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Abstract Increased storage capacity, computing and com-
munications power, coupled with advances in wireless net-
working technology, bring a potential to enable new appli-
cations for vehicular ad hoc network (VANETs), in which a
large number of roadside units (RSUs) are deployed to facil-
itate the service for drivers and passengers in vehicles. In this
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paper, we focus on a cache replication strategy design for
distributed RSUs allocated in a sequence. By exploring the
relationship between the RSU allocation and content repli-
cation, we found that not only the local traffic flow but also
the replication status of neighboring RSUs would affect the
content replication efficiency of each RSU. The naive repli-
cation of most popular demand items may not always the
best solution especially when the RSUs are aggregated in
a small area. Accordingly, a distribution-aware replication
cooperation (DRC) strategy is developed with the consider-
ation of content replication efficiency and RSU allocation.
The results have demonstrated the superiority of our pro-
posed solution, as well as the scalability in the various
scenarios with diverse request demands.

Keywords Cache replication · VANET · Distributed
systems

1 Introduction

Increased storage capacity, computing and communications
power, coupled with advances in wireless networking tech-
nology, bring a potential to enable new applications for
drivers and passengers in the vehicles [4]. Vehicular ad
hoc networks (VANETs) are designed to provide informa-
tion exchange via Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communications [1, 2]. Due to the
flexible and elastic resource provisioning capability, the
cloud platform can accommodate various request demands
in VANETs [3, 6, 9]. Furthermore, the distributed RSUs
can act as ”the last mile” to facilitate the content deliv-
ery, connecting the vehicles and remote cloud servers [4,
10]. As RSUs represent gateways to the Internet, the vehi-
cles can transmit their real-time information and Internet
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access requests to RSUs. RSUs send responses to the Inter-
net queries and road information to vehicles. Generally, it is
difficult, in terms of infrastructure cost, to cover roads with
a large number of RSUs so that every vehicle on road can be
connected to at least one nearby RSU all the time [4]. There
have been extensive previous work to explore the RSU allo-
cation, content replication, and interrupt connection issues
in RSU services [6, 7, 9].

Comparing with traditional geo-distributed content deliv-
ery services, e.g., CDNs, the coverage of each RSU is
relatively small, and can hardly provide seamless roam-
ing for vehicles. Therefore, it is necessary to allocate great
amounts of RSUs in the urban area for a higher cache
hit ratio or a larger service range. Meanwhile, as the road
direction is usually confirmed, the vehicles driving along
the road would pass several RSUs in a sequence. Obvi-
ously, the cooperations between multiple RSUs have the
potential opportunity to improve the system performance,
especially for the RSUs allocated in the same road seg-
ment, which are highly correlated with each other during
the service of the traffic flow. Intuitively, the service of
an RSU is influenced by the content replication of the
RSU allocated in previous position. However, it is sophis-
ticated to qualify the influence, as the correlation between
neighboring RSUs is opportunistic in the VANET environ-
ment, considering the vehicles may enter or leave the road
arbitrarily. Furthermore, the RSUs may be allocated non-
uniformly along the road, and the traffic flow may experi-
ence dynamic traffic conditions under time-varying request
demands.

In this paper, we focus on the cooperative strategy design
for the content replication of RSUs in a sequence. A dis-
tributed solution is presented for real world implementa-
tions. Our proposed strategy considers both of the service
efficiency and the impact of RSU allocation from the view-
point of RSU and vehicles, respectively. The remainder of
this paper proceeds as follows. In Section II, we investigate
the system model and formulate the replication problem
by walking through a toy example. Section III explores
the impact of critical parameters in the single-RSU sce-
nario and multiple-RSU scenario, respectively. In Section
IV, we develop a distribution-aware replication strategy
with the cooperation of neighboring RSUs. The numerical
results are presented in Section V to evaluate the perfor-
mance under different strategies. Finally, Section VI con-
cludes this paper with discussions of some potential future
directions.

2 Related work

Urban vehicular networks are recognized as a significant
component of the future intelligent transportation systems,

and they support various mobile services ranging from
content-sharing applications to the information-spreading
services [1, 4]. To solve the communication and computa-
tional capacity problem, some existing methods were pro-
posed, including 3/4G cellular networks [11, 12], vehicle-
to-vehicle communications [2], and vehicular cloud com-
puting [5, 6]. As an extending paradigm of vehicular cloud
computing, fog computing has been presented to process
certain workloads and services locally on edge devices
or edge servers, for mobile applications or real-time low
latency services [8]. In VANETs environment, these edge
devices are usually considered as the road side units (RSUs)
allocated along the roads in urban areas [4, 6]. With the on-
board computing facility and pre-cached contents, the RSUs
can independently provide pre-defined service applications
to passing by vehicles without going through the remote
cloud [18, 19].

The content allocation strategy in distributed RSUs has
been greatly explored in recent years [13–19]. Generally,
these works can be divided into two areas, including the
RSU placement and cache replication. Specifically, RSU
placement refers to the position selection according to the
vehicle distribution. For example, Wu et al. [14] propose
a cost-effective strategy for RSU placement in VANETs
with the formulation of vehicle population distribution and
the vehicle speed. In paper [15], the optimal RSU alloca-
tion strategy is presented to cover all the road parts that
have the highest care density using a limited number of
RSUs. In paper [16], an RSU placement strategy is pro-
posed to improve the location impacts on the efficiency
of vehicular network with the minimal cost provisioning.
In addition, Abdrabou et al. [17] present an analytical
RSU placement framework, which takes into account the
randomness of vehicle data traffic and the statistical vari-
ation of the disrupted communication channel. As to the
cache replication, it refers to replica allocation in the fixed
RSUs with limited capacity according to various request
demands. For example, in paper [18], a novel cache inval-
idation algorithm is proposed to take advantage of the
underlying location management scheme to reduce the
number of broadcast operations and corresponding query
delay. Furthermore, Ding et al. [19] propose an optimal,
a sub-optimal, and a greedy strategy for RSU content
replication to minimize the average request delay. How-
ever, none of these works has taken into account both the
RSU allocation and content popularity during the content
replication.

In this paper, we will unveil an interesting relationship
among the cache capacity, connectivity, and traffic flow
mobility, and we also find out the characteristics about the
content replication efficiency of distributed RSUs, which
are the benefits from the understanding of neighbor RSU
distribution.
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Fig. 1 An overview of content
distribution in VANETs

Cloud Platform RSU Vehicle

3 System model and problem formulation

3.1 System overview

In Fig. 1, we consider a vehicular network including vehicles
in dynamic traffic flow, RSUs distributed in urban areas,
and cloud platform to support in a large scale. As RSUs rep-
resenting gateways to the Internet, vehicles transmit their
real-time information and Internet access requests to RSUs.
The RSUs cache the file items which can be downloaded by
the vehicles nearby. There are a large set of files in total,
which are all stored in the cloud platform as backups. Mean-
while the RSU storage capacity is limited, and cache items
need to be updated according to the replication strategy. We
assume that there is only one item request for each vehicle,
and global demands follow a popularity distribution.

As the RSU distribution is constant, the cache replica-
tion strategy refers to the file item management in the local
storage of RSUs in the system. Each RSU receives the
requests from the traffic flow in its coverage area, and feeds
back the request demand according to its local replication.
From the viewpoint of a specific vehicle, its request demand
can be fulfilled by the RSUs passing by, otherwise it will
resort to the support of cloud platform or vehicle-to-vehicle
communications. Obviously, the performance of RSU ser-
vice has been greatly influenced by the efficiency of cache
replication strategy.

3.2 A case study

A toy example is presented in Fig. 2. Consider a road seg-
ment with three RSUs with the service times as τ1, τ2 and
τ3 respectively, according to their local traffic conditions.
These RSUs are allocated in a sequence along the road.

Thus, we can divide the vehicles as Flow 1, Flow 2 and
Flow 3 namely, according to the positions they enter the
road segment. Traffic Flow 1 enters at the beginning of the
road, and will pass by all the RSUs in a sequence. Traffic
Flow 2 enters between the RSU 1 and RSU 2, and will pass
by the rest RSUs in the following journey. Traffic Flow 3
enters between the RSU 2 and RSU 3, and can only send the
request demands toward RSU 3.

Suppose that there are two request items as item a and
item b with deadline da and db, and item b has a less pop-
ularity and a more urgent deadline constraint. We assume
the current time slot is t0 and the deadline constraint is
t0 + �t1 < db < t0 + �t2 < t0 + �t1 + �t2 < da .
Here we consider that each RSU can only replicate one item
for request demands. As RSU 1 can only serve the traffic
flow A, its replication strategy can be dependent to the pop-
ularity distribution of item 1 and item 2 in traffic flow 1.
Due to the deadline constraint t0 + �t1 < db < da , RSU
2 can serve traffic flow 1 and flow 2 for both item a and
item b. Thus, the content replication of RSU 2 can be deter-
mined by the popularity distribution of item a and item b
in flow 2, as well as the popularity distribution in flow 1
after the service of RSU 1. Due to the deadline constraint
db < t0 + �t2 and da > t0 + �t1 + �t2, RSU 3 can only
serve the traffic flow 1 and flow 2 for item a, besides the

∆t1 ∆t2

. . . . . . .

Traffic

Flow A

Traffic

Flow B
Traffic

Flow C

RSU1 RSU2 RSU3

Fig. 2 An illustration of a toy example
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traffic flow 3. Then the content replication of RSU 3 can be
determined by the popularity distribution of item a and item
b in flow 3, as well as the number of vehicles for item a from
flow 1 after the service of RSU 1 and the number of vehi-
cles for item a from flow 2 after the service of RSU 1 and
RSU 2.

Above all, the content replication strategy for RSUs in
a sequence can be influenced by the following five fac-
tors:(1) the joint traffic flows in different positions (2) the
popularity distribution of request demands in these flows
(3) the deadline constraints of the request demands (4)
the content replication of RSUs in a sequence (5) the dis-
tance of these neighboring RSUs. Specifically, the factors
(4) and (5) present the features of RSU allocation in a
sequence, which are prevalent in the modern traffic envi-
ronment and are not sufficiently explored in previous work.
Together with the factors (1)-(3) under time-varying envi-
ronment, they elevate the challenges to develop an efficient
cache replication solution for RSUs allocated in a large
scale.

3.3 Problem formulation

Without loss of generality, we assume that the set of RSUs
U = {u1, u2, ..., uM} with uniform capacity c is distributed
all over the urban areas. All the file items are of unit size
and stored at the cloud platform as backups. Each RSU
can replicate c items at most. We also assume that the
connection between any vehicle and RSU is uniform in
the coverage area, and the bandwidth capacity of RSUs
is usually not considered as the constraint in VANETs
according to previous researches [17, 19]. Therefore, we
can denote δ as the entering time period for each moving
vehicle to download its requested item passing by neigh-
boring RSUs. Otherwise, this vehicle should resort to the
multi-hop vehicle-to-vehicle connection or cloud platform
through 3G/LTE transmission. According to the distribution
of RSUs, the coverage area can be divided into M differ-
ent regions as A = {a1, a2, ..., aM}. Although there can
be overlap coverage areas between neighboring RSUs, we
consider that each vehicle would always choose the near-
est RSU. Denote the vehicular distribution in each region as
N = {n1(t), n2(t), ..., nM(t)} at time t . To further present
the traffic condition, let {τ1(t), τ2(t), ..., τM(t)} be the dura-
tion time for vehicles to pass the coverage regions of RSUs
at time t .

Specifically, we consider a vehicle vk ∈ N with the time
slice between T k

start and T k
end as the travel period. Denote

Ak ⊂ A as the RSU coverage areas passing by during the
period |T k

end−T k
start |. For example,Ak = {a1, a2, a4}means

that vehicle vk would go through the coverage areas a1, a2
and a4 at time tk1 , t

k
2 and tk4 respectively, and request to RSUs

u1, u2 and u4 for file downloading. Let I (v, u, t) be the

indicator to present the cache status of RSU u to serve the
request from vehicle v passing by the coverage area at time
t . For example, I (vk, u1, t) = 1 and I (vk, u2, t) = 1 indi-
cate the requested file content is replicated in RSUs u1 and
u2. Oppositely, I (vk, u4, t) = 0 represents that there is no
content replication for vehicle vk when it passes by the cov-
erage area of RSU u4. Accordingly, the service time T k

service

from RSUs for vehicle vk can be computed as follows:

T k
service =

∫ T k
end

T k
start

I (vk, u, t) · τ k(t)d(t) (1)

Further, we can define the relative service ratio from
RSUs to vehicle vk as follows:

Rk =
{
1 if T k

service ≥ δ
T k

service

δ
otherwise

(2)

The optimization problem can be further formulated as:

Max.
∑

vk∈N Rk

(3)

s.t. ∀u ∈ U
∑

vk∈N I (vk, u, t) ≤ c

where the capacity constraint limits the service ability of
each RSU for the time-varying traffic flows. It can be
transferred into combinational optimization as the equiv-
alent problem, and solved through mixed integral liner
programming. However, the computation complexity grows
exponentially as the number of RSU increases., and it is
not practical to implement a centralized algorithm in a large
scale under dynamic traffic flows.

4 Parameter analysis

Considering the practical implementation issues for RSUs
content replication in VANETs, we will explore the dis-
tributed strategy through the critical parameter analysis
from the viewpoints of both RSUs and vehicles. From the
viewpoint of RSUs, replication efficiency is to evaluate the
possibility of content replication to be requested in RSUs.
From the viewpoint of vehicles, service efficiency is to
present the estimation of service time from RSUs during the
travel. We will first discuss the single-RSU scenario, then
the multiple-RSU scenarios.

4.1 Single-RSU scenario

Different from the traditional Internet applications, the ser-
vice in VANETs may experience both the request demand
variation and dynamic traffic flow at the same time. To
analyze the replication efficiency, we will present the defi-
nitions to qualify the impact value from replica and location,
respectively.
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Definition 1 Given a single replica in RSU with a con-
stant cache capacity, theRequest Value (RV) represents the
possibility to be requested during a normal request.

It is obvious that RV refers to the cache hit ratio in a tra-
ditional cache policy, which is influenced by the popularity
of the file item under the time-varying user demand. Thus,
given an RSU ui ∈ U with constant cache capacity c, its RV
can be computed through

∑c
j=1 hi,j (t), where hi,j (t) is the

cache hit ratio for replica j in region ai at time t .

Definition 2 Given a single RSU with constant range of
coverage area, the Location Value (LV) represents the
service period per unit time under the current traffic flow.

Different from RV, we define LV to reflect the influ-
ence of dynamic traffic flow. Given an RSU ui ∈ U with
constant coverage range as ω, the traffic condition in ai

at time t can be qualified according to the vehicle den-
sity ni(t)

ω
and traffic speed ω

τi(t)
. Therefore, we can further

have ni(t)
τi (t)

, and i ∈ {1, ...,M} to indicate the vehicular flow

throughput in region ai at time t . For example, na(t)
τa(t)

>
nb(t)
τb(t)

means that region a has a higher vehicular flow through-
put, while in region b the vehicles may experience a traffic
congestion (i.e. τb(t) > τa(t)) or low vehicle density (i.e.
nb(t) < na(t)).

Combining RV and LV, we can formulate the replication
efficiency of RSU ui in the single-RSU scenario as follows:

⎧⎪⎪⎨
⎪⎪⎩

ni(t) ·
c∑

j=1
hi,j (t) if δ ≥ τi

δ · ni(t)
τi (t)

·
c∑

j=1
hi,j (t) otherwise

(4)

From the viewpoint of vehicles, it is straightforward to
qualify the service time, as there is no other RSUs to provide
content delivery service. Therefore, it can be formulated as
0-1 binomial distribution with probability p for its requested
item to be replicated in the cache.

4.2 Multiple-RSU scenario

As an extension from the single-RSU scenario, vehicles may
pass several regions covered by different RSUs to download
the requested content. In the multiple-RSU scenario, the
request from vehicles are affected by the RSUs they passing
by. Therefore, we can have the similar replication efficiency
formulation with that in the single-RSU scenario. The only
revision of Eq. 4 is that δ needs to be replaced by the rest
time of file downloading. Furthermore, we have considered
the multiple-RSU with a uniform distribution as well as a
non-uniform distribution.

4.2.1 Uniform RSU distribution

In the uniform RSU distribution, the number of RSUs pass-
ing by is determined by the length of travel, and the service
period δ can be divided into several discrete time slices
under the coverage of these RSUs. Therefore, we can con-
sider the Independent Reference Model (IRM) as the arrival
model, which describes the encounter of RSUs in the way as
a sequence of independent and identically distributed ran-
dom variables. Accordingly, from the viewpoint of a single
vehicle the service time duration from multiple RSUs can
follow a multinomial distribution:

P(T ,M) = M!
∏
ti∈T

p
mti
ti

mti !
(5)

where ti is the service time slice of a single RSU, T is the
set of discrete service time slices, and M = ∑

ti∈T mti rep-
resents the number of arrival RSUs on the way. The service
time slices ti refers to the time duration τi of the coverage
area passing by, which can follow a poisson distribution.
Therefore, the service time expectation of a single vehi-
cle can be estimated in the multiple-RSUs scenario with a
uniform distribution.

4.2.2 Non-uniform RSU distribution

In the non-uniform RSU distribution, the number of RSUs
in any specific region is not a constant due to the distribution
of RSUs. For example, the RSUs are aggregated in Region
A, and loosely distributed in Region B. The efficiency of
RSU can be influenced by the neighboring RSUs placement,
as the demand traffic can be served by the RSUs in previ-
ous locations. Consider an extreme case that the distance
between neighboring RSUs is infinite. Then each RSU can
be regarded as a single-RSU scenario with the same replica-
tion efficiency according to Eq. 4, as long as the vehicle can
travel long distance enough. Meanwhile, consider another
extreme case that the distance between neighboring RSUs is
minor. In this case, suppose that there are RSUs, and these
RSU can be regarded as a single RSU with n · c capac-
ity. Thus the replication efficiency of these RSUs can be
calculated as follows:

⎧⎪⎪⎨
⎪⎪⎩

ni(t) ·
n·c∑
j=1

hi,j (t) if δ ≥ τi

δ · ni(t)
τi (t)

·
n·c∑
j=1

hi,j (t) otherwise
(6)

These RSUs are aggregated with short distance tend to
be an entity in the replication efficiency analysis, while
the RSUs separated by long distance tend to be indepen-
dent as the replication efficiency analysis in the single-RSU
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scenario. Further, we observe that the RSU distribution with
infinite separation distance can maximize the replication
efficiency, even though the tradeoff is the long tolerant
delay. As the separation distance is reduced, the volume
of replicating the same content in the neighboring RSUs is
reduced, especially for δ ≤ τi .

5 Distributed replication cooperation

In this paper we are motivated to explore a distributed
content replication solution, which can be implemented in
each RSU. As the RSUs are allocated in a sequence, they
can have a broader view to improve content replication
efficiency through neighboring communications.

In principle, we consider the content replication effi-
ciency in a multiple-RSU scenario with the combination of
the single-RSU replication efficiency and the multiple-RSU
influence. For each RSU ui , the single-RSU replication effi-
ciency can be calculated according to Eq. 4, and we denote

Qi,j = ∑
u<i

[
I (j, u, t − T (u, i)) · ( 1

c
)T (u,i)

]
to qualify

the influence from content replication in previous RSUs
u < i for replica j . Specifically, T (u, i) is the time period
driving from RSU u to RSU i, and I (j, u, t − T (u, i)) is
the indicator for content replication of j in RSU u at time
t−T (u, i). In addition, ( 1

c
)T (u,i) denotes the weight of influ-

ence with storage capacity c and driving time T (u, i). Thus,
we can calculate the weight of replica j in RSU i at time t ,
as follows:

ωi,j (t) =
{

hi,j (t) · ni(t)
τi (t)

− η · Qi,j δ ≥ τi

δ · hi,j (t) · ni(t)
τi (t)

− η · Qi,j otherwise
(7)

Traffic condition Request demand

Local Replication

efficiency
Cloud Platform

Fig. 3 Local replication efficiency

Cloud Platform

Replication

Update

Replication

Notification

Fig. 4 Cooperative communication structure

in which, coefficiency η ∈ [0, 1] is set up to linearly
combine the single-RSU replication efficiency and the
multiple-RSU influence.

The distribution-aware replication cooperation (DRC)
strategy can be implemented among distributed RSUs as the
following three steps.

5.1 Local replication efficiency

In the first step, the RSUs need to record the traffic condi-
tion and request demand distribution in its local coverage
area, and calculate the local replication efficiency corre-
spondingly. The details of the implementation is illustrated
in Fig. 3. The request demands distribution in the local cov-
erage area of an RSU is dependent on the newly entering
traffic flow, as well as the traffic flow served by the previous
RSUs. Specifically, the request demand of the newly enter-
ing traffic flow can be reflected by the average popularity
distribution, which can be achieved by the cloud platform
through the popularity records from all RSUs. In addition,
the traffic conditions includes the number of vehicles and
driving speed, which determines the service time in the

Local Replication

Efficiency

Replication

Notification

Sort the weight of

Replicas

Deadline

Constraint

Update the replication

content from Cloud

Update replication

notifications

Fig. 5 Replication content update
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coverage area. With the average popularity distribution and
local traffic condition, we can obtain the local replication
efficiency in this area.

5.2 Cooperative communication structure

In the second step, we will present the cooperative com-
munication structure in Fig. 4. To explore the traffic flow
served by previous RSUs, we set up the replication notifica-
tions sent among RSUs along the direction of the road. The
replication notifications include the information of the repli-
cation list and service time slots, starting from the beginning
of the road toward the end of the road. When an RSU in the
path receives a replication notification, it will add its local
information into the notification, and transmits it to the next
RSU along the road. According to the replication notifica-
tions, the replication statistics and the driving time between
neighbor RSUs can be achieved by the following RSUs
in the sequence. Furthermore, the distributed RSUs will

send the popularity record to the cloud platform and update
the replication content from cloud in this communication
structure.

5.3 Replication content update

In the last step, we will present the replication content
update of each distributed RSU in Fig. 5. For each RSU, the
content replication update refers to the following three fac-
tors, deadline constraint for each replica, local replication
efficiency, and received replication notifications. According
to the deadline constraint, we will first remove the out-
dated replication content. Then we will combine the local
replication efficiency and neighboring RSU influence from
replication notifications to calculate the weight for each
request item according to Eq. 7, and sort the replicas. At
last, we will update the content replication from cloud in an
online manner, and record the updated replication list in the
replication notifications.
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Note that as the impactor factor ( 1
c
)T (u,i) is reduced

exponentially with the growth of distance between RSU u

and i, there is a less impact factor with a larger storage
capacity. In another word, if c1 > c2, the replication content
with c1 would have a less impact range than that with c2.
In addition, as the storage capacity c increases, the number
of valid RSU in impact range would be reduced. There-
fore, the complexity of this proposed strategy is convergent
and appropriate for the online implementation under the
dynamic environment.

6 Numerical results

In this section, we will first explore the content replica-
tion of RSUs under heterogenous request demands, and then
evaluate the system performance with dynamic traffic flow.
We will present the experimental results to compare with
different strategies in the two scenarios, respectively.

6.1 Heterogenous request demand

We consider the time-varying environment including the
dynamic request demand and traffic condition in different
coverage regions. For each vehicle, we assume that there is
only one request demand of an item at time t . Generally,
the request demand popularity follows a Zipf distribution

P(j) = j−θ∑M
k=1 k−θ

, where M = 1000 items in the sys-

tem and P(j) represents the popularity of the j th item.
Furthermore, we assume that traffic conditions follow Pois-
son distribution λk

k! e
−λ, including the traffic flow as λf (t),

time durations ratio in coverage areas as λt (t), and number
of passing by RSUs as λn(t) at each time slot t , respec-
tively. Specifically, we consider the ratio λt (t) ∈ (0, 1] as a
fraction τi (t)

δ
for each region ai .

In this experiment, we have compared our proposed repli-
cation strategy DRC with FIFO (First In First Out) and LRU
(Least Recently Utilized), which are prevalent in the modern
cache replication infrastructure [18, 19].

6.1.1 Cache capacity

To explore the impact of RSU cache storage capacity, the
experiments are implemented with an assumption of that
there is no deadline constraint for each vehicle. We will
analyze the system performance variation under different
replication strategies with cache capacity c = 5, c = 10,
c = 20, and c = 50, respectively.

Figure 6 presents the Cumulative Distribution Functions
(CDF) of RSU service ratio under different replication
strategies with cache capacity c variation. Without the dead-
line constraint, the CDF of service time can converge to

1 with the increase of the number of RSUs passing by.
Faster CDF convergence speed represents higher RSU repli-
cation efficiency. Generally, the LRU and our proposed
strategy DRC have better performance comparing with the
FIFO strategy, especially with a small number of RSUs.
It indicates that the content replication in LRU and DRC
would be more efficient with a limited replication capacity,
whereas the FIFO strategy can only achieve a proportional
CDF improvement with the growth of RSU number. As the
increase of cache capacity, the distinction between these
three strategies becomes minor. On the other hand, the per-
formance gap between LRU and DRC would vary with the
change of cache capacity. When cache capacity c = 5, the
performance gain of DRC is about 10% over that of LRU.
It can further reach about 15% improvement when c = 10
and c = 20. However it returns to 10% as the cache capacity
increases to 50. Thus we can infer that the DRC strategy has
a convex replication efficiency improvement with the RSU
capacity. And the experiment results demonstrate the con-
jecture that the influence from neighboring RSUs would be
reduced as the storage capacity grows continuously.

6.1.2 Correlation coefficiency η

To further explore the impact of correlation coefficiency η,
the experiment is implemented with a deadline constraint,
which is considered as the limited number of RSUs pass-
ing by. We assume the number of RSUs that a vehicle
would pass by follows a Poisson distribution with λn(t).
Generally, given limited travel time, a higher λn(t) indicates
a denser RSU distribution with more neighboring RSUs in
a limited range. Then we will evaluate the system perfor-
mance with different coefficiency η under the impact of
RSU distributiondensity.
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Fig. 7 The convergence of CDF with different correlation coeffi-
ciency η



Peer-to-Peer Netw. Appl. (2018) 11:1075–1084 1083

Figure 7 presents the CDF convergence of RSU service
time under different replication strategies with correlation
coefficiency η variation. Different from the previous sce-
nario, in which the service from RSUs can converge to
100% eventually. The time constraint T k

end limits the con-
vergence to certain degrees according to the efficiency of
the replication strategy. As we can see, when the number
of passing by RSUs expectation λn is low, the RSUs are
loosely distributed, and DRC with η = 0.1 has a higher ser-
vice ratio convergence. This is consistent with the extreme
case that in the single-RSU scenario, the optimal replica-
tion can be simply achieved with a maximal cache hit ratio
according to service efficiency definition in Eq. 4. As the
number of RSUs expectation increases, the DRC with a
moderate coefficiency η = 0.2 would have a higher con-
vergence. It can be explained that the system performance
needs to balance both the replication efficiency and the ser-
vice efficiency at the same time. As the distribution of RSUs
become more aggregated, DRC with η = 0.5 excels as the
weight of neighboring RSU influence is increased. As the
number continues to grow, these strategies can finally reach
a similar convergence of service ratio. It can be explained
that without deadline constraint all the replication strategies
can converge to 100% service ratio if given enoughRSUs.

6.2 Dynamic traffic flow

We will further present the system performance with
dynamic traffic flow. As vehicles do not change their veloc-
ity or direction frequently, we can use a fluid flow model
[20] to capture the mobility of traffic flow in VANET. We
have set up 20 RSUs for the service of the traffic flow along
the road, and the vehicles can enter or leave the road at an
arbitrary location. The popularity of request demand follows
a Zipf distribution, and the deadline constraint is between
10 to 90 minutes.

We will evaluate our proposed strategy with other three
popular solutions, i.e. popularity-first [19], latency-first, and
LMC [18]. The reasons of selecting these schemes are listed
as follows: (1) Popularity-first always choose the repli-
cation content with the most popularity. (2) Latency-first
always choose the replication content with the most urgent

deadline. (3) LMC is the local management based cache
strategy, which is dependent on the vehicle velocity and
density in the local area.

6.2.1 Cost and latency

The system performance is evaluated through the calcu-
lation of total cost saving and average latency of served
vehicles. Without content replication in RSU, the request
demands of vehicles will be served by cloud platform
directly. We take this cost as the benchmark and calcu-
late the revelent cost saving for these four RSU replication
strategies, respectively. In addition, we calculate the aver-
age latency for the served vehicles. The system performance
is evaluated in two scenarios. In one scenario, the average
driving time is 10 minutes, which means that the average
time period between entering and leaving the road. In the
other scenario, the average driving time is 40 minutes. From
Table 1, we can see that the local-aware strategies, i.e., DRC
and LMC, generally have a higher cost saving and a longer
average latency, comparing with the two greedy strategies,
i.e., popularity-first, and latency-first. Furthermore, when
the average driving time is 40 minutes, the cost saving and
average latency would both increase. This can be explained
that DRC strategy can distribute the replicas uniformly in a
wider range, and results in a higher cost saving.

6.2.2 Service ratio

We further present the RSU service ratio with the variation
of driving time in Fig. 8. The service ratio represents the
request demand served by the RSUs. Generally, we can see
that the service ratio grows when the vehicles have a longer
driving time along the road. Specularly, Popularity-first has
the slowest growth, as it always selects the hottest replica-
tion content and loses the opportunity to serve the request
demands with urgent deadline. Oppositely, Latency-first
strategy has a continuous growth with a slow start. Mean-
while, the two local-aware solutions can have a fast growthat
the beginning, and then converge at 0.84 and 0.75, respec-
tively. We can see that DRC can have a better performance
when the vehicles have driven for a longer time.

Table 1 Cost save and average
latency comparison Cache replication strategy 10 minutes 40 minutes

Cost Save Latency Cost Save Latency

Popularity-first 15.2% 5.2 minutes 38.7% 10.8 minutes

Latency-first 10.1% 4.7 minutes 68.8% 12.5 minutes

DRC 51.1% 7.1 minutes 82.4% 32.3 minutes

LMC 59.7% 6.8 minutes 71.5% 30.7 minutes
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7 Conclusion

In this paper, we focus on the cache replication strategy
design with limited RSU storage capacities under dynamic
traffic conditions and RSU distributions. The impact of
replication efficiency and service efficiency is analyzed
with the single-RSU scenario and multiple-RSU scenario,
respectively. A distributed replication cooperation strat-
egy for practical implementation is further presented to
accommodate the variation of traffic conditions and skew
popularity of request demands. Finally, we have performed
a set of numerical experiments and the results have demon-
strated the superiority and usability of our proposed solution
in different scenarios.
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