measure load balancing on controllers. We also
introduce the migration efficiency problem, which considers load balancing rate and migration cost simultaneously to optimally
migrate switches. We propose EASM to efficiently solve to the problem. The simulation results show that EASM outperforms
baseline schemes by reducing the controller response time by about 21.9%, improving the controller throughput by 30.4% on
average, maintaining good load balancing rate, low migration costs and migration time, when the network scale changes.

Keywords Software-defined networking . Control plane .Multiple controllers . Switch migration . Network optimization

1 Introduction

Software-Defined Networking (SDN) is a new network archi-
tecture that decouples data plane from control plan and man-
ages network with a global view [1]. Due to its centralized
control, open interface and network programmability, SDN
can improve network performance and has been deployed in
the Internet and data center networks [2]. However, a single
SDN controller has not enough control ability to process in-
creasing number of traffic flows and applications in large-scale
networks [3]. Researches in [4–6] propose to achieve the log-
ically centralized controller with physically distributed multiple

controllers to improve the scalability and reliability of the con-
trol plane. Specifically, a network is partitioned into several
domains, each of which has one domain controller to manage
switches and flow requests [7]. Controllers communicate with
each other about domain information to ensure a consistent
network view. As traffic varies in the network [8], controllers
in different domains could handle the different number of flow
requests, and the static matches between switches and control-
lers may result in unbalanced load allocation on controllers: hot
controllers with insufficient control capability and cold control-
lers with low resource utilization [9].

Dynamic switch migration is an elastic control approach to
solve the problem of unbalanced load distribution on control-
lers. It migrates the control of switches from overloaded con-
trollers to underloaded controllers. However, existing schemes
only focus on the balancing performance of control load on
controllers but ignore migration efficiency, which may lead to
high migration costs, increase control overheads, and
squander network resources. In this paper, we propose
Efficiency-Aware Switch Migration (EASM) to achieve
good load balancing performance on the controllers and
low migration costs. The main contributions of this pa-
per are summarized as follows:
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& We identify the inefficiency migration problem of existing
switch migration schemes and use analysis and ex-
amples to explain the undesirable results caused by
the existing schemes.

& We propose EASM for effective switch migration.
EASM consists of three algorithms. EASM-1 calcu-
lates trigger factors to measure the load balancing per-
formance of controllers. If the trigger factor exceeds a
threshold, EASM-2 selects migrating switches by
solving the migration efficiency problem, which char-
acterizes load balancing rate and migration cost simul-
taneously. EASM-3 changes the mapping relationship
between switches and controllers.

& We evaluate the performance of EASM against baseline
schemes. The results show that if the controller load im-
balance happens, EASM reduces the controller response
time for efficient migration by about 21.9%, improves the
controller throughput by 30.4% on average, decreases the
migration cost and migration time, and gains the better
load balancing performance.

The rest of paper is organized as follows. Section 2 illus-
trates the motivation. Section 3 introduces the overview of
EASM strategy. Sections 4 and 5 detail two components of
EASM: load balancing judgement and switch migration de-
sign. The simulation results are presented and analyzed in
Section 6. Section 7 reviews the related work. Section 8 con-
cludes this paper.

2 Motivation

Switch migration is usually used for adjusting the distri-
bution of controller loads through migrating the switch
from the overloaded controller to the underloaded control-
ler. However, existing migration designs are difficult to
realize good load balancing performance and low migra-
tion cost. In this section, we illustrate the problem through
an example in Fig. 1 and compare existing solution with
our scheme.

Figure 1 shows an SDN using three distributed controllers.
In the figure, the network consists of Domain1, Domain2 and
Domain3, and each domain has several switches and is con-
trolled by its domain controller. Table 1 shows the flow arrival
rate of each switch at time T. At time T, we use the
total flow rates of a domain to represent the controller
load of the domain, and use the normalized load vari-
ance to represent load balancing rate (LBR), as shown
in Eq. (1), where Li is the load of the ith controller, and

L is the average load of n controllers. LBR represents
the degree of closeness to the ideal load distribution.
The higher LBR, the more balanced load distribution.

LBR ¼ 1

n
⋅

∑
n

i¼1
Li−L

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Li−L

� �2
r ð1Þ

In Fig. 1a, the controllers are initialed with the unbalanced
loads, and the load balancing rates of three domains are com-
puted as follows.

Initial network state under Load Imbalance (LI):

LoadLI c1ð Þ ¼ 30þ 30þ 30 ¼ 90KB=s
LoadLI c2ð Þ ¼ 30þ 30þ 40þ 50 ¼ 150KB=s
LoadLI c3ð Þ ¼ 30þ 40 ¼ 70KB=s
LBRLI ¼ 0:641

In Fig. 1a, c1 and c3 are low-utilized controllers, while c2 is
an overloaded controller. Existing Switch Migration follows
OpenFlow 1.3 [10], where one controller has three roles: mas-
ter, equal and slave. Master controller is used for processing
Packet-in requests sent from switches; equal and slave con-
trollers are used as backup. Each switch connects to one mas-
ter controller and several slave controllers.

Figure 1b shows the result of using an Existing Switch
Migration scheme [11]. In the figure, the load of c3 is the
lightest and the flow rate of s7 reaches 50KB/s, ESMmigrates
s7, the switch with the highest flow from c2 to c3 the lightest
loaded controller, to balance controller loads. After migration
completed, the controller loads and load balancing rate are
updated as follows.

Existing Switch Migration (ESM)

LoadESM c1ð Þ ¼ 30þ 30þ 30 ¼ 90KB=s
LoadESM c2ð Þ ¼ 30þ 30þ 40 ¼ 100KB=s
LoadESM c3ð Þ ¼ 30þ 40þ 50 ¼ 120KB=s
LBRESM ¼ 0:852

During the switch migration, the network will produce the
relevant migration costs during switch migration. We use the
product of the flow rate and hop to approximately express
migration cost MC.

MCESM ¼ 50� 4 ¼ 200KB=s

Existing Switch Migration brings about the high migration
costs, which will aggravate the burden of the overloaded con-
troller. The bigger value of MC, the lower controller through-
put. If we can consider switch migration from the perspectives
of both load balancing rate and migration costs, the controller
performance will be better.

Figure 1c shows the migration result of EASM. In the
figure, by simultaneously considering the load balancing rate
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and the migration cost, EASM migrates s6, the switch with
both higher flow rate and shorter migration hops from
c2 to c3, to balance controller loads. After migration
completed, the controller loads and load balancing rate
are updated as follows.

Efficiency-aware Switch Migration (EASM)

LoadEASM c1ð Þ ¼ 30þ 30þ 30 ¼ 90KB=s
LoadEASM c2ð Þ ¼ 30þ 30þ 50 ¼ 110KB=s
LoadEASM c3ð Þ ¼ 30þ 40þ 40 ¼ 110KB=s
LBREASM ¼ 0:915
MCEASM ¼ 40� 3 ¼ 120KB=s

Table 2 show the comparison of three scenes. Compared
with ESM, EASM scheme not only improves the load
balancing rate, but also reduces the migration costs. From
the example, we can see that both load balancing rate and
migration cost must be jointly considered in switch migration
in order to improve the performance of the controller. We
solve three problems in this paper: (i) determining which
switches should be migrated; (ii) building the migration effi-
ciency model to select migration switches and controllers; (iii)
efficiently implementing switch migration.

3 EASM overview

In this section, we first introduce the notations in this paper
and then describe the design of EASM.

3.1 Notations

We formulate the SDN network as the undirected graph
G = (V, E), where Vand E are node set and link set, respective-
ly. We assume all controllers could be deployed in the topol-
ogy optimally [12], and each controller manages some
switches. The primary notations used in this paper are listed
in Table 3.

3.2 EASM strategy

EASM implements switch migration from the perspective of
migration efficiency to improve load balancing rate and re-
duce migration costs. Figure 2 shows the overall design of
EASM. In the figure, EASM consists of twomodules: (1) load
balancing judgement; (2) switch migration design. In the load
balancing judgment module, EASM measures the controller
loads and builds the load difference matrix, and the trigger
factor is defined to judge whether the controller loads are
balanced. In the switch migration design module, according
to migration efficiency model, EASM builds the migration
mapping with three factors: emigration controller, migrating
switch, and immigration controller, and implements efficient
switch migration. Next, we will present the details of load
balancing judgement and switch migration design in section
4 and section 5, respectively.
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Fig. 1 A motivating example for comparison

Table 1 The flow arrival rate of switches in the network

Switch s1 s2 s3 s4 s5 s6 s7 s8 s9

Flow rate (KB/s) 30 30 30 30 30 40 50 30 40

Table 2 The comparison of three scenes

Initial network state Existing switch migration EASM

c1(KB/s) 90 90 90

c2(KB/s) 150 100 110

c3(KB/s) 70 120 110

LBR 0.641 0.852 0.915

MC(KB/s) Null 200 120
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4 Load balancing judgement

In this section, we will firstly compute the controller’s load
through synthesizing different network overheads. Then, we
introduce a new effective mechanism to judge controller load
balancing and design a load imbalance algorithm.

4.1 Controller’s load

In SDN, the controller loads mainly come from three parts:
data interaction overhead for traffic transmission, routing path

installment for new flows and state synchronization overhead
for global view among controllers.

Data interaction overhead To achieve the centralized control,
domain controllers send/receive information from/to switches,
including flow table and traffic data of each switch. We for-
mulate data interaction overhead of controller cm is Fdata(cm)
as follows:

Fdata cmð Þ ¼ ν⋅ ∑
si∈E cmð Þ

him⋅J si; cmð Þ ð2Þ

where ν is the average rate of polling one switch, which de-
pends on the number of links; him is the hop between si and cm;
J(si, cm) is the connection relationship of si and cm.

Routing formulation overheadWhen a switch receives a new
flow, it sends Packet-in requests to controller and asks for the
flow’s routing path. Upon receiving the request, the controller
calculates a new path for the flow and establishes the path by
installing flow entries in switches on the path. Figure 3 shows
the routing formulation of controller. In the figure, a new flow
destines to s5 arrives at s2. s2 sends a request to its master
controller c1, and c1 must process Packet-in sent by switches
and establishes the path.

Therefore, for cm, routing formulation overhead Frouting(cm)
contains two parts that are Packet-in processing fpacket(cm) and
flow table distributing ftable(cm),

f packet cmð Þ ¼ Ppacket⋅ ∑
si∈S

∑
cm∈C

him⋅J si; cmð Þ ð3Þ

f table cmð Þ ¼ ∑
si∈S

∑
cn;cm∈C

αsi ⋅hmn⋅him⋅J cm; cnð Þ ð4Þ

Frouting cmð Þ ¼ f packet cmð Þ þ f table cmð Þ ð5Þ

where Ppacket is the average size of Packet-in sent by switch;
αsi is the average flow rate of switch si; him is the hop between
si and cm; J(cm, cn) is the connection relationship of cm and cn.

Table 3 Notations

Notation Definition

V The set of nodes

E The set of links

M The number of controllers

N The number of switches

∣V∣ The number of nodes

D = {D1,…,DM} The domain set

C = {c1,…, cM} The controller set

S = {s1,…, sN} The switch set

Ωm The processing capacity of cm
Γ(cm) The switch set supervised by cm
hij The hop between si and cj
J(si, cm) J(si, cm) = 1, if si connects to cm

J(si, cm) = 0, otherwise

Load Balancing 
Judgement

 Switch Migration 
Design

Data Plane

Control Plane

Load Data Migration action

Switch Physical link

EASM

Fig. 2 The overall design of EASM

S2

C 2

S3

S5
S4

C3S7
S6

C1 S1

Sn Cm

Switch 
Node

Controller
Node

SDN
Domain

Physical 
Link

Flow
Path

Fig. 3 Routing formulation in the distributed network

Peer-to-Peer Netw. Appl. (2019) 12:452–464 455



State synchronization overhead In the multi-controller SDN
network, synchronization messages are sent between control-
lers to maintain the global network view, producing state syn-
chronization overhead Fstate(cm),

Fstate cmð Þ ¼ ζsync⋅ ∑
cm;cn∈C

J cm; cnð Þ⋅hmn ð6Þ

where ζsync is the size of synchronization packet; J(cm, cn) is
the connection relationship of cm and cn; hmn is the hop be-
tween cm and cm.

Therefore, the controller loads are the linear aggregation of
the three overheads in the network [12]. The computation of
load L(cm) is shown in Eq. (7).

L cmð Þ ¼ σ1⋅Fdata cmð Þ þ σ2⋅Frouting cmð Þ þ σ2⋅Fstate cmð Þ ð7Þ

∑
3

i¼1
σi ¼ 1 ð8Þ

where σ1, σ2 and σ3 are the corresponding weights for differ-
ent overheads, respectively.

4.2 Effective mechanism

We design a simple but effective mechanism to determine
whether the controller loads are balanced in the network.

Firstly, we generate the load difference matrix:

DM�M ¼
d c1; c1ð Þ d c1; c2ð Þ … d c1; cMð Þ
d c2; c1ð Þ d c2; c2ð Þ … d c2; cMð Þ
… … … …
d cM ; c1ð Þ d cM ; c2ð Þ … d cM ; cMð Þ

8>><
>>:

9>>=
>>;
ð9Þ

where d cm; cnð Þ ¼ L cmð Þ
L cnð Þ , which mean the load difference be-

tween controller cm and cn.
For a given load difference matrix, the balancing judge-

ment is shown in Eq. (10),

∃cm; cn∈C; δmn ¼ d cm; cnð Þ−d cn; cmð Þj j > Λ ð10Þ
where δmn is the trigger factor. If δmn is larger than the thresh-
old Λ, there is controller load imbalance in the network, and
we need to carry out switch migration at the moment.

Equation (11) shows the computation of the threshold,

Λ ¼ maxDM�M−minDM�M

maxDM�M
ð11Þ

wheremaxDM ×M andminDM ×M represent the maximum load
difference and the minimum load difference, respectively.

Example Based on the load imbalance scenario in Fig. 1a, we
use an example to illustrate the validity of our proposed
balancing judgement mechanism.

In Fig. 1a, LLI(c1) = 90KB/s, LLI(c2) = 150KB/s, and
LLI(c3) = 70KB/s. Thus, we can get the load difference matrix:

D3�3 ¼
d c1; c1ð Þ d c1; c2ð Þ d c1; c3ð Þ
d c2; c1ð Þ d c2; c2ð Þ d c2; c3ð Þ
d c3; c1ð Þ d c3; c2ð Þ d c3; c3ð Þ

2
4

3
5

¼
1:0 0:6 1:3
1:7 1:0 2:1
0:9 0:5 1:0

2
4

3
5

We get δ21 = 1.1, δ23 = 1.6, δ13 = 0.4 and Λ = 0.7, respectively.
Because both δ21 and δ23 are larger than Λ, we identify that
there is load imbalance. Using the method in Fig. 1b, c also
show the same result. We can see that our balancing judge-
ment mechanism is valid.

4.2.1 Load imbalance detection algorithm

We design load imbalance detection algorithm for this mech-
anism, which is described as follows. In SDN network, con-
trollers interact information with switches, and compute the
aggregated load L(cm) and load difference d(cm, cn) (Line 1).
We get the load difference matrix DM ×M at the moment (Line
2). Then we compute the trigger factor δmn for different con-
trollers inDM ×M, and compare it with threshold Λ (Line 5). If
δmn surpasses this threshold, we conclude that there is load
imbalance in the network (Line 6). All trigger factors, which
surpass the threshold, will be added into a new set TF (Line 7).
The pseudo-code of the algorithm is shown in Table 4.

In EASM-1, Line 1 gets the aggregated loads and load
difference, and its time complexity is O(M); Line 2 constructs
the load difference matrix, and its time complexity is O(M2);
Line 5 computes trigger factor, and its time complexity is
O(N); Line 6 to Line11 generates TF, and its time complexity
is O(M(M − 1)). Thus, the overall time complexity of EASM-
1 is O(M2).

Table 4 Load imbalance detection

EASM-1: Load Imbalance Detection
Input: SDN network ( , )G V E
Output: Trigger factor set TF
1:  For each controller, get ( )mL c and ( , )m nd c c
2:  Construct matrix M MD , and compute 

3:    while ( M MD ) 

4:      Compute mn

5 if ( mn )

6:         Detect load imbalance

7:         Add mn to set TF

8:      endif
9:     { ( , ), ( , )}M M M M m n n mD D d c c d c c

10:   endwhile
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5 Switch migration design

In this section, we will determine the migrating objects for
switch migration, including emigration controller, migrating
switch and immigration controller. Then, we implement dy-
namic migration decision according to the presupposed mi-
gration triplet.

5.1 Migrating objects determination

With the help of load difference matrix and trigger factor, we
have detected the load imbalance in the network. Next, we
will determine migration objects, including emigration con-
troller, migrating switch and immigration controller.

(1) Emigration controller

In order to balance controller loads quickly, we set the
overloaded controller as the emigration controller. Therefore,
according to the characteristic of the constructed load differ-
ence matrix, we compute the trigger factors between all con-
trollers. Meanwhile, we get controller cm and cn from δmn
if δmn >Λ. In particular, we assume L(cm) > L(cn), and then
set cm as the emigration controller.

Through traversing the entire load difference matrix, we
can get several emigration controllers, and all of them will
be stored in emigration controller set CEM.

(2) Migrating switch and immigration controller

Through analyzing and comparing the cases in motivation
(Section 2), we can find the selections of migration switches
and immigration controllers have the big influences in load
balancing rate and migration costs. Therefore, we introduce
the migration efficiency model, which characterizes the
load balancing rate and the migration cost simultaneous-
ly, to optimally select the migrating switches the immi-
gration controllers.

Firstly, we give the definitions and computations of the
migration cost and load balancing rate.

Definition 1 Migration cost. When switch si is migrated from
controller cm to cn, it will generate migration cost MCsi

cm;cn ,

including migrating request (the front part of Eq. 12) and load
change (the latter part of Eq. 12). Next, we will analyze the
migration cost in detail.

Migrating a switch from the one controller to another con-
troller produces network cost. We define the consumption of
network resource as the migration cost. The migration cost of
a switch consists of two parts: (i) migrating request cost and
(ii) load change cost. They are detailed below:

(i) Migrating request cost. During a switch migration, this
switch firstly sends a communication packet, which is
similar to Packet-in packet, to the immigration controller
to request migration. This cost of the procedure is the
migrating request cost. Concretely, when switch si is mi-
grated from controller cm to controller cn, the migrating
request cost can be computed as PPacket ⋅ ∑ J(si, cn),
where PPacket is the average size of Packet-in sent by the
switch, and J(si, cn) is a binary variable that describes the
connection relationship between switch si and controller
cn. The connection relationship firstly appears in
Section 3.1. We calculate the value of J(si, cm) based on
the physical connection between si and cm. J(si, cm) = 1
means si connects with cm, otherwise J(si, cm) = 0.

(ii) Load change cost. If the immigration controller accepts
the migrated switch, the switch’s traffic will be handled
by controller. This process causes the load change of
controllers, and the cost of the procedure is load change
cost. Here, we consider the controller’s load is only re-
lated to switch traffic and the length of a path from a
switch to the controller. The load change cost can be
computed as αsi ⋅jhin−himj, where αsi is the average flow
rate of switch si; hin is the length of the path between si
and cn; him is the length of the path between si and cm.

Based on above analysis, we formulate the migration cost
with Eq. 12.

MCsi
cm;cn ¼ PPacket⋅∑J si; cnð Þ þ αsi ⋅ hin−himj j ð12Þ

Definition 2 Load balancing rate. This paper computes the

controller load variance as load balancing rate, and L is the
average load of controllers. Before migrating the switch, we
get load balancing rate:

η ¼ 1

M
⋅ ∑

M

m¼1
L cmð Þ−L

� �2
ð13Þ

After the switch has migrated, η∗, L
*
, L∗(cm) and L∗(cn) are

updated, and the results are shown in Eq. (14) to Eq. (16).

η* ¼ 1

M
⋅ ∑

M

m¼1;m≠n
L* cmð Þ−L

*
� �2

þ L* cnð Þ−L
*

� �2
" #

ð14Þ

L* cmð Þ ¼ L cmð Þ−αsi ⋅him ð15Þ
L* cnð Þ ¼ L cnð Þ þ αsi ⋅hin ð16Þ

Definition 3 Migration efficiency. We define the ratio of load
balancing rate changing and migration cost as the migration
efficiency τ sicn. The higher τ sicn, the better controller perfor-
mance after migration.
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τ sicn ¼
η*−ηj j

MCsi
cm;cn

ð17Þ

∀si∈S; c j∈C; J si; c j
� � ¼ 0; 1f g ð18Þ

∀si∈S; ∑
cm∈C

J si; cmð Þ ¼ 1 ð19Þ

∃cm∈C; L cmð Þ≤Ωm ð20Þ

Equation (18) restricts the connections of all devices.
Equation (19) represents that each switch only connects with
one controller. Equation (20) shows there is no possible that
all controllers are in the overloaded states.

Based on the migration efficiency model, we design to
select migrating switches and immigration controllers.

Migrating switch selecting

The migrating switch si is selected from the switch set
Γ(cm) managed with emigration controller cm, and si must
consider the following conditions. First, cm is more willing
to migrate the switch with the high migration efficiency to
relief its loads. Moreover, from the perspective of delay, cm
preferentially abandons the switch that is far from it.
Therefore, we select the migrating switch based on a proba-
bility distribution, which is shown in Eq. (21) and Eq. (22).

si ¼ arg
Γ cmð Þ

maxρsi ð21Þ

ρsi ¼ τ sicn ⋅
L− L cmð Þ⋅ Γ cmð Þj j−αsið Þ
			 			⋅e maxhimð Þ

e
∑

si∈Γ cmð Þ
maxhimð Þ ð22Þ

Immigration controller selecting

When the migrating switch si is moved into its slave con-
troller, it firstly detects whether the migration will cause a new
overloaded controller. If so, this controller will be abandoned.
Therefore, under the guidance of the migration efficiency
model, cn will be selected as the immigration controller ac-
cording to Eq. (23) and Eq. (24).

cn ¼ argmax Φnf g ð23Þ
Φn ¼ γ⋅ Ωn−L cnð Þ−αsi½ � þ 1−γð Þ⋅τ sicn ð24Þ
where Φn represents the weighted sum of remaining process-
ing capacity and the migration efficiency, and γ is the corre-
sponding weight.

Based on the above computation, we can get several immi-
gration controllers, and they are saved in immigration control-
ler set CIM.

5.1.1 Optimal object selection algorithm

Based on the known loads condition, we will select the opti-
mal migration objects in EASM-2. Firstly, for any δmn in TF, if
L(cm) > L(cn), we set cm as the emigration controller and add it
into the set CEM (Line 3 to Line 5). Then, we compute migra-
tion costs and load balancing rate to get the migration efficien-
cy (Line 8). The migrating switch is selected according to the
maximum selection probability (Line 10). The selection of the
immigration controller is optimized by SA method. Initial
temperature decreases to a moderate stage until the system
comes to a balance point, where no more changes require
(Line 16 to Line 18). In the next stage, it begins with a lower
temperature and allows the model to move toward the better
solution (Line 19 to Line 22). The selected immigration con-
troller will be added into the set CIM (Line 25). All migration
objects are determined in the end. The pseudo-code of the
algorithm is shown in Table 5.

In EASM-2, Line 1 to Line 8 selects the migrating emigra-
tion controller, and its time complexity is O(2(M − 1)). Line
10 computes the migration efficiency, and its time complexity
is O(M ⋅N). The time complexity of selecting the migrating
switch is O(M). After Line 11, SA method is implemented for
selecting the immigration controller, and its time complexity
is O(M ⋅ k), which is related to initial temperature and cooling
rate. Therefore, the overall time complexity of EASM-2 is
O(M ⋅N).

5.2 Migration decision formulation

Through determining the migration objects, we have acquired
the required elements of switch migration. However, the rela-
tionships of migration objects aren’t one-to-one correspon-
dence, and one emigration controller may migrate switches
into the multiple immigration controllers. Therefore, in order
to ensure the well-organized and efficient switch migration,
we introduce the triplet to represent the precise mapping be-
tween migration objects.

Definition 4 Migration Triplet. For any switch migration, the
migration triplet is defined as [cm, si, cn], where those three
elements form the determined migration mapping. cm is the
emigration controller, selected from CEM; si is migrating
switch, selected from Γ(cm); cn is the immigration controller,
selected from CIM. When [cm, si, cn] is constructed, cm have no
choice but to migrate si to cn.

In practice, there may be multiple switches needed to be
migrated in the network, so all triplets form a set Tr, which is
required to update in real-time after every switch is migrated.
By this way, it can prevent the migration disorder ef-
fectively. When all migrating switches are migrated into
those target controllers, we will redetect whether the
controller loads meet the load balancing after the
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migrations completed. According to the final results, we
decide to quit EASM or return module 2 until meeting
the requirement of load balancing (∀cm, cn ∈ C, δmn < Λ).

As a dynamic balancing method, switch migration will cost
the particular control resources. Particularly, when the load
balancing condition becomes better, we must reduce the oc-
currence of migration to avoid unnecessary consumption of
the controller resources. Therefore, in order to achieve the
better migration effects, we can adjust the threshold Λ accord-
ing to Eq. (11) after network update. Moreover, the bigger Λ,
and the lower migration frequency.

Particularly, if there are multiple migrating objects
with the same migration efficiency and multiple immi-
gration controllers, we migrate those switches to their

closest controllers. For example, the switch will be mi-
grated into the controller with the minimum path length
among all controllers. If the path length is same, then
EASM would randomly select switch to migrate.

5.2.1 Dynamic migration decision algorithm

In EASM-3. Firstly, we select the elements from the migration
object sets to construct the triplet set Tr (Line 2), which in-
cludes a series of migration mappings. For each [cm, si, cn], we
will migrate si from cm to cn (Line4 to Line 5), and then shrink
Tr (Line 8). After Tr is empty, we will update the network state
and improve the threshold Λ to complete the dynamic switch
migration (Line 10). The pseudo-code of the algorithm is
shown in Table 6.

In EASM-3, it mainly executes switch migration and
updates controller states, and its time complexity is as-
sociated with triplet. The overall time complexity of
EASM-3 is O(M + N).

6 Evaluation

6.1 Simulation setting

In this section, we evaluate the performance of EASM under
the experimental environment shown in Fig. 4, and make the
following descriptions.

(1) Experimental platform

We select OpenDaylight [13] as the experimental control-
ler, and use Mininet [14] as a test platform. OpenDaylight is
programmed by Java and supports multiple versions of
OpenFlow protocols. Mininet developed by Stanford
University is set as the test platform. The physical devices
contain five servers with the same configuration (Intel Core
i7 3.5GHz 4GBRAM). The operation system is Ubuntu 16.04
and the development kit is JAVA 8. EASM is designed in the
application layer of OpenDaylight controller. Considering the
performance conflict between OpenDaylight and Mininet on
one server, we run OpenDaylight with EASM on four servers
(NO. 1- 4) and install Mininet on one server (NO. 5). All
servers are connected by H3C S1016 switch.

(2) Topology selecting

We select the authoritative network topology to make the
experiments more persuasive. First, we demonstrate the valid-
ity of EASM in Internet2 OS3E [15] with 34 nodes and 42
links. Then, we reselect several topologies from Topology
Zoo [16] to prove the load balancing performance and the
topological adaptability.

Table 5 Optimal object selection

EASM-2: Optimal Object Selection
Input: Trigger factor set TF
Output: Emigration controller set EMC

Migrating switch is
Immigration controller set IMC

Procedure emigration controller selection

1:   while (TF )

2:      Select mn from TF

3:      if ( ) ( )m nL c L c
4:       Add mc into EMC
5:      endif
6:      { }mnTF TF
7:   endwhile

Procedure migrating switch selection

8:   Get migration efficiency 

9:   Compute 
is

of switch managed by mc
10:  migrating switch arg

ii ss max

Procedure immigration controller selection

11:  Initial temperature 
0T , 

12:  Get 
0( )n T

13:  for _ _k Max temp change do

14:     
0 ( 1)kT T k

15:     Apply mutation to current state ( )n kT
16:    if ( ) ( )n k mut n kT T
17:       then ( ) ( )n k n k mutT T
18:     endif
19:    if kT Te
20:       then ( ) ( )n k n k mutT T
21:     else Discard ( )n k mutT
22:     endif
23: k=k+1

24:  endfor

25:  Add arg { }n nc max into IMC
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(3) Parameters setting

We use Iperf [17] to generate TCP flows to simulate the
distribution of the network traffic. The average flow requests
are 200KB/s. The controller capacity is limited to 5MB, and
v = 15KB/s, Ppacket = 30Byte, ζsync = 18Byte. The link band-
width is finite, thus we set the number of switches managed
with one controller is from 5 to 20 [18].

(4) Simulation comparison

To verify the performance of EASM, we compare it with
the other three strategies.

& No Switch Migration (NSM): the connections between
switches and controllers are static.

& Closest Switch Migration (CSM): the overloaded con-
troller randomly migrates the switches into the closest
underloaded controller to solve the load imbalance [11].

& Maximum Utilization Switch Migration (MUSM): like
the typical switch migration scheme, it migrates
switch into the controller that has maximum residual
capacity [19].

& Efficiency-aware Switch Migration (EASM): the
switch migration is implemented according to migration
efficiency to improve load balancing rate and reduce the
migration cost.

The evaluation indexes include controller response time,
controller throughput, migration cost and migration time,
and load balancing rate.

6.2 Result analysis

6.2.1 Controller response time

Controller response time is one of evaluation indexes. When
the load imbalance occurs, controller response time will be
increased significantly. In the experiment, we change the flow
request counts to make some controllers overload, and ob-
serve the change of controller response time. Flow request
count of OS3E is shown in Fig. 5, and each simulation time
is 12 hours.

The average controller response time of four strategies is
shown in Fig. 6. We can see that NSM has the most drastic
time fluctuation with the change of flow request counts. CSM
and MUSM have the smaller fluctuation range, and EASM
has the slightest fluctuation. The reasons are explained as fol-
lows. Because NSM does not implement switch migration
during load imbalance, there is the biggest difference of the
controller response time between the normal controller and the
overloaded controller. Although CSM and MUSM adopt
switch migration to balance controller loads and lower re-
sponse time, nearest migration is easy to cause new load im-
balance after migration, and MUSUM is lack of global plan-
ning. EASM analyses the composition of controller loads in
detail and constructs the load difference matrix to avoid the

Table 6 Dynamic migration decision

EASM-3: Dynamic Migration Decision
Input: Emigration controller set EMC

Migrating switch is
Immigration controller set IMC

Output: New network state

1:  m EMc C ; ( )i ms c ; n IMc C
2:  Construct triplet set Tr
3:    while (Tr )

4:      [ , , ]m i nc s c Tr
5:      Migrate is from mc to nc
6:      ( ) ( ) { }n n ic c s , ( ) ( ) { }m m ic c s
7:      Update states of mc and nc
8:      {[ , , ]}m i nTr Tr c s c
9:  endwhile
10:  Update and network state

OpenDaylight with EASM Mininet

H3C S1016

NO.1 NO.2 NO.3 NO.4 NO.5

Fig. 4 The experimental topology
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local optimal problem, which could ensure the high-efficiency
migration and reduce the controller loads quickly. Compared
with other strategies, the average controller response time of
EASM has reduced 21.9% at least.

The cumulative distribution function (CDF) of controller
response time is shown in Fig. 7. Due to the reasonable mi-
gration model setting, EASM is less vulnerable to the change
of flow request counts than other strategies.

6.2.2 Controller throughput

Based on the flow request counts in Fig. 5, we use the average
controller throughput to reflect the load condition. The higher
throughput, the better controller performance. The experiment
result is shown in Fig. 8.

Due to the static connection of NSM, it has the lowest
throughput, which is less than 2000packets/s. The remaining
three strategies implement switch migration during controller
overload, so the average controller throughput has been im-
proved obviously. CSM and MUSM have the similar through-
puts, which are close to 3000packets/s. Differing from the

unilateral migration decision (the shortest distance in CSM
and the largest capacity in MUSM), EASM makes efforts to
improve load balancing rate while reducing migration cost
through setting migration efficiency model. Meanwhile, the
reasonable design of triplet also ensures the concurrent and
coordinating migrations. Therefore, the average controller
throughput of EASM reaches about 3660packets/s, which
has increased by 30.4% on average compared with the other
migration strategies.

6.2.3 Migration cost and migration time

In this experiment, we remove NSM and only record the mi-
gration costs and time of CSM, MUSM and EASM. That is
because NSM does not perform switch migration. As shown
in Fig. 9, in terms of migration cost, MUSM is the highest,
CSM and EASM have the similar results. On the other hand,
in terms of migration time, CSM is longest, MUSM takes the
second place and EASM is the shortest.

There are several reasons to explain this result. First, CSM
has the smaller migration costs due to both its closest
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migration strategy and less interactions between migration
objects. However, it is easily to cause the immigration con-
troller becoming a new overloaded controller because of con-
centrating onmigration distance but ignoring controller capac-
ity. At this time, CSM must migrate switches again, and mi-
gration time is the longest. Second, MUSM searches the con-
troller with the maximum residual processing capacity the as
immigration controller, but doesn’t consider the additional
network costs. Third, EASM optimizes the migration objects
based on the migration efficiency, which uses the selection
probability to determine the migrating switches and chooses
the immigration controllers optimized by simulated annealing.
Both two operations could reduce migration costs effectively.
The sequential migration process of EASM also makes migra-
tion time lower.

6.2.4 Load balancing rate

Firstly, in order to verify the comprehensiveness of EASM
strategy, we select the Internet2 OS3E as the experimental
topology, and formulate a situation that there are four migrat-
ing switches with the same migration efficiency and four im-
migration controllers. Figure 10 shows the load balancing rate
of EASM. It is clearly seen that EASM has the higher and
stable average load balancing rate, and the load balancing rate
fluctuates less. This is because EASM design considers dif-
ferent scenarios and has the universality for the network.
Especially, when switches have the samemigration efficiency,
EASM can still keep efficient migration according to the min-
imum path length among controllers. Therefore, EASM has
the better general applicability for SDN network.

Further, we validate the load balancing performance of
EASM in the other topologies selected from Topology Zoo,
and the network scale gradually expands. As shown in Fig. 11,
and the normalized processing is implemented for load
balancing rate to make comparisons more clearly. We observe
that the load balancing rate of EASM is higher than the other

three strategies, and it almost does not change along with the
topology expanding. This is because the setting of migration
efficiency and triplet in EASM could achieve the efficient
migration planning and fast switch migration. Therefore,
EASM has a stronger ability to maintain the load balancing
rate at a high level, and can adapt to different network
topologies.

7 Related work

There is a large spectrum of related work along controller load
balancing. We only review some closely related ones here
from the mainstream solutions.

Controller deployment scheme The original SDN network
relies on the centralized controller, which has the problems
of low processing performance and poor scalability, so the
related researchers propose to deploy multi-controller, such
as HyperFlow [4], Onix [5] and Kandoo [6]. In order to bal-
ance the loads of distributed controllers, in [20], the authors

CSM MUSM EASM
0

50

100

150

M
ig

ra
tio

n 
tim

e(
s)

30

20

10

0

M
ig

ra
tio

n 
co

st
(K

B
/s

)

Migration strategy

 Migration cost
 Migration time

Fig. 9 Migration cost and migration time

0 2 4 6 8 10 12
0.80

0.85

0.90

0.95

1.00

Lo
ad

 b
al

an
ci

ng
 ra

te

Time(h)

 EASM

Fig. 10 Load balancing rate under multiple migrating objects with the
same migration efficiency and multiple immigration controllers

0.6

0.8

1.0

T
w

B
ra

in

C
o

lu
m

b
u

s

G
er

m
an

y

In
d

ia
3

5

P
io

ro
4

0

C
o

st
2

6
6

N
o

b
el

S
u

n

N
o

w
ay

Ja
n

o
s

G
ea

n
t

N
ew

y
o

rk

A
tl

an
ta

A
b
il

ie
n
e

NSM

CSM

MUSM

 EASM

L
o
ad

 b
al

an
ci

n
g
 r

at
e

Topology

Fig. 11 Load balancing rate in different topologies

462 Peer-to-Peer Netw. Appl. (2019) 12:452–464



firstly consider the controller deployment, and optimizes the
locations of controllers based on the average delay and the
maximum delay. Meanwhile, this method also introduces the
deployment instances to analyze the distribution of loads. In
[12], the authors design a Pareto- based Optimal COntroller
(POCO) placement, which makes a compromise in controller
performance, failure tolerance and load balancing. In [21], the
authors propose a dynamic controller planning with load reg-
ulation, and this architecture could adjust the number of active
controllers adaptively and minimize the flow setting time.
However, it must collect the traffic information periodically
and implement load redistribution from the entire control
plane. In [22], the authors consider the usage of control re-
source, and design JumpFlow to reduce the usage of flow
table and the ratio of average control messages. In [23], the
authors propose an efficient online algorithm for dynamic
SDN controller assignment, and mainly consider response
time and maintenance cost. A hierarchical two-phase algo-
rithm that integrates key concepts from both matching theory
and coalitional games is designed to solve it.

Switch migration scheme Following OpenFlow 1.3 protocol
[10], a switch could be connected with multiple controllers in
the meantime. A switch may be simultaneously connected to
multiple controllers in equal state, multiple controllers in slave
state, and at most one controller in master state. Each control-
ler may communicate its role to the switch via a role request
message, and the switch must remember the role of each con-
troller connection. The subdomain controller is the master role
of the subdomain switches, but those switches can set the
other subdomain controllers as slave roles. Therefore, some
people study controller load balancing from the perspective of
switch migration. In [11], the authors design an ElastiCon
architecture with double threshold values, and ElastiCon mi-
grates switch into the closest neighbor controller. In [24], the
authors propose switch migration based on clustering control-
ler and divide the whole network into multi-domains. The
dynamic allocation of controller load between multiple clus-
ters is realized by switch migration. Meanwhile, this method
also supports failover and controller backup. In [19], the
switch migration is programmed as the maximum resource
utilization, and the distributed hopping algorithm is designed
based on Log-Sum-Exp function to approximate optimal ob-
ject. Besides, it runs on each controller independently. In [25],
the authors introduce load variance-based synchronization
(LVS) to improve the load balancing performance in the
multi-controller and multi-domain network. LVS conducts
state synchronization among controllers if and only if the load
of a specific server or subdomain exceeds a certain threshold.
In [26], by constructing the game-playing fields, the authors
design a decision-making mechanism based on zero-sum
game theory to reelect a new controller as the master for the
switches. In [27], the authors propose BalCon (Balanced

Controller), which is an algorithmic solution designed to tack-
le and reduce the load imbalance among SDN controllers
through proper SDN switch migrations. However, BalCon is
only suitable for the small-scale network.

8 Conclusion

In this paper, we make the first attempt to optimize the
process of switch migration through introducing the mi-
gration efficiency, and propose an Efficiency-Aware
Switch Migration (EASM) strategy for balancing multi-
controller loads. The essence of EASM is to migrate
switches with the consideration of load balancing rate
and migration costs to improve the migration efficiency
and balance the controller loads. Simulation results show
that EASM simultaneously achieve low controller re-
sponse time, high controller throughput, low migration
cost and better load balancing rate. In the future, we will
improve EASM in the following aspects: (1) deploying
EASM in a large-scale test bed, (2) researching the reli-
ability of controller, (3) considering the security of the
switch migration.
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