
SCPLBS: a smart cooperative platform for load balancing
and security on SDN distributed controllers

Hong Zhong1 & Jianqiao Sheng1 & Yan Xu1
& Jie Cui1

Springer Science+Business Media, LLC 2017

Abstract Software-Defined Networking (SDN) is a network
architecture which has received much attention in recent
years. It represents the future of network industry. As the
Internet continues to exceed expectations of rapid develop-
ment, a single centralized controller can be extended to dis-
tributed multiple controllers architecture. However, the dis-
tributed multiple controllers architecture is facing more and
more serious challenges in the aspects of scalability, stability
and security. In order to solve these problems, we propose a
smart cooperative platform for load balancing and security on
SDN distributed controllers, named SCPLBS. The collabora-
tive platform is built on the control plane. A secure commu-
nication mechanism based on message authentication code is
adopted between the cooperative platform and the controllers.
Collaborative platform uses a data collection algorithm
adapting to data fluctuation to collect the controllers’ status
and load information. Collaborative platform takes strategy to
achieve the distributed controllers load balancing and failure
recovery. In this paper, we use the Floodlight controller and
develop the cooperative platform based on restlet framework.
We test the effectiveness of the proposed scheme. The exper-
imental results show that this scheme can well achieve the
load balancing and failure recovery of the distributed control-
lers on the basis of the secure communication between the
cooperative platform and the controllers.

Keywords Software-defined networking . Cooperative
platform . Load balancing . Distributedmultiple controllers
security . Data collection

1 Introduction

The Internet is developing at an unprecedented rate and it has
been an important information infrastructure. The Internet
brings great convenience to people’s life and communication.
However, the traditional network structure is complex and
difficult to manage, leading to its limited development. It is
difficult to adapt to the current cloud computing, cloud stor-
age, virtualization and other network development applica-
tions [1]. SDN is a network architecture based on the idea of
software programmable. It can enhance the automation con-
trol and management of the network flexibly through the cen-
tralized control plane and the distributed forwarding plane [2].
The controller is an important part of SDN and it is the bridge
connecting the underlying switching equipment and the upper
application. With the increasing scale of network and the in-
creasing number of network interconnection devices [3], for
extensive switches flow requests and control plane expansion
[4], the single centralized controller has been unable to meet
the performance requirements of large-scale networks [5, 6].
This facilitates the generation of the distributed multiple con-
trollers architecture. The distributed controllers can cooperate
to realize the expansion of the network and the management of
the network devices more conveniently [7].

The distributed controllers architecture has been studied
and implemented by researchers, such as HyperFlow [8] and
Onix [9]. They focus their attention on how to implement a
distributed control plane and how to provide a global network
topology for the application plane. Although it improves the
scalability and stability of the distributed controllers to a

This article is part of the Topical Collection: Special Issue on Software
Defined Networking: Trends, Challenges and Prospective Smart
Solutions
Guest Editors: Ahmed E. Kamal, Liangxiu Han, Sohail Jabbar, and Liu Lu

* Jie Cui
cuijie@mail.ustc.edu.cn

1 School of Computer Science and Technology, Anhui University,
Hefei 230039, China

DOI 10.1007/s12083-017-0605-1
Peer-to-Peer Netw. Appl. (2019) 12:440–451

Received: 15 July 2017 /Accepted: 25 August 2017 /Published online: 19 September 2017

http://orcid.org/0000-0001-7258-3418
mailto:cuijie@mail.ustc.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-017-0605-1&domain=pdf

certain extent, it does not consider the load balancing and
failure recovery among the distributed controllers [10]. The
overloaded controller should migrate the high-load switch
smoothly to the low-load controller, and it is necessary to have
the mechanism of failure recovery when a controller break
down. Hu et al. [11] designed a BSuper Controller^ to control
the flow and achieve the load balancing among the distributed
controllers. Zhou et al. [12] designed a dynamic and adaptive
algorithm (DALB). The algorithm is running as a module of
controller and the distributed controllers coordinate with each
other to maintain load balancing. Hai et al. [13] used pre-
defined load threshold, besides a load balancing plane is
added between the control plane and the data plane. Selvi
et al. [14] designed a controller load-balancing scheme for
hierarchical networks(COLBAS). The controllers periodically
release their load and coordinate with each other to realize the
load balancing. They focus their attention on how to imple-
ment load balancing of distributed controllers, but they do not
take into account the security issues of the distributed control-
lers architecture [15]. Malicious controllers may access the
network, obtain network topology, steal and modify network
data [16]. This may result in network paralysis. In addition,
the designs of these papers realize the load balancing among
the controllers by changing the controller’s role over the
switch. They do not consider that the routing strategy of each
controller is different and direct migration of the switch may
cause the current business interruption. Also the algorithms in
these designs are not accurate enough to collect the control-
lers’ load. Periodical collection of controllers load may also
lead to a waste of resources. And timely and effective control-
lers failure recovery strategy is an important aspect to be taken
into account.

This paper proposes a smart cooperative platform for load
balancing and security on SDN distributed controllers, named
SCPLBS. We mainly focus on the disadvantages of the
existing multiple controllers load balancing. Our scheme at-
tempt to improve the multiple controllers load balancing in the
security and accuracy. The collaborative platform is built on
the control plane. A secure communication mechanism based
on message authentication code is adopted between the coop-
erative platform and the controllers. Collaborative platform
uses a data collection algorithm adapting to data fluctuation
to collect the controllers’ status and load information.
Collaborative platform takes strategy to achieve the distribut-
ed controllers load balancing and failure recovery. This paper
mainly includes the following three contributions:

& Secure communication mechanism based on message au-
thentication code is used between SCPLBS and control-
lers. This can prevent the attacker from accessing the con-
trollers to steal and modify the network data and improve
the security of the mutual communication between the
cooperative platform and the controllers.

& Collaborative platform uses a data collection algorithm
adapting to data fluctuation to collect the controllers’ sta-
tus and load information. According to the fluctuation of
data collected in the data collection interval, the coopera-
tive platform can adaptively adjust the time interval of data
collection.

& SCPLBS stores the routing policy of each controller.
According to the controllers load information collected,
SCPLBS maintains the load balancing of the distributed
controllers by migrating the control permission of the
switch. At the same time, SCPLBS can avoid the network
paralysis caused by failure of single controller.

2 Related works

2.1 The SDN architecture

Software-Defined Networking(SDN) is a new type of soft-
ware programmable network architecture, which is based on
the separation of data and control [17]. SDN uses a centralized
control plane and a distributed forwarding plane, the two
planes are separated from each other [18]. SDN interface pro-
tocol open up the SDN programmability. These protocols
achieve the connection and communication among various
parts. The northbound interface protocol provides the interac-
tion between the developer and the control plane. The south-
bound interface protocol accomplishes the interaction be-
tween the control plane and the data plane. The northbound
interface protocol also accomplishes part of the management
and configuration function. OpenFlow [19] is the standard that
normalizes communication between the control plane and the
forwarding plane under the SDN architecture. OpenFlow has
become one of the mainstream southbound interface protocol.
SDN controller is an important part of SDN. On the one hand,
controller uses the southbound interface protocol to connect
the underlying network switching equipment for centralized
management and state monitoring. Also the controller gener-
ates forwarding decisions to process and schedule traffic in the
data plane. On the other hand, the controller uses the north-
bound interface to openmultiple levels of programmability for
the upper application.

2.2 OpenFlow and multiple controllers

SDN southbound interface (OpenFlow protocol) provides a
lot of message types. From the beginning of the
OpenFlow1.2 protocol, a switch can be connected to the mul-
tiple controllers, which makes load balancing and failure re-
covery among the distributed controllers be possible. When a
switch is connected to multiple controllers, the controller in
MASTER role can fully manage the switch and receive all the

Peer-to-Peer Netw. Appl. (2019) 12:440–451 441

asynchronous messages sent from the switch(such as Packet-
in message,Flow-Removedmessage). However, the controller
in SLAVE role has read-only permissions to switch and does
not receive asynchronous messages sent from the switch.
When a controller changes its role to MASTER, the switch
change all other controllers which role is MASTER to have
the role SLAVE. This makes the switch determine the only
controller.

When the southbound interface uses the OpenFlow
protocol, the controller’s primary load comes from the
Packet-in message. As shown in Fig. 1, when the data
packet received by the switch does not have a match in
the flow table, the switch will encapsulate the Packet-in
message and forward the packet to the controller. The
controller analyzes the Packet-in message and sends the
Packet-out or Flow-mod message to the switch. By this
way, the data packet gets the forwarding path. When a
controller receives a lot of Packet-in messages, the load
of the controller will increase. When the load exceeds a
certain threshold, the network will have problems, such as
delay increasing, packets not reaching, etc.

2.3 Message authentication code

Message authentication [20] is a mechanism for verifying
message integrity. Message authentication can ensure that
the data received is exactly the same as when sent (not modify,
insert, delete, reproduction). And message authentication can
also ensure the sender’s identity is real and valid. Before trans-
mitting the data, the sender first uses the hash function nego-
tiated by the two sides of the communication. Then the sender

obtains the message authentication code under the shared ses-
sion keys. And the message and the message authentication
code are sent together. After receiving the message, the receiv-
er uses the hash function to calculate the hash value corre-
sponding to the message and compares the value with the
message authentication code. If the two are equal, the message
is authenticated.

3 Design scheme

3.1 System model

In this paper, the systemmodel is shown in Fig. 2. SCPLBS is
built on the control plane. SCPLBS contains Message
Authentication module, Collect Data module, Load
Balancing and Failure Recovery module. SCPLBS also con-
tains a database for storing the load information and the
routing strategy of the controllers. A secure communication
mechanism based on message authentication code is adopted
between SCPLBS and the controllers. SCPLBS uses a data
collection algorithm adapting to data fluctuation to collect the
controllers’ status and load information. SCPLBS takes strat-
egy to achieve the distributed controllers load balancing and
failure recovery.

3.2 Message authentication

This design uses the identity authentication based on message
authentication code to realize the communication security be-
tween the distributed controllers and SCPLBS. Message

Host

OpenFlow

Switch

Packet-in

Controller

Packet-out or Flow-mod

Fig. 1 Message handling

442 Peer-to-Peer Netw. Appl. (2019) 12:440–451

authentication code is a kind of authentication technology.
This technology uses a key to generate a fixed length of short
data blocks. And the data block will attach to the message.
The design of the message authentication is shown in Fig. 3.

Step 1: Before sending the message, each controller and
SCPLBS negotiate the common hash function and key
value.
Step 2: When the controller sends a message to the
SCPLBS, the controller uses the hash function and the
key to calculate the hash value (MAC) of the message.
Then the controller sends the message along with the
MAC to SCPLBS.
Step 3: When the SCPLBS receives the message and
MAC, SCPLBS uses the negotiated hash function and
key to calculate the hash value corresponding to the mes-
sage. Then SCPLBS compares this local calculated hash
value with the received MAC. If the two are equal, the
message is authenticated.

SCPLBS can believe that the message has not been modi-
fied. Because if the attacker changed the message, but he
could not change the corresponding MAC. So the MAC cal-
culated by SCPLBS will not equal to received MAC.
SCPLBS can believe that the message is from the true sender
controller, because all other parties do not know the key and
fake party could not produce the correct MAC. If the message
contains a serial number, SCPLBS can believe that the mes-
sage sequence is correct. Because the attacker could not suc-
cessfully modify the serial number. When the SCPLBS sends

the message to the controller, SCPLBS uses the same message
authentication mechanism. This can ensure the communica-
tion security between SCPLBS and the controller.

3.3 Data collection algorithm

SCPLBS uses the data collection algorithm adapting to data
fluctuation to collect the controllers’ status and load informa-
tion. Some of the notations used in the data collection algo-
rithm are provided in Table 1.

As shown in the Algorithm 1, SCPLBS collects the average
rate of Packet-in messages received by each controller in the
data collection interval as the current load of the controllers. In
order to measure the load of each switch to the controller,

Controller C1

Collect Data Load Balancing and Failure RecoveryMessage Authentication

Collaboration Platform

Data Plane

Control PlaneController C2 Controller C3

Database

Migrate Switch

Fig. 2 System model

Fig. 3 Message authentication

Peer-to-Peer Netw. Appl. (2019) 12:440–451 443

SCPLBS also collects the number of Packet-in messages pro-
duced by switches connected to the controller in the data col-
lection interval. SCPLBS stores the load information in the
database. SCPLBS updates the data in the database according
to the time interval of data collection. SCPLBS updates the
data every time when the load is collected.

As shown in Fig. 4, SCPLBS adaptively adjusts the
time interval of data collection according to the load
change of each controller in a time interval. When the
load change of each controller is gentle, we can increase
the time interval of data collection. When the load change
of each controller is drastic, we can reduce the time inter-
val of data collection. This can be more accurate to collect
each controller’s real-time load. And this can also avoid
frequent collection of data and the waste of resources.

As shown in the Algorithm 1, when the time interval of
data collection is (T, T + t), SCPLBS collects numi in t interval
time. SCPLBS calculates CPti = numi/t as the average rate of
Packet-in messages received by each controller in t interval
time. And SCPLBS uses (CPt1, CPt2,…,CPtn) as the average
load of each controller in the t interval. Assume that the load of

each controller in the previous data collection interval is
(CPT1,CPT2,…,CPTn),SCPLBS calculates the F = (|CPt1-
CPT1| + |CPt2-CPT2| + …. + |CPtn-CPTn|)/n as the average
value of controller load fluctuation. When F is large, the
time interval of data collection needs to be reduced.
When F is small, the time interval of data collection needs
to be increased. We calculate the F/w to measure the size
of the data fluctuations. The w represents the arrival rate
of Packet-in messages and the controller uses w to control
flows. The time interval of data collection algorithm
adapting to data fluctuation is adjusted according to the
following rules:

(1) When 0 < F/w ≤ 0.2,set the time interval of load collec-
tion to the maximum data collection interval of 20s.

(2) When 0.2 < F/w ≤ 0.6,set the time interval of load col-
lection to 15 s.

(3) When 0.6 < F/w ≤ 1,set the time interval of load collec-
tion to 10s.

(4) When F/w > 1, set the time interval of load collection to
the minimum data collection interval of 5 s.

3.4 Load balancing and failure recovery

SCPLBS periodically reads the load information of each con-
troller from the database. SCPLBS achieves the distributed
controllers load balancing and failure recovery by migrating
the control permission of the switch.

The process of SCPLBS achieving load balancing is shown
in Algorithm 2. And some of the notations used in the load
balancing algorithm are provided in Table 2.

SCPLBS calculates the ratio m between the average load of
each controller and the maximum load of each controller. The
m is obviously less than 1. When m is in the floating range we

444 Peer-to-Peer Netw. Appl. (2019) 12:440–451

set, it indicates that the load of each controller is relatively
balanced. When m is not in the floating range we set,
SCPLBS needs to execute load balancing algorithm. The spe-
cific steps are shown as follows:

Step 1: SCPLBS set the load balancing factor LB and the
load floating factor FL, the load balancing floating inter-
val is set to (LB-FL, LB + FL). The initial LB and FL is
set to 0.8 and 0.2. When the load balancing accuracy
requirements are relatively high, we can adjust the value
of the parameters.
Step 2: SCPLBS periodically reads each controller load
information from the database. SCPLBS calculates the

average value of each controller load as AVG_CP.
SCPLBS selects the MAX_CP and MIN_CP.Then
SCPLBS calculates the m = AVG_CP/MAX_CP;
Step 3: When the m is not in the (LB-FL, LB + FL),
SCPLBS executes the load balancing strategy in Step 4.
Step 4: When SCPLBS needs to execute load
balancing strategy, SCPLBS elect out the switch pro-
ducing the most Packet-in message from the maxi-
mum load controller. That is to find the maximum
value in {SP1,SP2,…,SPj,…} connected to the
C_MAX. By modifying the role of the controller,
SCPLBS migrates the maximum load switch to the
minimum load controller C_MIN.

Here we need to pay attention to a problem. After executing
the load balancing algorithm, it is necessary to update the load
data collection interval Dt to the minimum data collection
interval. This ensures that relatively accurate load is stored
in SCPLBS database. This can also ensure that the next round
of SCPLBS determining whether the current the load of con-
trollers is balancing more accurate.

SCPLBS continuously monitors the status of each controller
in the whole network by sending heartbeat packets to the con-
trollers. When SCPLBS finds a controller failure, it will timely

execute the failure recovery strategy. In this scheme, the failure
recovery strategy is to migrate the switches of the failure con-
troller to the normal operational controllers in hash mode. The
hash function is calculated based on the ID number of the switch
and the number of controllers. Hash function can be set to mod-
ulo operation. The switch will set the other normal operational
controllers as its own Master controller. For example, assuming
that there are controller C1, controller C2, controller C3 current-
ly. Controller C1 manages 2 switches. When controller C1 fails,
SCPLBS finds the heartbeat packet connection disconnecting

Peer-to-Peer Netw. Appl. (2019) 12:440–451 445

from controller C1. According to the 2 switches ID number S1
and S2 managed by controller C1,and the number of normal
work of the cont ro l le r i s 2 ,SCPLBS calcu la tes
hash(S1) = 1mod2 = 1 and hash(S2) = 2mod2 = 0. SCPLBS
can migrate switch S1 and switch S2 to the remaining control-
ler C2 and controller C3. In this way, SCPLBS can realize
failure recovery of the controllers. When the failure controller
is repaired, it can continue to access the network.

The database of SCPLBS not only stores the load of the
controllers and the switches, but also stores the routing strat-
egy of each controller. When SCPLBS executes load
balancing and failure recovery strategy, there will be some
switches migrated to other controllers. In this scheme, the
region or business of the switch is marked at the beginning.
When a switch is migrated to the new controller, the new
controller will read the routing policy of the initial controller
of the switch from the database. And the new controller exe-
cutes route forwarding based on this routing policy. This can
reduce the business interruption and the flow table conflict
caused by the migrated switch.

4 Experiment result and performance analysis

4.1 Experiment deployment

We uses open source controller Floodlight [21] and Mininet
[22] to deploy our experiment. Floodlight is an open source

SDN controller based on Java language and it supports
OpenFlow protocol. The overall architecture of the Floodlight
consists of the core controller functions and its application. The
application and the controller can interact via Java interface or
RESTAPI. Mininet is a network simulation tool which can be
used to build large scale SDN prototype system on the limited
resources. The system consists of virtual terminal node (End-
Host) and OpenFlow switch. This makes it possible to simulate
the real network and provide development verification for a
variety of ideas. In our scheme, we use the Floodlight controller
and develop the cooperative platform based on restlet [23]
f ramework . SCPLBS main ly con ta ins Message
Authentication module, Collect Data module, Load Balancing
and Failure Recovery module, a database system. We use
MySQL as the database. This scheme is based on the
Floodlight controller for the experiment and test. We will set
the parameter w in data collection algorithm to 1000 [12].
Experiment network topology is shown in Fig. 5.This experi-
ment creates controller C1, controller C2, controller C3 and 12
switches. Each switch connects two hosts. The Floodlight con-
troller and SCPLBS operate at Windows 7, i5 CPU and 8G
RAM. Mininet operate at Ubuntu14.04, i5 CPU and 4G RAM.

4.2 The experiment and analysis of load balancing
and failure recovery strategy

Controller C1, controller C2, and controller C3 are connected
to SCPLBS at the beginning. Controller C1 controls 8

Table 1 Some of the notation
used in the data collection
algorithm

Notation Definition

n Total number of controllers

T Initial time point for load collection

t Time interval of data collection

numi The number of Packet-in messages received by each controller(i = 1,2…,n)

CPti The average rate of Packet-in messages received by each controller in t interval time (i = 1,2…,n)

CPTi The average rate of Packet-in messages received by each controller in the previous data collection
interval (i = 1,2…,n)

F Average data fluctuation

w The Packet-in messages arrival rate used by the controller to control the flows

Dt Data collection time interval

DrasticGentle

Load
Collection

Load
Collection

Load
Collection

Time

Data collection
time interval

Data collection
time interval

Fig. 4 Load collection

446 Peer-to-Peer Netw. Appl. (2019) 12:440–451

switches in the role ofMaster. Controller C2 and controller C3
control 2 switches in the role of Master. We use these 12
switches to simulate a domain network. We let the host do
Ping operation between each other in Mininet persistently.
This leads to lots of ICMP protocol traffic in the network, so
that the switches produce Packet-in messages and send
Packet-in messages to the controller. In this experiment,
SCPLBS reads the load information of each controller from
the database every 10s, as to obtain average rate of Packet-in
messages received by the three controllers. As shown in
Fig. 6, at the beginning, controller C1 is responsible for con-
trolling the 8 switches and there is no flow table in the
switches. The controller C1 receives relatively many Packet-
in messages. So the load of controller C1 is relatively high and
the load of controller C2, controller C3 is relatively low. With
the implementation of SCPLBS load balancing strategy, the
controller C1 gradually migrates the switches to controller C2
and controller C3. The load of controller C1 decreases. The
load of controller C2 and controller C3 increases. And with
the passage of time, the load of controller C1, controller C2,
controller C3 is gradually balanced. Fig. 6 shows that the data
collection interval will also become longer after 50s, due to the
load change of each controller is gentle.

In the experiment, we measure the controllers’ memory
utilization before and after load balancing. As shown in

Fig. 7, the load of controllers is not balanced in the initial
state, the memory utilization of the controller C1 is rela-
tively high. With the implementation of load balancing
algorithm, when the load of the controllers is balanced,
the memory utilization of the controllers is relatively sim-
ilar. This can also avoid a controller maintaining a high
load of work for a long time.

When the load of controller C1, controller C2, con-
troller C3 is relatively balanced, we further measure the
effect of SCPLBS on controller CPU utilization. We let
the host do Ping operation between each other in
Mininet randomly. This is to inject random traffic to
the switches. We analyze the CPU utilization of each
controller. After 100 s, we disconnect the controllers
and SCPLBS. We continue to do Ping operation samely
and analyze the CPU utilization of each controller. Figs.
8, 9 and 10 show the CPU utilization comparison of the
controller C1,controller C2,controller C3 before and af-
ter disconnecting from SCPLBS. It can be seen that
when the controllers are connected to SCPLBS, the con-
trollers have less fluctuation on the CPU utilization. The
experimental result shows that when the controller is
connected to the SCPLBS we designed, the controllers
can maintain a relatively stable CPU utilization under
the load balancing strategy.

Controller C1 Controller C2 Controller C3

Fig. 5 Experiment network topology

Table 2 Some of the notation
used in the load balancing
algorithm

Notation Definition

n Total number of controllers

CPi The load of all controllers(i = 1,2…,n)

LB Load balancing threshold

FL Floating parameter

AVG_CP The average value of each controller load

MAX_CP The maximum value of each controller load

MIN_CP The minimum value of each controller load

m The ratio m between the AVG_CP and MAX_CP

SPj The number of Packet-in messages produced by switches connected to the controller

Peer-to-Peer Netw. Appl. (2019) 12:440–451 447

When the controller C1, controller C2, controller C3 are in
normal operation, we choose to turn off the controller C3. This
is an analog that controller C3 has failure. At this point, we
continue do pingall operations in Mininet. In the experiment,
we can see that each host can still communicate with each
other, and there are still new flow tables in the switches con-
nected to the C3 controller that has failure before. The exper-
iments show that the controller C1 and controller C2 can take
over the switches of controller C3 that before the failure oc-
curs. In this way, we can avoid the network failure caused by
single controller failure. This verifies that SCPLBS can basi-
cally achieve the failure recovery of the controllers.

4.3 The analysis of security policy

Compared with the existing distributed controller architecture,
the security authentication module is added in this experiment.
As shown in Fig. 11, the key that the controllers and SCPLBS
negotiating is set to 0xFFFF in the experiment. The hash func-
tion is set that mapping the message string to an integer num-
ber. Here we use the hashCode method in Java and get the
hashCode value corresponding to the message. The
hashCode value XOR with the key 0xFFFF to produce the
message authentication code. For example, in this design,

Fig. 8 Controller C1 CPU
Utilization

Fig. 7 Controller memory
utilization

Fig. 6 Controller load variation

448 Peer-to-Peer Netw. Appl. (2019) 12:440–451

when the SCPLBS requests to connect the controller, the
Brequestconnect^ message sent to the controller by SCPLBS
will be encrypted as Brequestconnect577b^. When the control-
ler receives the message Brequestconnect577b^, the controller
calculates the MAC by using the hash function and the mes-
sage Brequestconnect^. The controller gets B577b^ and it is as
same as the received message authentication code. This means
that the success of message authentication. As shown in
Fig. 11, SCPLBS can be seen as Bob, the controller can be
seen as Alice. If the attacker Tom changed the message, but he
could not change the corresponding MAC, so the MAC calcu-
lated by the receiver Alice will not equal to theMAC receiving.
The recipient Alice can believe that the message is from Bob,
because Tom does not know the key and cannot produce a

message with the correct MAC. In this way, the communica-
tion security between SCPLBS and control plane can be
realized.

5 Conclusions and future work

This paper proposes a smart cooperative platform for load
balancing and security on SDN distributed controllers, named
SCPLBS. Our scheme is applicable to SDN distributed con-
trollers architecture for a single domain network. We use the
Floodlight controller to develop the cooperative platform
based on restlet framework. SCPLBS contains message au-
thentication module, data collection module, load balancing

Fig. 10 Controller C3 CPU
Utilization

Fig. 9 Controller C2 CPU
Utilization

requestconnect577b

requestconnect577b
MAC(requestconnect)=577b

577b=577b

Bob Alice

requestconnect
MAC(requestconnect)=577b

Tom

MAC=?
Key=?

Key=0xFFFF
Key=0xFFFF

Fig. 11 Message authentication
example

Peer-to-Peer Netw. Appl. (2019) 12:440–451 449

and failure recovery module. The experiment and analysis
show that the platform can realize the load balancing and
failure recovery of the distributed controller based on the se-
cure communication. Our scheme still has some limitations. In
the process of changing the controller’s role over the switch, it
may lead to a brief delay of the key business. In the future, we
will improve the security encryption mechanism in this
scheme to provide more effective trust management. And we
will attempt to solve the problem of key business delay by
setting the weight to the switch. Furthermore, we will do more
in-depth study on the issues about security and scalability of
multi-domain distributed controllers.

Acknowledgments The work is supported by the National Natural
Science Foundation of China (No. 61572001, No.61502008), the
Research Fund for the Doctoral Program of Higher Education(No.
20133401110004), and the Doctoral Research Start-up Funds Project of
Anhui University. The authors are very grateful to the anonymous ref-
erees for their detailed comments and suggestions regarding this paper.

References

1. Wood T, Ramakrishnan KK, Hwang J et al (2015) Toward a
software-based network: integrating software defined networking
and network function virtualization[J]. IEEE Netw 29(3):36–41

2. Tuncer D, Charalambides M, Clayman S et al (2015) Adaptive
resource management and control in software defined
networks[J]. IEEE Trans Netw Serv Manag 12(1):18–33

3. Agarwal S, KodialamM, Lakshman TV (2013) Traffic engineering
in software defined networks[J]. Proceedings - IEEE INFOCOM
12(11):2211–2219

4. Yassine A, Rahimi H, Shirmohammadi S (2015) Software defined
network traffic measurement: current trends and challenges[J].
IEEE Instrum Meas Mag 18(2):42–50

5. Kim H, Feamster N (2013) Improving network management with
software defined networking[J]. IEEE CommunMag 51(2):114–119

6. Voellmy A, Wang J (2012) Scalable software defined network
controllers[J]. Acm SigcommComput Commun Rev 42(4):289–290

7. Yu Y, Lin Y, Zhang J et al (2014) Field demonstration of datacenter
resourcemigration via multi-domain software defined transport net-
works with multi-controller collaboration[C]// optical fiber commu-
nications conference and exhibition. IEEE 2014:1–3

8. Tootoonchian A,Ganjali Y (2010) HyperFlow: a distributed control
plane for OpenFlow[C]// internet network management conference
on research on enterprise NETWORKING. USENIX Association
2010:3–3

9. KoponenT,CasadoM,GudeN et al (2010)Onix: a distributed control
platform for large-scale production networks[C]//OSDI 10:1-6

10. Dan M, Lei L, Yoo SJB Optical FlowBroker: load-balancing in
software-defined multi-domain optical networks[C]// optical fiber
communication conference 2014:W2A.44

11. Hu Y, Wang W, Gong X et al (2012) BalanceFlow: controller load
balancing for OpenFlow networks[C]// IEEE, International
Conference on Cloud Computing and Intelligence Systems 780–785

12. Zhou Y, Zhu M, Xiao L et al (2014) A load balancing strategy of
SDN controller based on distributed decision[C]// IEEE, interna-
tional conference on trust, security and privacy in computing and
communications. IEEE Comput Soc 851–856

13. Hai NT, Kim DS (2016) Efficient load balancing for multi-
controller in SDN-based mission-critical networks[C]// IEEE,
International conference on industrial informatics. IEEE

14. Selvi H, Gür G, Alagöz F (2016) Cooperative load balancing for
hierarchical SDN controllers[C]// IEEE, international conference on
high PERFORMANCE switching and routing. IEEE 100–105

15. Porras P, Cheung S, Fong M et al (2015) Securing the software
defined network control layer[C]// network and distributed system
security symposium

16. Chua RL, Pearce AK, PalmerM (2015) Authentication for software
defined networks:, US9038151[P]

17. Feamster N, Rexford J, Zegura E (2014) The road to SDN: an
intellectual history of programmable networks[J]. Acm Sigcomm
Comput Commun Rev 44(2):87–98

18. Dave T (2014) OpenFlow: enabling innovation in campus
networks[J]. Acm Sigcomm Comput Commun Rev 38(2):69–74

19. Mckeown N, Anderson T, Balakrishnan H et al (2008) OpenFlow:
enabling innovation in campus networks[J]. Acm Sigcomm
Comput Commun Rev 38(2):69–74

20. Priyadharshini MMD, Ananth C (2015) A secure hash message
authentication code to avoid certificate revocation list checking in
vehicular Adhoc networks[J]. Int J Appl Eng Res 10(2):1250–1254

21. Floodlight. http://www.projectfloodlight.org/floodlight[M]
22. Mininet. http://mininet.org/[M]
23. Louvel J, Templier T, Boileau T (2013) Restlet in action : develop-

ing RESTful web APIs in java[J]. Meap Began

Hong Zhong is a Professor (from
2009) and the Dean of the School
o f Compute r Sc i ence and
Technology, Anhui University,
China. She received PhD degree
in University of Science and
Technology of China in 2005.
She has published over 100 pa-
pers. Her current research inter-
ests include applied cryptography,
IoT security, vehicular ad hoc net-
work, and software-defined net-
working (SDN).

Jianqiao Sheng is now a research
student in the School of Computer
Science and Technology, Anhui
University. His research interests
inc lude Sof tware -Def ined
Networking.

450 Peer-to-Peer Netw. Appl. (2019) 12:440–451

http://www.projectfloodlight.org/floodlight%5bM
http://mininet.org/%5bM

Yan Xu is a Lecture in the School
o f Compute r Sc i ence and
Technology, Anhui University,
China. She received PhD degree
in University of Science and
Technology of China in 2015.
Her research interests cover net-
work and information security.

Jie Cui received his Ph. D. degree
in Compute r Sc ience and
Technology from University of
Science and Technology, China
in 2012. He is currently an
Associate Professor with the
School of Computer Science and
Technology, Anhui University,
China. He has published over 50
papers. His current research inter-
ests include applied cryptography,
IoT security, vehicular ad hoc net-
work, and software-defined net-
working (SDN).

Peer-to-Peer Netw. Appl. (2019) 12:440–451 451

	SCPLBS: a smart cooperative platform for load balancing and security on SDN distributed controllers
	Abstract
	Introduction
	Related works
	The SDN architecture
	OpenFlow and multiple controllers
	Message authentication code

	Design scheme
	System model
	Message authentication
	Data collection algorithm
	Load balancing and failure recovery

	Experiment result and performance analysis
	Experiment deployment
	The experiment and analysis of load balancing and failure recovery strategy
	The analysis of security policy

	Conclusions and future work
	References

