
Peer-to-Peer Netw. Appl. (2018) 11:409–430
DOI 10.1007/s12083-016-0540-6

A dynamic web service registry framework
for mobile environments

Rohit Verma1 ·Abhishek Srivastava1

Received: 28 September 2016 / Accepted: 21 December 2016 / Published online: 5 January 2017
© Springer Science+Business Media New York 2017

Abstract Advancements in technology have transformed
mobile devices from being mere communication widgets
to versatile computing devices. Proliferation of these hand
held devices has made them a common mean to access
and process digital information. Most web based applica-
tions are today available in a form that can conveniently
be accessed over mobile devices. However, web-services
(applications meant for consumption by other applications
rather than humans) are not as commonly provided/con-
sumed over mobile devices. Facilitating this and in effect
realizing a service-oriented system over mobile devices has
the potential to further enhance the potential of mobile
devices. One of the major challenges in this integration
is the lack of an efficient service registry system that
caters to issues associated with the dynamic and volatile
mobile environments. Existing service registry technologies
designed for traditional systems fall short of accommodat-
ing such issues. In this paper, we propose a novel approach
to manage service registry systems provided ‘solely’ over
mobile devices, and thus realising an SOA without the need
for high-end computing systems. The approach manages a
dynamic service registry system in the form of light weight
and distributed registries. We assess the feasibility of our
approach by engineering and deploying a working proto-
type of the proposed registry system over actual mobile
devices. A comparative study of the proposed approach and

� Abhishek Srivastava
asrivastava@iiti.ac.in

Rohit Verma
rohitv@iiti.ac.in

1 Discipline of Computer Science and Engineering,
Indian Institute of Technology Indore, Indore, India

the traditional UDDI (Universal Description, Discovery, and
Integration) registry is also included. The evaluation of our
framework has shown propitious results in terms of battery
cost, scalability, hindrance with native applications.

Keywords Service-oriented systems · Mobile computing ·
Peer to peer mobile web services · Web service registry ·
Web service discovery

1 Introduction

Continued evolution in technology has made computing
devices an integral part of one’s life. The most common
manifestation of this is the ‘Mobile Phone’. Modern tech-
nology has transformed the mobile phone from a mere com-
munication device to a versatile computing device. These
hand-held devices have enabled us not only to access infor-
mation, but also to provide information to others on the
move. Modern mobile phones, equipped with powerful sen-
sors, have endowed capabilities to provide and create near
real-time information. This real-time information is use-
ful for oneself and for others. An established approach for
sharing and provision of information and creating useful
applications in a distributed environment is Service Ori-
ented Architecture (SOA) [1]. Realizing SOA over mobile
devices has the potential to convert mobile phones devices
by common people from mere information subscribers to
information providers and beyond.

The major advantage of this is that it can be used in sce-
narios where there is little or no preexisting infrastructure.
Examples of such scenarios include War-front, Post-disaster
relief management. In such scenarios, mobile based SOA
has the potential to enable ground teams to provide runtime
information to commanding units, help teams at disaster

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-016-0540-6&domain=pdf
mailto:asrivastava@iiti.ac.in
mailto:rohitv@iiti.ac.in


410 Peer-to-Peer Netw. Appl. (2018) 11:409–430

sites to exchange data, analyse damage and examine various
statistics using mobile devices. In such systems of SOA over
mobile devices all three elements of the SOA triangle: ser-
vice providers, service consumers, and service registries are
realised over mobile devices. Moreover, service provision-
ing would be done in peer-to-peer manner over the mobile
devices.

Web services are the proven way towards implementa-
tion of a “Service Oriented Architecture”. Advancement
in mobile device technology has motivated researchers to
explore the possibilities of effectively hosting web services
over mobile devices, and thereby trying to realize service
oriented systems in mobile environments. There has been
substantial work towards enabling mobile devices to host
web services [2–4]. An important aspect of service oriented
systems, “service discovery”, however, remains a challenge
in mobile environments. There is literature available on ser-
vice discovery for distributed environments [5–7], but one
catering specifically to mobile environments is still lack-
ing. Several challenges specific to hosting web services over
mobile devices need to be taken into account in such service
discovery mechanisms. These include, but are not limited
to battery and network constraints, limited computational
power of mobile devices. Moreover, such dynamic mobile
services are prone to uncertainty (owing to network out-
age, battery issues, physical damage) and frequent changes
in functionality (primarily owing to the change of context),
and hence make frequent service updates a necessity to
effectively function as web-services. The role of the service
registry therefore, becomes one of prominence to properly
manage such dynamism. Traditional service registry solu-
tions for web-services such as UDDI [8], ebXML [9], can
not be directly utilised in such environments that require
frequent updates. What contributes to this is the exhaustive
data model of such registry offerings that is hard to ana-
lyze and parse for mobile devices at run-time. To the best of
our knowledge, the current work is the first attempt to com-
prehensively investigate these issues and design a dynamic
service registry that facilitates service discoveries in mobile
environments.

As mentioned earlier, the ultimate aim is to realize a
service oriented architecture over mobile devices without
involving high end servers. Hence, the proposed architec-
ture provides all registry related information and operations
using mobile devices itself, without requiring high-end
computers or high management costs. Further, in order to
support scalability, fault tolerance, and fault localization, we
propose a distributed and category based service registry.

To demonstrate the feasibility of the approach, we have
engineered a prototype deployment. This includes hetero-
geneous and loosely coupled mobile devices deployed in a
collaborative manner to manage the service registry along
with native hosted services. We also compare the proposed

approach with the traditional UDDI system for managing
service registry from the perspective of mobile devices.
The evaluation shows propitious results in favour of our
approach wherein the latter is shown to have acceptable bat-
tery requirements, low data communication costs, promis-
ing scalability, and little or no hindrance to the working of
native applications of mobile devices.

This work is a significant extension of our previous
work [10]. In our previous work [10], we have introduced
an XMPP based model to maintain a service registry for
mobile environments. The main focus of the work was to
introduce the registry architecture and the communication
mechanism followed during service discovery from the reg-
istry. In the presented work, we provide a holistic service
registry framework that makes use of XMPP based ser-
vice registry framework at the core. We defined the roles
for mobile devices involved in the service registry frame-
work to provide a scalable mobile registry solution. We
have further extended the service registry operations to cater
the specific needs of the mobile environment. We further
provide detailed descriptions of the various registry oper-
ations that facilitate the realisation of a dynamic mobile
service registry. We further evaluated the proposed approach
by realizing it through a working prototype and deployed
it over mobile devices of volunteers. We further present a
detailed literature survey that covers various categories of
service registries.

The rest of the paper is organized as follows: Section 2
presents a motivation and requirements for the novel
approach. Section 3 provides details of the proposed
approach and design concepts. Various registry opera-
tions are discussed in Section 4. Prototype implementation
details and inline comparison with UDDI are presented in
Section 5. Section 6 includes notes on the experimental
evaluation of the approach. This is followed by Section 7
that presents a survey of related work. Finally, Section 8
concludes the paper with a brief discussion on future possi-
bilities.

2 Motivation

Kotler et al. [11] suggested services as “activities or ben-
efits offered for sale that are essentially intangible and do
not result in the ownership of anything”. A mobile service
defined in this work is a service that is offered from mobile
phones of providers; this may also include information pro-
vided by the mobile sensors, third party software, or human
users. This allows different machines to exchange informa-
tion with each other over a network, without necessarily
requiring a user interface. In general, the service may be a
component or sub-part of the web application that is usually
used by human users. For example, a chatting web application



Peer-to-Peer Netw. Appl. (2018) 11:409–430 411

provides GUI to human users to communicate with another
human. While a presence service embedded in the web
application detects the presence of other machines, this pres-
ence service does not require any human intervention.

2.1 Motivating scenario

Alice is a high risk cardiovascular patient. Recently, she got
an ECG sensor implanted in her body [12] that monitors her
cardiovascular health and provides statistics and informa-
tion as a mobile service via her mobile phone. This service
can be consumed by her cardiologist and she can be pro-
vided with proper prescriptions as per her current health.
One day she had a sudden cardiac arrest on her way to
another city. Alarming variations in her ECG signals were
observed by the service on her mobile device and the ser-
vice discovered the nearest ambulance through the latter’s
exposed mobile service. Further, her mobile service auto-
matically provided access to her latest ECG signals to the
ambulance support medical staff and enabled them to pre-
pare well in advance for the patient. The ambulance was able
to discover her current location through another service on
her mobile device that provided GPS coordinates. Further,
when the ambulance was on its way, the ambulance’s mobile
service provided the doctors at the nearest hospital with the
latest information on the situation. Simultaneously, the hos-
pital was able to make use of Alice’s ECG mobile service to
gather her ECG history and prior to her arrival the doctors
at the hospital had a chance to study her medical profile and
case in detail. On its way to the hospital, the ambulance was
able to make use of the services exposed by other travelers
on their respective mobile devices to avoid the busy route
and opt for the path with less traffic. Meanwhile, the insur-
ance company was contacted by Alice’s mobile service and
her hospital information was provided, so that the financial
aspect could be taken care of even before her arrival. Alice’s
cardiologist was also able to provide details of his/her pre-
scriptions via his/her mobile service to the doctors in the
hospital so that the latter could learn about her medications
and allergies if any.

With rapid advancements in mobile technologies and
wireless networking, mobile devices have become perhaps
the most suitable and economical solutions for the provision
of dynamic, transient, contextual, personalized services.
These mobile provisioned services can make the service
access handy and convenient for service consumers. Fur-
ther, the provisioning of mobile services is an economical
solution that requires little or no pre-existing infrastructure.
In the discussed scenario, Alice, her cardiologist, the ambu-
lance, hospital staff can make use of each other’s mobile
services in critical situations and can provide assistance
to Alice. This explains the importance of mobile services;
subsequently, however, the above scenario also raises a

question: ”How is the mobile service consumer able to dis-
cover the appropriate service among such large number
of services and that too in an uncertain environment as a
mobile environment?”.

2.2 Need for a novel mobile service registry

Web services hosted on mobile devices are mainly useful for
sharing contextual, personal, proximal information. Mobile
devices in such environments are mostly distributed arbitrar-
ily and make service discovery and management of service
registry a cumbersome process. In this section, we discuss
the need for a novel service registry architecture for mobile
environments.

In order to provide an effective service registry for
mobile environments, two approaches are possible. The first
is a classical centralized service registry approach where all
information on the available mobile services is maintained
at one place and this is usually over a powerful comput-
ing device; The second approach is a decentralized service
registry approach. Here, the registries are maintained by a
system of distributed nodes in such a way that each node
caters to a fraction of the services and there is a large
degree of redundancy. Between these two approaches, the
decentralised service registry approach appears to be more
appropriate for mobile environments. There are several rea-
sons for this such as the issue of a single-point-of-failure
in the case of a centralised system, the lack of a defi-
nite guarantee of continuous reliable connections between
mobile devices and the central server, the difficulties of
rapid and regular updates in large centralised registries thus
giving rise to obsolete information and so on. There are,
of course, drawbacks in the decentralised system as well.
It is these drawbacks that we will discuss and attempt to
overcome in the rest of this paper. Cloud offloading is
another approach that is often used for facilitating services
over mobile devices. In cloud offloading, the service logic,
usually, resides on the cloud and the mobile devices may
work as the proxy for these services. The associated con-
cerns of cloud offloading [13] (significant network delay
and latency, rigid SLA requirements etc.) however do not
make it a potential candidate for dynamic mobile service
registry. Sanaei et al. [13] discuss these challenges in detail.

A decentralised service registry may be realised using
either traditional service registry approaches that are com-
monly used in legacy wired systems (such as UDDI [8],
ebXML [9]) or a new approach especially catering to the
vagaries of mobile environments may be adopted.

Though possible, adopting traditional registry approaches
such as UDDI [8] from W3C is ill suited to dynamic
mobile environments. The traditional registry architecture
comprises UDDI data entities (businessEntity, businessSer-
vice, bindingTemplate, tModel, publish-erAssertion,



412 Peer-to-Peer Netw. Appl. (2018) 11:409–430

subscription), various UDDI services and API sets, UDDI
Nodes for supporting node API set, UDDI Registries. Such
a base architecture is quite ‘heavyweight’ and makes it dif-
ficult to host UDDI over mobile and resource constrained
devices. Further, services offered over mobile devices tend
to behave in an anarchic manner; as the changes in the func-
tional, non-functional, other aspect of the services may be
quite frequent owing to regular change in context and net-
working environment of the device. This requires frequent
updates to the service registry. UDDI, on the other hand, is
designed around concepts of SOAP/WSDL, heavyweight
technologies that make frequent updates a cumbersome
process. As a consequence, the information on the UDDI
registry quickly becomes obsolete. A new approach, there-
fore, is imperative for maintaining an effective registry
system for mobile environments.

2.3 Mobile service registry requirements

Before we get into detailed discussions on the proposed
approach, here is a quick point-wise summary of the
requirements for effective service registries for mobile envi-
ronments. This is along the lines of Dustdar et al. [14] who
did something similar for articulating general requirements
for web service registries.

R1: Management of transient web services: The very
nature of mobile devices makes hosted web services
repeatedly and randomly enter and leave the network.
A service registry should be such that it supports such
dynamic and frequent arrival and departure of service
providers.

R2: Lightweight: A service registry designed for mobile
environments should be lightweight. A lightweight ser-
vice registry would complement the power (i.e. battery)
and computational constraints of mobile devices. Fur-
thermore, a lightweight service registry is agile and is
easier to integrate with diversified mobile environments.

R3: Minimum communication overhead: Given the bat-
tery and network constraints in mobile devices, emphasis
should be towards a registry system with minimum com-
munication overhead.

R4: Distributed service registry: As the number of mobile
devices (and therefore potential web services over these)
are increasing exponentially, a centralized service reg-
istry system has limited utility and gets outdated very
quickly. Hence, a distributed service registry system is
required to support scalability.

R5: Enabling run time search: An important enabler of
mobile based service oriented systems is support for run
time search. This is necessary owing to the frequent
arrival of new and often more competent services and/or
failure of existing services.

Conforming to the above points could potentially ensure
a service registry suitable for mobile environments.

3 Proposed approach

In mobile based SOA environments, each mobile device can
perform the functionalities of both a service provider and a
service consumer. As a service consumer, a mobile device
discovers web-services and invokes them after negotiating
with the providers. As a service provider, a mobile device
hosts services and publishes hosted services with service
registries. However, as stated earlier, an effective mobile
registry to publish and discover such mobile services in
dynamic environments is still lacking. The mobile services
are provided by mobile devices and may be consumed by
another mobile device in a peer-to-peer manner.

3.1 Registry details

Our approach suggests a service registry system that com-
prises a light-weight registry server at each participating
mobile device. The registry at each mobile device contains
minimal information that is just sufficient to uniquely iden-
tify the registered entity. A registry server (at each mobile
device) manages either of two types of registries:

1. Service Registry: Registered mobile services are man-
aged in the service registry. The service registry con-
tains an entry for each service as: service name, service
access point, service ID, service description, service
groups, availability, service location, service provider,
other service information.

2. Group Registry: Registered services are categorized
into service groups. These service groups are managed
in a group registry. The group registry contains the fol-
lowing information for a service group: group name,
group domain, group description, registrant, groupid,
group access point, other group information.

The organization of registries, as proposed, is shown in
Fig. 1. The service information that is just enough to iden-
tify a registered service and that is less likely to change is
kept in the registries and service information that is more
likely to change but does not affect the discovery process
of the service is kept in the vicinity of the provider. The
service binding description, and contextual descriptions are
provider specific and are likely to change in the mobile envi-
ronment. Therefore, these descriptions of the service are
kept in close vicinity of the mobile service provider. Close
vicinity here implies that the description is hosted on the
same mobile device as the service or a third party repository,
where these descriptions can be updated rapidly.



Peer-to-Peer Netw. Appl. (2018) 11:409–430 413

Fig. 1 Mobile registry entries

We define several registry related operations in Section 4
that are performed using XML streams. These XML streams
are inspired by XMPP [15] (eXtensible Messaging and
Presence Protocol), a well known and established commu-
nication protocol. XMPP is already in wide use in mobile
environments in several instant messaging applications.

The proposed approach provides service registry opera-
tions that facilitate effective discovery of a service. Details
like the non-functional descriptions and quality of service
values of the services have deliberately been kept out of the
proposed system to make it as ’lightweight’ as possible and
hence suitable for mobile environments.

3.2 Design concept

There are four primitive steps in the proposed mobile ser-
vice registry approach that are presented in Fig. 2:

1) Mobile service registry access point is retrieved: As
shown in Fig. 2.a, a registry requester (represented by a
mobile icon with M) accesses the public registry to retrieve
the access point details of mobile service registry. 2)Mobile
service registry is accessed via Navigator Nodes: As shown
in Fig. 2b, the navigator nodes (represented by mobile icons
with N) are contacted for the “Group Registry”. This Group
Registry contains the list of service groups. Service group
of the required service provider is discovered in the group

registry. 3) Service Group is contacted via Registry Nodes:
As shown in Fig. 2c, the registry nodes (represented by
mobile icon with R) are accessed via groupid for retriev-
ing the service provider’s information. “Service Registry”
is traversed for the required service provider. 4) The service
provider is contacted: As shown in the Fig. 2d, finally, the
required service provider is discovered and it is contacted
for service negotiation and service binding.

These steps are discussed in detail in the next subsec-
tion. We first start with the roles performed by the mobile
devices. A mobile device potentially performs the following
roles (as shown in Fig. 2a): Navigator Node and Registry
Node.

3.2.1 Navigator nodes

Navigator nodes are the entry points for the mobile registry
architecture as shown in Fig. 2. These navigator nodes are
accessible by service consumers via public access points.
We have devised the mobile registry architecture as a ser-
vice itself. The mobile registry and its public access points
can be registered with any global public registries just to
make them globally discoverable (as shown in Fig. 2a). The
motive to use global public registry is to provide the access
point details of the mobile registry architecture; mobile
devices would need to use the global public registry just
once to retrieve the access point details of the architecture.
(These global public registries could be any existing ser-
vice registries as discussed in Section 7. These registries
are assumed to be well in place, hence is not discussed in
detail. The global public registry is not suitable for mobile
services, the reasons are already discussed in Section 2.2.)
There can be multiple navigator nodes connected to the pub-
lic access points via a common access channel, as shown
in Fig. 2b. The common access channel can be viewed as
a communication bus that enables various mobile devices
to communicate. The common access channel gives mobile
devices the liberty to join and leave the network at any
time without disturbing other navigator nodes. Whenever
a new mobile device joins as a navigator node, the group
registry is updated/downloaded via the access channel and
the shared domain ontology becomes accessible. The idea
of a common access channel can be realized using exist-
ing networking technologies as suggested in RFC1112 and
RFC5771.

Navigator nodes are the mobile devices that manage the
group registry (refer Fig. 1). As discussed in the earlier
section, the group registry manages service groups. These
service groups are uniquely identified by group identifiers
or groupid. The group registry comprises the list of ser-
vice groups present in the network along with the respective
group identifiers and other group details. The navigator
nodes are further responsible for categorizing the registered



414 Peer-to-Peer Netw. Appl. (2018) 11:409–430

Fig. 2 Mobile Service Registry Approach - (a) Retrieval of Mobile Registry Access Point (b) A requester fetches for service group at the
Navigator Node (c) A requester fetches service required at the Registry Node (d) Requester contacts directly service provider returned from the
Registry Node

services into the various service groups and to navigate the
service providers to the assigned service groups.

Navigator nodes rely on existing ontological approaches
to categorize services on the basis of their domains of
offering (or offered service type). All navigator nodes have
access to the shared domain ontologies [16] for categoriza-
tion of the offered services. Whenever a service provider
needs to register its offered service, the group registry is
referred first for matching the service with its service group.
In case the service offered by the provider does not belong
to any of the existing service groups, a new service group is
created by referring the domain ontology and updating the
group registry with a new group entry.

We have used an existing classification method for clas-
sifying services into groups [17]. The motivation behind
adopting this method is that the method does not require
a training set for classification and dynamic changes to
the classification parameters is possible without having to

retrain the classifier. This is of particular importance in
mobile environments as it provides run time updates to the
domain ontology without disturbing the classifiers.

The service group classification method follows generic
steps. First, the mapping criteria are parsed from user sup-
plied service description which is in the textual format.
Then, the domain ontology is mapped to the mapping crite-
ria. The process calculates a matching categorization score
of the service description with the ontological context as
defined by Allahyari et al. [17].

For example, the mobile service providers hosting ser-
vices for: a.) Doctor’s rating and b.) Hospital building floor
map, share the same service group Hospital, hence they are
identified by the same groupid. However a new mobile ser-
vice provider offering contact information of pizza outlets
would fall in a separate service group. We do not dwell
upon the classification approach in this paper. The interested
reader is referred to [17] for more details on this.



Peer-to-Peer Netw. Appl. (2018) 11:409–430 415

3.2.2 Registry nodes

Registry nodes are the mobile devices that manage the
service registries (refer Fig. 1). As discussed in the pre-
vious section, a service registry manages the registered
services that are uniquely identified by service identifiers.
This enables a service provider to provide multiple ser-
vices over a single mobile device. The service registry
comprises the list of registered services in a service group,
their availability information along with the service details
that are just sufficient to manage and identify the registered
services. Of these details, the real time availability infor-
mation of the registered services is what mainly contributes
to overcoming the uncertainty of mobile environments.
This availability information managed at the registry node
gives the much needed reliability to the services hosted on
mobile devices. Registry nodes are responsible for manag-
ing the up-to-date service registry, responding to service
registry related queries, and performing registry related
operations.

The service group can be seen as an overlay group of reg-
istered mobile service providers and registry nodes that are
identified by the groupid. We have devised this group iden-
tifier as a multi-cast address for the service group members.
The requests sent to the service group are received by all the
member mobile service providers, however, only the group
member acting as the registry node responds to the requests
(as shown in Fig. 2c).

To improve query response time, a replica of the service
registry that is retrieved from the registry node is managed at
all the mobile devices hosting services in the service group.
Selective updates are performed to keep the local replica
updated. During service discovery, the local replica is first
referred to, in case discovery fails at the local replica then
the registry node is contacted. Maintaining replicas of this
kind do add a little overhead to the architecture but in the
larger context the local replicas reduce traffic meant for
discovery over the network substantially. Further, the local
replicas ease the transition of service providers into full
fledged registry nodes in the eventuality of a registry node
failure (details on this in the subsequent subsection).

3.2.3 Failure management

Mobile devices acting as navigator nodes or registry nodes
can also depict uncertain behavior and are prone to failure.
Hence, in the case of existing registry node failure, a new
registry node can be elected from the member mobile ser-
vice providers, without compromising on the consistency
of other service groups or navigators. (The same approach
is also applied to navigator nodes.) Heartbeat operations
are used to detect registry node failure. Any mobile ser-
vice provider can become a registry node by participating

in an election and declaring its candidature. Our method of
registry node election is inspired by the leader election prob-
lem of distributed computing. The algorithm is discussed in
more detail in Section 4.2.

3.2.4 Use-case scenario

Potential service consumers use the proposed mobile reg-
istry architecture for discovering their desired services. This
service discovery is a three step process. In the first step as
shown in Fig. 2b, the service consumer sends the discovery
request to the mobile registry architecture via a well known
access point or URI (Uniform Resource Identifier) for the
desired service. This request for service discovery is first
handled by the navigator node. The Navigator node searches
its group registry and provides the matching service group
details along with the groupid for the requested service. This
groupid acts as a multi-casting address for all the service
providers that belong to the group. In the second step as
shown in Fig. 2c, the service consumer contacts the service
group using the groupid of the required service. The Reg-
istry node of the service group responds with the available
matching services and their corresponding service details. In
the third step as shown in Fig. 2d, service consumer contacts
the mobile service provider offering the required service to
retrieve the technical description and performs the service
negotiation for service access.

Mobile service providers use the proposed mobile reg-
istry architecture for registering their offered services. The
service registration process primarily comprises two steps.
First, the mobile service provider sends a service registra-
tion request to the mobile registry architecture via the well
known access points. The Navigator nodes first handle the
registration request and respond with the matching service
group along with the groupid and other group details reg-
istered in the group registry. Second, the mobile service
provider contacts the service group and registers its service
with the service registry of the registry node. Alternatively,
if there is no matching service group in the group registry,
the navigator node creates a new service group. In this case,
the registrant mobile service provider becomes the registry
node of the newly formed service group.

4 Mobile registry operations

In this section, we describe the operations and functional-
ities that provide registry operations such as registration,
discovery, service updates, and service binding in the pro-
posed architecture. An inline comparison with UDDI is
also presented. The following registry operations make use
of several components discussed in an earlier work of
ours [10].



416 Peer-to-Peer Netw. Appl. (2018) 11:409–430

4.1 Basic registry operations

4.1.1 Registration

In the proposed approach, we have two types of registra-
tions: 1) Group registration (at navigator node) 2) Service
registration (at the registry node). These registrations are
shown in the Fig. 3.

Group Registration: The service group is registered in the
group registry at the navigator node. A mobile service
provider (registry client) contacts the mobile registry
framework via the navigator node to register the service.
However, if a matching service group is not yet registered
in the group registry, a new service group registration
request is initiated. The mobile service provider sends
a group registration request to the navigator node along
with the service details. Hereafter, the navigator refers
the domain ontology and based on the service details, a
matching group is mapped. This matched service group
is updated in the group registry along with its groupid.
The registry is then shared among all the navigator
nodes. Subsequent to the successful registration process,
a “groupid” is sent to the newly registered mobile device
(in a ‘result’ type IQ stanza). At this point the registrant
is the registry node of the newly formed service group.
Figure 3 shows the group registration process.

Service Registration: Services are registered in the ser-
vice registry at the registry node. The mobile service
provider fetches the matching service group at the navi-
gator node and contacts the registry node of the matching
service group via the groupid. Hereafter, the registry node
receives service related information from the mobile
service provider and generates a serviceid for the new
service. The registration process is completed when the
information of the new service is updated at the ser-
vice registry of the registry node. This updated registry
is made available to the service providers in the service
group for provider initiated updates (pull based updates).
Upon successful registration a “serviceid” is sent to the
newly registered mobile service provider (in a ‘result’
type IQ stanza). Figure 3 shows the service registration
process.

Web Service Registration in UDDI: Here we quickly dis-
cuss the registration process in the traditional UDDI
registry system so that one can appreciate the signifi-
cance of the proposed approach. In UDDI, registration
is done using the publisher APIs set exposed by the
UDDI, such as save service, save business, save binding,
save t model. These APIs are used to save detailed infor-
mation on the web service, which may not be necessary
in case of the mobile based web services. Moreover
this information would tend to become heavy for mobile
devices to process or transport.

Fig. 3 Group and service
registration



Peer-to-Peer Netw. Appl. (2018) 11:409–430 417

A typical UDDI registry [18] primarily consists of
the following information: businessEntity, businessService,
bindingTemplate and tModels for a registered service. The
information is passed on by the web-service provider to the
UDDI registry through publisher APIs (The information is
transported as XML tags, we are not showing the XML for
the UDDI structure owing to space constraints here. For
the benefit of interested readers, we have uploaded details
on this at: http://goo.gl/cn8VaP). Deploying such a UDDI
registry over a mobile device would tend to become heavy
owing to the limited computational power and network con-
straints in mobile devices. The UDDI registry would also
significantly lag behind in managing the dynamic nature of
mobile devices.

4.1.2 Service discovery

Two possible cases are included in the prototype: 1. Discov-
ery initiated by the registered service provider, 2. Discovery
initiated by an external mobile service consumer.

Discovery by registered service provider: The registered
service provider first matches the service group of the
required service with the local replica of the service reg-
istry. If the group matches then it fetches the required
service locally. In case the service is found locally, a
selective update is performed from the registry node to
obtain information on the latest availability status of the
service. In case the service is not found locally, the query
is propagated to the registry node and subsequently the
local replica is updated with the latest service registry
status.

Discovery by external service consumer: The service
consumer first contacts the navigator node and retrieves
the matching service group information. Subsequent to
this the service discovery is forwarded to the match-
ing service group. Afterwards, the registry node of the
service group responds with the matching service infor-
mation. The registered service provider from the other
service group also follows this process. Figure 4 shows
the service discovery process.

Service Discovery in UDDI: Web service discovery in a
UDDI registry is done via public inquiry APIs of the
UDDI, such as find service, find binding, find business,
find tModel. The service discovery is performed cen-
trally by the UDDI registry server, which requires high
computational capability. This is because the consumer
requests the UDDI registry server which in turn does the
query search centrally and responds to the consumer with
the results. The complexity and structured nature of the
UDDI data structure would makes searching tedious were
it adopted in a mobile environment. Though traditional
UDDIs enable consumers to query the registry and are

effective in a centralized system, they are ill suited to the
mobile environments that are mostly distributed.

4.1.3 Service binding

Web service binding information is necessary to call a par-
ticular web service. It includes the technical information
on a web service, such as the access endpoint, required
parameter values, return type etc. In the proposed archi-
tecture, binding information is exchanged directly between
the service consumer and the service provider (as shown
in the Fig. 2d). The service provider can provide the
WSDL/WADL document or it’s global URL in the bind-
ing information as well. The functional description of the
service is kept in the close vicinity of the service provider.
The reason being that the mobile services tend to change
frequently and this might result in a change in the tech-
nical description of the same. Therefore, a proximal loca-
tion of the functional description facilitates mobile service
providers to readily change the service operations dynam-
ically without violating the service registry information
(Fig. 5 shows the service binding process). Furthermore,
other types of descriptions viz. non-functional, contextual,
business descriptions are usually present on the same device
as the service provider to keep descriptions up-to-date with-
out increasing traffic over the mobile registry architecture.

Service Binding in UDDI: Service consumers can
retrieve the service binding information of the registered
service providers from the UDDI registry using t model
and WSDL documents. The t model is an exhaustive
technical description of the service binding. However,
due to its inherent complexity service providers often do
not update the binding information. In fact, some services
do not even register themselves owing to this complexity.
This has ultimately translated to the unavailability of a
working and updated global UDDI based registry. Nowa-
days, as a general practice service consumers use web
search engines to fetch the binding information. This
is done by querying search engines for filetype as wsdl
(for SOAP based web services) or wadl (for REST based
web services). The results of this searching mechanism
leads to all sorts of bias arising out of the indexing and
page ranking algorithms of the web search engine. Fur-
thermore, the selection would require human intelligence
and analysis.

Table 1 summarizes the discussed operations performed
with the proposed architecture and with UDDI. The oper-
ations discussed in the following sub-section viz. presence
notification, registry sharing, and registry update are spe-
cific to our approach and ones in which no equivalent UDDI
operations exist.

http://goo.gl/cn8VaP


418 Peer-to-Peer Netw. Appl. (2018) 11:409–430

Fig. 4 Service discovery

4.2 Mobile specific registry operations

4.2.1 Presence notification

This is one of the novel features of the proposed archi-
tecture. The presence information of a mobile service is
of utmost importance for providing any sort of certainty
in the volatile mobile environment. The presence notifi-
cation provides the current availability information on the
mobile service. This helps in avoiding as much as possi-
ble the failed access of offline services. Here the terms

presence information and availability information are used
interchangeably.

The service registry manages presence information for
each service. This helps to uniquely manage the pres-
ence information of multiple offered services of a service
provider. The presence information is dynamically updat-
able and provides availability of a service at a particular
instance of time. The presence information is similar to
the availability information in an instant messaging applica-
tion. We managed the presence information as ‘Available’ or
‘Unavailable’ for a service in the presence tag (please refer

Fig. 5 Service binding



Peer-to-Peer Netw. Appl. (2018) 11:409–430 419

Table 1 Summary of
operations performed in
proposed approach and UDDI

Operations Our Approach UDDI

Service Registration IQ Stanza APIs: save service, save business, save binding, save t model

Service Discovery IQ Stanza APIs: find service, find binding, find business, find tModel

Service Binding Message Stanza t model and WSDL documents

Fig. 7). However, this presence tag is a placeholder that can
further be advanced to incorporate other presence related
information.

The proposed approach also incorporates event triggered
presence notification that is generated on the occurrences
of events that cause the service to become unavailable. For
example low battery level, dropping network strength, criti-
cal overload at provider. These events can be easily detected
programmatically using API’s exposed by modern operating
systems of mobile devices.

4.2.2 Registry sharing

Registry sharing is required to:

1. Manage the latest information about services in reg-
istries of various registry nodes.

2. Keep a local service registry replica at the service
providers in service group.

Registry sharing facilitates sharing the registry system
over several nodes to form a distributed service registry
structure. Such a distributed registry system becomes par-
ticularly useful when a new mobile service provider joins
the service group. Registry sharing enables the newly joined
mobile service provider to retrieve the registry from the
group and manage a local replica. Further, the joining of a
newmobile service in the service group triggers an update in
the registry. That needs to be shared with the members of the
group in a distributed structure. This functionality is exten-
sible and can be adopted for timely updates or event driven
updates to manage synchronization in the service registry of
the various registry node.

4.2.3 Registry update

As our approach is mobile service provider-centric and the
mobile environment is dynamic, hence a service provider
tends to change its configuration on the run. The registry
is required to be updated whenever information on a ser-
vice gets changed, such as location, access point, service
descriptions.

Unregister: Unregister is a registry update performed
when a mobile service provider discontinues its service
offering. Whenever a service provider does not want to

provide a hosted service, it unregisters itself from the
service registry using the unregister action.

4.2.4 Heartbeat operation

Heartbeats are used to probe various nodes in the proposed
registry architecture and to keep the service registry up-
to-date. A registry node periodically probes other service
providers in the service group and retrieves their latest avail-
ability information to keep the service registry up-to-date.
Similarly, navigator nodes probe the service group to know
if the group is alive and accordingly update the group reg-
istry. Further, heartbeat operations are used for registry node
election. New registry nodes can notify the service group
members about their presence.

4.2.5 Dynamic registry node election

Dynamic registry node election is performed when a reg-
istered service provider tries to get promoted to a registry
node or when the registry node fails. A registry node
election is called, when periodic heartbeat signals are not
received by the registered providers of the service group.

The registry node election problem is analogous to the
leader election problem of distributed computing. Several
solutions have been proposed for leader election in dis-
tributed computing. We have adopted an approach for the
registry node election that is inspired from Luby’s Algo-
rithm [19]; a similar approach is described in [20]. The
election approach can be implemented in a distributed man-
ner without involving a central authority and produces less
message traffic. In the proposed framework, each service
provider announces itself as a candidate for becoming a
registry node by sending its device details that include bat-
tery information, network details, device hardware details,
uptime etc. to the existing registry nodes. The service
provider with the maximum capability in terms of the men-
tioned paramenters is selected as the new registry nodes.
This new registry node sends a heartbeat signal to other
registry nodes to make them aware about its new role.

5 Implementation

We developed a prototype web service implementation
based on the proposed approach for mobile devices, using



420 Peer-to-Peer Netw. Appl. (2018) 11:409–430

android SDK (ADT 23.0.2) and Oracle Java (version
1.7.0 72). The prototype was built to realize the architecture
as presented in Section 3. It is worthy to note that the deploy-
ment of the prototype neither required any modification to
the device nor did it require root permissions to run. The
prototype developed is independent of the native applica-
tions of the mobile device and hosted the web services. Our
approach is applicable to all mobile operating systems, how-
ever we chose android for our prototype implementation as
it is open source and commands much wider community
support.

Our experimental setup comprised seven mobile devices
(including Samsung Galaxy S Duos with Android 4.3, Sony
Xperia M with Android 4.3, Google Nexus 7 with Android
4.4, Motorola G2 with Android 5.0, three Asus Zenfone 5
with Android 4.4), one laptop (Intel i3 2.13 GHz with 3GB
of RAM) and a few running instances of the prototype run-
ning on virtual instances of Android devices running on the
laptop. These devices comprised the engineered prototype.
The setup also had multiple services and service groups.
Two experimental wireless networks were setup for the vali-
dation. All our experiments were carried for varied network
sizes with multiple service providers joining and leaving the
network.

Prototye Design: The prototype performs all the roles as
mentioned in the Section 3 - Service Navigator Node,
Service Registry Node, and service provider. We have
devised registry consumers external and also embedded
them with service provider. We have designed a parser
to parse and generate the XML streams (Fig. 7 presents
the used XML infoset). Figure 6 presents the architecture
used for prototype(as discussed in detail in our previous
work [10]).

The presented architecture is deployed on both the nodes:
Service Navigator Node, Service Registry Node. The var-
ious parts of this architecture are: 1. Query Agent: This
component accepts, generates, and processes the queries
from/for other mobile devices. This has external interfaces
that can be contacted by any other mobile device. It can
be viewed as the XMPP parser for registry management.
2. Registry Engine: All the mobile registry related oper-
ations as explained in the Section 3 are handled by this
component. 3. Matching Agent: This component parses
the result of the service query and evaluates them against
the required parameter. Further, it has access to the ontol-
ogy for service group formation. 4. Group/Service Reg-
istry: This is the local replica of the service registry
or group registry depending on the nature of the node
(whether registry node or navigator node). The presented
approach works even in presence of the hosted mobile web
service.

5.1 Prototype specification

This subsection presents identifier and communication
related specifications of the prototype for the architecture
presented in Section 3.

Identifiers: Each hosted service over a mobile device was
addressed by an identifier. This enabled co-existence of
multiple services over a single mobile service provider.
Further, this gave flexibility to the service providers to
remove a service without disturbing other services. We
used two types of primitive identifiers: group identifier
and service identifier. An identifier, as discussed earlier,
is similar to an email address and is uniquely addressable.
The structure of identifier is inspired from XMPP. The
format of an identifier is:

[GroupID]@[NetID]/[ServiceID]

NetID specifies the domain or network of a service
registry, as there can be multiple service registries that
are collocated globally. For private registries, local is
used as the NetID. GroupID is the identifier of the ser-
vice group. ServiceID identifies the service offered by
the mobile service provider. Therefore, there could be
multiple unique ServiceIDs for a mobile device offering
multiple unique services.

A service group could be “TrafficInfo” where the offered
services are related to traffic information. A service reg-
istry could be for the network: Acme City. This depicts the
service group identifier as:

trafficinfo@acmeCity. This service group is shared
by all the service providers of service group trafficinfo.
A unique identifier for a mobile service provider offering
service related to the “Traffic Information of Main street”
could be trafficinfo@acmeCity/mainstreet.

The identifiers are managed distinctly in a domain by
the registry engines and query agents of the mobile devices
(as discussed in our earlier work [10]). Further naming con-
flicts are resolved by incorporating the service provider‘s
participation. In the move to enable networking and realize
the proposed architecture over a real network, the iden-
tifiers are mapped to the physical network using several
well accepted networking concepts and technologies. These
technologies/concepts are available in ad-hoc networking
technology, such as multi-cast domain name system sug-
gested in RFC 6762, dynamic host auto configuration IP
range suggested in RFC 5735 and 3927, multicast net-
working methods suggested in RFC 1112 and RFC 5771.
The libraries for this implementation are available for the
Android OS.

Communication: In the move to provide interoperabil-
ity over heterogeneous mobile devices, we make use of



Peer-to-Peer Netw. Appl. (2018) 11:409–430 421

Fig. 6 Architecture of registry
and navigator nodes

XML streams for the service registry related commu-
nications. The mobile devices communicate and send
queries/information in the form of XML stanzas. These
XML stanzas are inspired by [15, 21]. An XML stanza is
the basic unit of communication in XMPP. This discrete
semantic unit of structured information or XML stanza
is sent from one mobile device to another over an XML
stream.

There are mainly three stanza types used in the archi-
tecture: <message/>, <presence/>, <iq/>. A stanza is a
first-level element (at depth=1 of the stream) whose element
name is “message”, “presence”, or “iq” The three stanzas
are briefly described below. For more details on the stanzas,
the interested reader is pointed to our earlier work [10].

Message stanza is primarily used for storing, editing, and
sharing service/group information at the service/group reg-
istry. The main purpose that this is managing and updating
the service/group registries. The Message stanza works in
two ways: “push” and “pull”. In push, the information ex-
change is initiated by the sender e.g. sharing the registry at
the registry node with the mobile service providers. Whe-
reas in pull, the receiver initiates the information exchange
e.g. selective update of the registry at the mobile service
providers. Further, the message stanza is primarily used for
service binding operations, registry sharing, registry node
elections.

Presence stanza is used to update the availability informa-
tion of services hosted on mobile devices. Each presence

Fig. 7 XML streams used in
proposed approach



422 Peer-to-Peer Netw. Appl. (2018) 11:409–430

Fig. 8 Experimental setup

stanza includes a brief description and service identifier of
the hosted service, along with its availability information.
We use ‘available’ and ‘unavailable’ as the primitive pres-
ence types in the proposed approach. The presence status of
a web service hosted on a mobile device is reflected on the
service registry. Presence notification, heartbeat operations
are implemented using this stanza.

IQ stanza is short for Information/Query stanza. It is based
on a request-response mechanism and guarantees a response
to a query. The nature of request in the IQ stanza is repre-
sented by type. Registry information request is represented
by get and it is similar to the HTTP GET method. Any
communication involving queries from other mobile devices
primarily makes use of the IQ stanza. These play an impor-
tant role in getting information from other mobile devices
that host the service registry i.e. registry nodes.

These stanzas are uniquely identified by the “id” element.
The “type” element represent the type of registry opera-
tion that is performed by the mobile devices. Whereas “to”
element contains the access point of the recipient (individ-
ual mobile device or service group). Figure 7 shows the
detailed XML structure used in the architecture. Group and
service registration operations, discovery operations, reg-
istry update operations are implemented primarily using IQ
stanzas.

6 Evaluation

To evaluate our approach, we deployed the architecture (pre-
sented in Fig. 6) over real mobile devices. We solicited

volunteer participation to host our prototype over their
personal mobile devices. This enabled us to analyze the
feasibility of our approach in a practical scenario. We
established two experimental wireless networks within our
institute building to connect the volunteers’ mobile devices,
laptop, and virtual instances (refer Fig. 8). During the exper-
iment, volunteers were doing their routine work and hence
the mobility of the devices followed random patterns. We
repeated this experiment with varying numbers of service
providers, service registration requests, service discovery
queries, with the intent of emulating uncertain situations in
practical scenarios. In this section, we present the results of
the experiment with the motive to show the feasibility of the
proposed approach.

The first experiment evaluated the effect that hosting a
registry server had on the battery of the mobile devices.
We analyzed the effect of various registry operations on the
battery. For this purpose, we made use of the power model
and solutions suggested by Zhang et al. [22]. This power
model considers the power consumption by a mobile appli-
cation and also takes into account the application’s effect on

Table 2 Power consumption by various registry operations

Registry Operation Power Consumption

Service Registration (For 50 requests) 44 mW

Service Discovery (For 50 requests) 63 mW

Group Registration (For 50 requests) 120 mW

Group Discovery (For 50 requests) 52 mW

Heartbeat 73 mW



Peer-to-Peer Netw. Appl. (2018) 11:409–430 423

Table 3 Data exchanged by various registry operations

Registry Operation Total Data

(Received + Transmitted)

Service Registration (For 50 requests) 48510 bytes

Service Discovery (For 50 requests) 41231 bytes

Group Registration (For 50 requests) 42161 bytes

Group Discovery (For 50 requests) 31487 bytes

Wi-Fi, CPU, Cellular interface etc. Table 2 shows the initial
battery power consumption by the registry operations. We
sent 50 requests of service/group registration, service/group
discovery each on the navigator node and the registry node.
We observed the power consumption at the navigator nodes
and registry nodes by these requests. The values presented
in the table are the average battery power consumption. For
a quick reference, gmail android app had 567mW, facebook
android app had 1297.5 mW, GSM call had 511 mW, and
Airplane Mode had 6.4 mW power consumption (depends
on build/model of mobile phone). The idea of including
these is to emphasize upon the point that the implemention
of the proposed mobile service registry solution seems to
have acceptable power consumption. (Interested readers are
referred to [23] for detailed analysis of power consumption
in smartphone).

In our second experiment, we further observed the data
bytes being exchanged during these requests. Table 3 shows
the total number of bytes exchanged for various registry
operations. We concluded that less than a 1KB of data is
exchanged for service/group registration. For service/group
discovery the number of data bytes exchanged depends on
the number of matching groups or services. However, for
the purpose of the experiment we had a single matching
group or service. That limited the data exchange for discov-
ery requests to under 1 KB for each matching service/group.
(Size of an average compressed image sent over a messaging
app likeWhatsApp is 20-25 KB, and 2.52MBwas the back-
ground data usage for the Instagram app (with a few account

following) for a day. Therefore, the proposed approach has
acceptable data exchange.)

In our third experiment, we sent (50*4=) 200 new ser-
vice registration requests from other mobile devices and
virtual instances to the registry architecture. Figure 9 depicts
the total response time behavior for a service provider.
Also noteworthy here is the fact that the mobile devices
were continuously moving with the volunteers, hence the
devices were randomly joining and leaving the network.
Therefore, we observed a few outliers in the response time
behavior. We concluded that the average service registra-
tion time (including outliers) is near 5 seconds which seems
acceptable for practical purposes.

The fourth experiment evaluated the effect of directory
size on the discovery time. We registered multiple services
in a service group on the registry node. In order to test
the scalability of our prototype, we ran service discovery
operations for various directory sizes: 500, 1000, 5000,
10000, 50000, 100000. We discovered that the discovery
time increases as the size of the directory increases. How-
ever, in spite of this even with 100000 registered services the
query response time was under 1 second which is acceptable
for all practical purposes.

We sent service discovery requests from four mobile
devices and virtual instances to varied numbers of regis-
tered services and the response time was calculated for these
requests. Figure 10 shows the average response time for
these discovery requests for various registry sizes. Through
the whole experiment, the mobile device acting as the reg-
istry node was moving continuously within the network.
Further, the size of the registry increased linearly with the
increasing number of registered services. Even with thou-
sands of services registered, the registry size was under 10
MB (shown in Fig. 11). It should be noted here that we
made use of SQLite for implementing the service and group
registries over android mobile devices.

Our fifth experiment aimed at evaluating the feasibility of
the proposed approach when running simultaneously with
other phone activities. In this experiment, we conducted a

Fig. 9 Total time taken for new
service registrations



424 Peer-to-Peer Netw. Appl. (2018) 11:409–430

Fig. 10 Service discovery time for varied registered services

comparative study on the difference in response time for the
service discovery requests a) when a volunteer was answer-
ing a phone call and, b) when the device was idle. For
this experiment, we sent 50 requests for group discovery
to the volunteer’s mobile device. First, we observed the
response behavior when the device was idle in the volun-
teer’s pocket. During this phase the volunteer was randomly
moving within the network. The response time behavior
during this period is shown in Fig. 12. Next, we made a
phone call on the volunteer’s mobile phone and observed
the response time during the call. The results demonstrate
that there is a change in response time, but this change is
well within acceptable limits. Response time behavior dur-
ing the call is shown in Fig. 13. There is an initial peak
in the response time when the call is made. From the ini-
tial results, we conclude that the mobile device takes a little
time to respond to the first discovery request. This is due
to the fact that some processing time is required to awaken
the sleeping mobile application. We feel, therefore, that
piggybacking of incoming requests could be a good
approach to reduce the energy overhead.

The sixth experiment involved an evaluation of the reli-
ability of the approach. We toggled the availability status

Fig. 11 Registry size for varied registered services

Fig. 12 Response Time behavior without an active call

of the service provider from available to unavailable and
back to available with a time difference of 10 seconds.
These toggles were repeated 120 times at the registry node.
During this time, we continuously probed the registry node
from the service consumers to get the status of the service
provider. The initial results shown by the experiment have
less than 1 % false negative, where false negative implies
- registry node returns availability information as available
when the service provider has updated it to unavailable and
vice versa.

Although the scale of these experiments was limited,
the results were promising. It will be interesting to explore
the performance of this approach for a much larger num-
ber of service providers, and registry clients and for much
longer durations (a few days). (Interested readers may refer
to https://goo.gl/4VG895 for further details about the archi-
tecture and experimental setup.)

Nonetheless, we present the speculated trend of our
experiments with a large number of devices:

1. Effects on battery: With increasing number of devices
there would be more numbers of registry requests and
responses; hence more battery power would be needed.

Fig. 13 Response Time behavior during an active call

https://goo.gl/4VG895


Peer-to-Peer Netw. Appl. (2018) 11:409–430 425

However, in such scenarios the service groups and
navigator nodes would play a crucial role. More spe-
cialized service groups would be formed as suggested
in Section 3.2, this would keep the number of devices in
a service group within limits in turn keeping the battery
usage in check (irrespective of any number of registered
services).

2. Effects on data exchange: With increasing number of
devices there would be more exchange of data. How-
ever, the split service groups would keep a check on the
data exchange. Further, keeping in view the current data
usage by modern smartphones, the data usage by large
number of devices should be in acceptable limits.

3. Effects on service registration time: We believe that
with increasing number of devices and service regis-
trations, the response time would increase but would
be well within the accepted range. Also, this is a one-
time process for a service, it would be acceptable for all
practical purposes.

4. Effects on service discovery time: Fig. 10 shows the
discovery time for a large number of registered services
varying from one thousand to a few hundreds thousand.
This is still within acceptable limits.

5. Effects on registry size: The registry size will increase
linearly for increasing number of register services.
Trend is shown in the Fig. 11. While other experiments
are dependent on the individual mobile device with-
out depending on the other device’s behavior. Further,
the effects of other contextual parameters on increas-
ing number of devices (e.g. network, ISP, terrain, car-
rier type etc.) would be interesting to look into but
unfortunately these are not within the scope of current
focus.

6.1 Discussion

The proposed architecture caters to the issues of providing a
dynamic service registry in mobile environments. It manage
to incorporate the requirements outlined in Section 2.3.

R1: Management of transient web services: The
approach effectively manages the availability informa-
tion on each registered web service and is capable of
dynamically updating it. This helps in satisfying require-
ment R1 and keeping the service registry up-to-date
irrespective of random entry and exit of transient web
services.

R2: Lightweight: The architecture seeks information that
is just enough to uniquely identify and manage a web ser-
vice from the registrant mobile device for registry related
operations. The registries manage information that is less
likely to change and whatever change does happen is
updatable via a watchdog process. This keeps the registry

architecture as lightweight as possible and thus satisfies
requirement R2.

R3: Minimum communication overhead: We have made
use of just three XML stanzas in order to minimize com-
munication overhead, satisfying requirement R3. During
our experiments, we observed the exchange of just a few
kilobytes of data for hundreds of request transfers. This
small overhead also helped us minimize battery utiliza-
tion, as reflected in Tables 2 and 3. Furthermore, the
approach uses just one stanza “IQ Stanza” for easier
service registration and de-registration.

R4: Distributed Service Registry: The proposed approach
manages the service registry over dispersed registry
nodes and navigator nodes. Thus satisfying require-
ment R4 and improving fault localization. These features,
contribute to a light weight and autonomous service
registry effective for mobile environments.

R5: Run time search: The dynamic availability informa-
tion, minimal data transfer, and faster response time
helped in performing effective run time searches and in
the process satisfied requirement R5.

Further, the proposed dynamic mobile service registry
is compatible with existing UDDI and other registries. The
dynamic registry can register external UDDI and other ser-
vice registries as one of the registered services along with
their access points. Contrary the proposed registry can be
registered with other registries and UDDI as any of the
registered service.

6.2 Assumptions and limitations

There are certain important assumptions that have been
made in the proposed service registry framework. These
are listed as follows: 1) The load balancing of the incom-
ing registry requests is assumed to be handled at the device
level. There could be a threshold capacity limit, at each
device depending on its hardware capacity. On exceeding
this capacity limit, the incoming requests are not entertained
and these surplus requests are handled by other registry
nodes that have access to the common access channel. 2)
There is no reward system suggested in the current state of
the work. Hence, it is assumed that the mobile device own-
ers are self-motivated to provide their respective devices
for serving as the registry. We may look into a system of
rewards/incentive as part of future work. 3) The updates are
performed to keep the local registry replica updated (at the
navigator/registry nodes) in an automated manner without
manual intervention.

A few important limitations of the current work are listed
as follows: a) The current design of the framework does
not deal with the privacy issues of the mobile phone users
associated with service registry and service provisioning.



426 Peer-to-Peer Netw. Appl. (2018) 11:409–430

b) The current design of the mobile registry does not han-
dle the QoS (Quality of Service) aspect of the mobile web
service. The QoS may be handled by providing a link to
the data server (external to the framework) that could have
QoS and other details on the service description. c) Though
we have a system in place to detect the unavailability of
registry nodes through heartbeat signals, the behavior of the
mobile device owner, poor network connectivity, and phys-
ical damage to the mobile device could result in the abrupt
unavailability of the registry/navigator node. These have not
been dealt with in this work. d) Finally, the current eval-
uation of the approach was conducted within a supervised
lab environment. The registry power and data require-
ments, service discovery performance, and other results
were therefore well within acceptable range. There could
be slight variations in these if the experiments were carried
out at a much larger scale including thousands of mobile
devices.

7 Related work

Service discovery is an important aspect of service-
oriented architecture. Two types of approaches are primarily
adopted for service discovery: Registry based Approach
and Registry-less Approach. The Registry-less approach
usually makes use of overlay networks, hash tables, and
other broadcasting/multi-casting techniques. In the pro-
posed work, we perform service discovery using the former
i.e. ”Registry based Approach”.

We surveyed existing literature from the late 90’s. We
classified the registry based approach into two broad cat-
egories: the Centralized Registry Approach and the Dis-
tributed Registry Approach. These two can further be clas-
sified into those for mobile environments and those for
non-mobile environment. Our survey includes works from
the areas of SOA, peer-to-peer networking, mobile ad-hoc
networking.

7.1 Centralized service registry

The centralized service registry approach is used in sev-
eral popular technologies: Service Location Protocols [24],
Sun’s Jini architecture [25], Service Discovery Services
[26], Microsoft’s Universal Plug and Play (UPnP) [27].
These service discovery infrastructures rely on a central
registry for discovering capable services. The service infor-
mation is stored at a centralized registry. All registry related
operations are performed by a single entity.

One well known example of centralized service registry
architecture for web services is UDDI (Universal Descrip-
tion Discovery and Integration) [8]. UDDI is not the service
registry itself. However, UDDI is the specification of a

framework for describing web-services, registering web-
service, and discovering web-service. Several data struc-
tures and APIs have been published for describing, regis-
tering and querying web-services through the UDDI. The
ebXML (electronic business XML) [9] standard is another
example of a centralized web service registry architecture.
Hoschek [28] presented a grid based hyper registry for
web services in peer-to-peer networks. The registry is an
XQuery based centralized database that manages dynamic
distributed contents.

Juric et al. [29] proposed an extension to the UDDI for
incorporating version support for services. They presented
modifications to the category tag of business service and
tModel of the UDDI infoset with the intent to introduce
service interface versions in UDDI and WSDL. Bernstein
and Vij [30] proposed the use of XMPP for intercloud
topology, security, authentication and service invocations. In
some ways this work is similar to ours. However, our work
focuses on registry management in mobile based service
oriented architecture. We focus on managing the service
registry in a distributed manner over resource constrained
mobile devices. Seto et al. [31] proposed a service reg-
istry for ubiquitous networks to dynamically discover ser-
vice resources. Their registry divides the service operation
into the source, transformation, and sink, specifies physical
meta-data to manage devices, and associate a keyword with
it.

Feng et al. [32] proposed a registry framework to include
interoperability among various semantic web service mod-
els. For this, they made use of registry meta model for
interoperability-7 and several mapping rules for handling
semantic mismatch between services. Feng et al. [33] pro-
posed a service evolution registry where providers can reg-
ister their service evolution information and consumers can
be sent an alert regarding the service evolution. Their work
manages service versions along with their dependencies and
discrepancies.

More recently [34] presents the idea of using object
relational databases in the service registry. The registry
extends the search to include search on the basis of service
commitments and service expectations.

7.2 Centralized mobile service registry

Some existing work [35, 36] discusses the possibility of cen-
tralised service registries for mobile environments. Diehl et
al. [35] talk about centralized service registries that store
the service domain, service types, location and access rights
to manage service mobility and adoption of services in
wireless networks. Beck et al. [36] propose an adaptable
service framework for mobile devices that relies on a cen-
tral service registry for dynamic service registration and
discovery.



Peer-to-Peer Netw. Appl. (2018) 11:409–430 427

Doulkeridis et al. [37] discuss the idea of managing con-
textual information in service registries. The main focus
of the work is to ease service discovery in mobile envi-
ronments by maintaining context aware service registries.
Deepa and Swamynathan [38] talk about a directory based
architecture that make use of two integrated architectures:
backbone-based and cluster based. Their work was intended
to facilitate service discovery in mobile ad-hoc networks
and to achieve improved network traffic, response time, and
hit ratio.

7.3 Distributed service registry

Chen et al. [39] and Sivashanmugam et al. [5] discuss a few
initial approaches to maintain UDDI in a federated envi-
ronment. One approach [39] supports QoS based discovery
from requesters and provides an aggregated result from the
federated registries. The other approach [5] suggests the use
of various metadata and ontologies to manage UDDI in a
federated environment. Verma et al.[6] propose METEOR-
S WSDI, that focusses on providing registries in distributed
and federated environments. Extended Registries Ontology
was used to provide access to these distributed registries and
organizing them in domain based categorization.

The approach discussed in [40] presents a distributed
service registry for grid application. The approach utilises
Xpath queries and ontological trees for domain based ser-
vice discovery. Baresi andMiraz [41] talk about an approach
to enable heterogeneous federated registries to exchange
service information. The approach is based on the publish
and subscribe model. Ad-UDDI [7] is a distributed registry
architecture that adopts an active monitoring mechanism.
The approach extends UDDI to incorporate automated ser-
vice updates in a federated registry environment.

Treiber and Dustdar [42] propose an active web service
registry that make use of atom news formats. RSS software
is used in the approach to form an active distributed reg-
istry. Shah et al. [43] also propose an RSS-based distributed
service registry in the move to achieve global SOA. The
proposed registry is intended to provide dynamic discov-
ery using RSS and tries to resolve synchronization issues in
RSS. Jaiswal et al. [44] introduce a decentralized registry
using the Chord protocol for peer-to-peer environments. The
registry comprises distributed hash tables of web-service
names and web-service IPs. Their method claims to cater to
demand driven web-service provisioning.

Another direction in distributed service registry systems
is one meant for cloud environments [45] and [46]. Lin et al.
[45] present a hadoop-based service registry for the cloud
environment. The work proposes geographical knowledge
service registries that are designed to simplify service reg-
istration, improve discovery and other registry operations
for cloud services. Elgazzar et al. [46] propose to manage

a local service registry at the provider’s site for the offered
services. This local service registry is managed in a dis-
tributed manner and has two types of services: local and
remote. The paper proposes Discovery-as-a-Service in the
cloud environment.

Das Gupta et al. [47] in a more recent paper, dis-
cuss about the possibility of a federated registry system
for P2P networks. The work makes use of multi-agent
based distributed service discovery for non-deterministic
and dynamic environments. They propose that super peer
nodes manage the distributed service registry and other
peers register their services with these registries. Zhang et
al. [48] discuss the integration of peer to peer technology
with SOA. They talk about self-organizing, semi-structured
P2P frameworks for support and propose to use a private ser-
vice registry at each peer for discovering the manufacturing
services. The local private registry of the peer is traversed
first to discover a service.

7.4 Distributed mobile service registry

Handorean and Roman [49] propose probably the first work
that discusses the possibility of distributed service registries
in mobile environments. In their approach, the availability
of services is shown in the registry along with an atomic
update facility to maintain consistency. Konark [50] is a
distributed XML based registry that has a tree structure.
A top-down approach is used for the tree, with generic
classification of services at the top and specific classifica-
tion at the bottom. Every node maintains a service registry,
where it stores information about its own services and also
about services that other nodes provide. The approach pro-
vides a semantic service registry and enables servers as well
as clients to register and discover services in a distributed
manner.

Schmidt and Parashar [51] present a distributed hash
table based approach for distributed registries in peer to peer
networks. The approach supports service discovery based
on keywords, wild cards on an Internet scale. Indexing of
keywords associated with the web service description doc-
ument is managed at the peers. Tyan and Mahmoud [52]
discuss an approach for service discovery in mobile ad-hoc
environments. The work considers a registry as a tree and
makes this registry available to every node in the network.
The approach makes use of a location aware routing pro-
tocol and divides the network into hexagonal grids with a
gateway for each that have the service registry. Golzadeh
and Niamanesh [53] discuss an approach for a service reg-
istry system for mobile ad-hoc networks. The approach
divides the MANET into clusters with one head for each
cluster that acts as a directory for the cluster. The head node
has two types of registries: the service provider’s registry
and the other head node registry.



428 Peer-to-Peer Netw. Appl. (2018) 11:409–430

A decentralized service registry for location based web
services is discussed in [54]. The approach is relied on
cellular network system and base transceiver station for
retrieving the local registry address. These addresses are
broadcasted by base station and interested mobile devices
download the registry address for location based services.
One of the latest works by Jo et al. [55] makes use of bloom
filter to manage distributed service registry for mobile IoT
environments. Proposed work uses hierarchical bloom fil-
ters for reducing message exchanges among registries in
move to find available services.

Although there is a good amount of work that has been
done towards developing effective service registries, an
architecture that enables mobile devices to host mobile ser-
vice registries and that takes the distinct features of mobile
environment into account such as intermittent connectiv-
ity, dynamic nature, frequent service description changes
is still lacking. Our work focuses on registry management
in mobile based service oriented architecture. We focus on
managing the service registry in a distributed manner on
resource constrained mobile devices. This service registry
contains minimal information about the registered services
in a manner that is just enough to uniquely discover the ser-
vices. The proposed work is an extension of some of our
previous work [10].

8 Conclusions

In this paper we looked into, perhaps, the most challenging
aspect of implementing an SOA in mobile environments:
effective service registries. Our studies show that traditional
approaches for implementing service registries (such as
UDDI) cannot be directly adopted in mobile environments,
given the dynamic, volatile and uncertain nature of such
environments. A novel approach to manage service reg-
istries ‘solely’ over mobile devices was proposed that effec-
tively addressess issues specific to mobile environments and
enables run time service discoveries in peer-to-peer manner.

We evaluated the approach by developing a prototype
and deploying it over real mobile devices. To emulate real
world usage as closely as possible we requested volunteers
to deploy our prototype on their personal mobile devices and
continue doing their routine tasks. The experimental results
indicate that the proposed solution is an effective enabler for
SOA in mobile environments. We performed several experi-
ments to confirm the efficacy of the prototype across several
parameters such as: timely performance, battery consump-
tion, effect of the random/nomadic behaviour of people
carrying mobile devices, conflict with native mobile apps,
reliability.

Future work in this direction would be towards mobile
service registries that focus on QoS factors unique to mobile

environments. Future work will also tackle security related
issues, dynamic service group splitting in mobile service
registries. Further, the availability of the service registries
will be a prime focus.

Acknowledgments We would like to thank Tanveer Ahmed and
Dheeraj Rane for their valuable insights. The work was supported by
the Ministry of Human Resource Development - Government of India.

References

1. Papazoglou MP (2003) Service-oriented computing: Concepts,
characteristics and directions. In: Proceedings of the fourth IEEE
international conference on web information systems engineering,
pp 3–12

2. Srirama SN, Jarke M, Prinz W (2006) Mobile web service
provisioning. In: IEEE Advanced international conference on
telecommunications-international conference on internet and web
applications and services, pp 120–120

3. Tergujeff R, Haajanen J, Leppanen J, Toivonen S (2007) Mobile
soa: Service orientation on lightweight mobile devices. In: IEEE
International conference on web services, pp 1224–1225

4. AlShahwan F, Moessner K (2010) Providing SOAP web services
and restful web services from mobile hosts. In: IEEE Fifth inter-
national conference on internet and web applications and services
(ICIW), pp 174–179

5. Sivashanmugam K, Verma K, Sheth A (2004) Discovery of web
services in a federated registry environment. In: IEEE Interna-
tional conference on web services, pp 270–278

6. Verma K, Sivashanmugam K, Sheth A, Patil A, Oundhakar S,
Miller J (2005) Meteor-s wsdi: A scalable p2p infrastructure of
registries for semantic publication and discovery of web services.
Springer Inf Technol Manag 6(1):17–39

7. Zongxia D, Huai J, Liu Y (2006) Ad-uddi: An active and dis-
tributed service registry. In: Bussler C, Shan M-C (eds) Interna-
tional workshop on technologies for e-services, volume 3811 of
lecture notes in computer science, pp 58–71

8. Oasis (2004) Uddi version 3.0.2 spec technical committee draft.
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf

9. Najmi F, RosettaNet NS, Bedini I, Telecom F, Breininger K, Chiu-
sano J, Kacandes P, MacKenzie M, Martin M, Nickull D (2005)
ebXML registry information model. https://docs.oasis-open.org/
regrep/v3.0/specs/regrep-rim-3.0-os.pdf

10. Verma R, Srivastava A (2014) A novel web service directory
framework for mobile environments. In: IEEE 21st Internation
conference on web services (ICWS), pp 614–621

11. Kotler P, Armstrong G, Saunders J, Wong V (1996) Principles of
marketing. Pearson Education, Inc., Upper Saddle River

12. Movassaghi S, Abolhasan M, Lipman J, Smith D, Jamalipour A
(2014) Wireless body area networks: A survey. IEEE Commun
Surveys Tutor 16(3):1658–1686

13. Sanaei Z, Abolfazli S, Gani A, Buyya R (2014) Heterogeneity in
mobile cloud computing: Taxonomy and open challenges. IEEE
Commun Surveys Tutor IEEE 16(1):369–392

14. Dustdar S, Treiber M (2005) A view based analysis on web service
registries. Springer Distrib Parallel Datab 18(2):147–171

15. Saint-Andre P (2004) Rfc 3920: Extensible messaging and pres-
ence protocol (XMPP): Core. Technical report, Internet Engineer-
ing Task Force (IETF) proposed standard

16. Sabou M, Wroe C, Goble C, Stuckenschmidt H (2005) Learn-
ing domain ontologies for semantic web service descriptions. Web
Semant Sci Serv Agents WWW 3(4):340–365

http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf
https://docs.oasis-open.org/regrep/v3.0/specs/regrep-rim-3.0-os.pdf
https://docs.oasis-open.org/regrep/v3.0/specs/regrep-rim-3.0-os.pdf


Peer-to-Peer Netw. Appl. (2018) 11:409–430 429

17. Allahyari M, Kochut KJ, Janik M (2014) Ontology-based text
classification into dynamically defined topics. In: IEEE Inter-
national conference on semantic computing (ICSC), pp 273–
278

18. Alonso G, Casati F, Kuno H, Machiraju V (2010) Web ser-
vices: Concepts, architectures and applications, 1st edn. Springer
Publishing Company, Incorporated

19. Luby M (1986) A simple parallel algorithm for the maximal
independent set problem. SIAM J Comput 15(4):1036–1053

20. Han J-S, Lee K-J, Song J-W, Yang S-B (2008) Mobile peer-
to-peer systems using super peers for mobile environments. In:
International conference on information networking, pp 1–4

21. Saint-Andre P (2004) Rfc 3921: Extensible messaging and pres-
ence protocol (xmpp): Instant messaging and presence, October
2004. Technical report, Internet Engineering Task Force (IETF)
proposed standard

22. Zhang L, Tiwana B, Qian Z, Wang Z, Dick RP, Mao ZM, Yang
L (2010) Accurate online power estimation and automatic battery
behavior based power model generation for smartphones. In: Pro-
ceedings of the Eighth IEEE/ACM/IFIP international conference
on hardware/software codesign and system synthesis, pp 105–114

23. Carroll A, Heiser G (2010) An analysis of power consumption in
a smartphone. In: USENIX annual technical conference, vol 14

24. Guttman E (1999) Service location protocol: Automatic discovery
of ip network services. IEEE Internet Comput 3(4):71–80

25. Waldo J (1999) The jini architecture for network-centric comput-
ing. Commun ACM 42(7):76–82

26. Czerwinski SE, Zhao BY, Hodes TD, Joseph AD, Katz RH (1999)
An architecture for a secure service discovery service. In: Pro-
ceedings of the 5th annual ACM/IEEE international conference on
mobile computing and networking, pp 24–35

27. Miller BA, Nixon T, Tai C, Wood MD (2001) Home networking
with universal plug and play. IEEE CommunMag 39(12):104–109

28. Hoschek W (2003) Peer-to-peer grid databases for web service
discovery. Wiley, pp 491–539

29. Juric MB, Sasa A, Brumen B, Rozman I (2009) WSDL and UDDI
extensions for version support in web services. J Syst Softw SI:
Architect Decis Ration 82(8):1326–1343

30. Bernstein D, Vij D (2010) Intercloud directory and exchange pro-
tocol detail using xmpp and rdf. In: IEEE 6th World congress on
services (SERVICES-1), pp 431–438

31. Seto H, Matsumoto S, Nakamura M (2011) Ubi-regi: Service
registry for discovering service resources in ubiquitous network.
In: Proceedings of the 13th international conference on informa-
tion integration and web-based applications and services, pp 395–
398

32. Feng Z, Peng R, Li B, He K, Wang C, Wang J, Zeng C (2011)
A service registry meta-model framework for interoperability. In:
International symposium on autonomous decentralized systems
(ISADS), pp 389–398

33. Feng Z, Chiu DKW, He K (2013) A service evolution registry
with alert-based management. In: Fifth International conference
on service science and innovation (ICSSI), pp 123–130

34. Lakshmi HN, Mohanty H (2015) Extended service registry to sup-
port i/o parameter-based service search. In: Intelligent computing,
communication and devices, volume 308 of springer advances in
intelligent systems and computing, pp 145–155

35. Diehl N, Grill D, Held A, Kroh R, Reigber T, Ziegert T (1996)
System integration for mobile computing and service mobility.
In: Proceedings of the IFIP/IEEE international conference on dis-
tributed platforms: Client/server and beyond: DCE, CORBA, ODP
and advanced distributed applications, pp 44–56

36. Beck J, Gefflaut A, Islam N (1999) Moca: A service frame-
work for mobile computing devices. In: Proceedings of the 1st
ACM international workshop on data engineering for wireless and
mobile access, pp 62–68

37. Doulkeridis C, Valavanis E, Vazirgiannis M (2003) Towards a
context-aware service directory. In: Technologies for E-services,
volume 2819 of lecture notes in computer science. Springer, Berlin
Heidelberg, pp 54–65

38. Deepa R, Swamynathan S (2010) A service discovery model for
mobile ad hoc networks. In: International conference on recent
trends in information, telecommunication and computing (ITC),
pp 135–139

39. Chen Z, Liang-Tien C, Silverajan B, Bu-Sung L (2003) Ux-an
architecture providing qos-aware and federated support for uddi.
In: Proceedings of international conference on web services, pp
171–176

40. Bubak M, Gubala T, Kapalka M, Malawski M, Rycerz K (2005)
Workflow composer and service registry for grid applications.
Elsevier Future Gen Comput Syst 21(1):79–86

41. Baresi L, Miraz M (2006) A distributed approach for the federa-
tion of heterogeneous registries. In: Service-oriented computing –
ICSOC 2006, volume 4294 of lecture notes in computer science.
Springer, Berlin Heidelberg, pp 240–251

42. Treiber M, Dustdar S (2007) Active web service registries. IEEE
Intern Comput 11(5):66–71

43. Shah D, Agarwal M, Mehra M, Mangal A (2010) Global soa: Rss-
based web services repository and ranking. In: Fifth International
conference on internet and web applications and services (ICIW),
pp 256–261

44. Jaiswal D, Mistry S, Mukherjee A, Mukherjee N (2013) Efficient
dynamic service provisioning over distributed resources using
chord. In: International conference on signal-image technology
internet-based systems (SITIS), pp 257–264

45. Lin J, Xiaozhu W, Chen C, Liu Y (2013) Hadoop-based ser-
vice registry for geographical knowledge service cloud: Design
and implementation. In: International conference on information
science and technology (ICIST), pp 961–966

46. Elgazzar K, Hassanein HS, Daas PM (2014) Cloud-based mobile
web service discovery. Elsevier Perv Mob Comput 13(0):67–
84

47. DasGupta S, Aroor A, Shen F, Lee Y (2014) Smartspace: Mul-
tiagent based distributed platform for semantic service discovery.
IEEE Trans Syst Man Cybern Syst 44(7):805–821

48. Zhang W, Zhang S, Qi F, Cai M (2014) Self-organized p2p
approach to manufacturing service discovery for cross-enterprise
collaboration. IEEE Trans Syst Man Cybern Syst 44(3):263–
276

49. Handorean R, Roman GC (2002) Service provision in ad hoc
networks. In: Proceedings of the 5th international conference on
coordination models and languages, pp 207–219

50. Helal S, Desai N, Verma V, Lee C (2003) Konark - a service
discovery and delivery protocol for ad-hoc networks. In: IEEE
Wireless communications and networking, vol 3, pp 2107–2113

51. Schmidt C, Parashar M (2004) A peer-to-peer approach to web
service discovery. WWW 7(2):211–229

52. Tyan J, Mahmoud QH (2005) A comprehensive service discovery
solution for mobile ad hoc networks. Mob Netw Appl 10(4):423–
434

53. Golzadeh A, Niamanesh M (2011) Dsdst - a distributed service
discovery approach with service type for mobile ad hoc networks.
In: Second international conference on networking and distributed
computing (ICNDC), pp 267–271

54. D’Souza M, Ananthanarayana VS (2014) Enhanced lbs discovery
in a decentralized registry based web services environment. J Web
Eng 13(1&#38;2):1–23

55. Jo HJ, Kwon JH, In YK (2015) Distributed service discovery in
mobile iot environments using hierarchical bloom filters. In: Engi-
neering the web in the big data era, volume 9114 of lecture notes
in computer science. Springer International Publishing, pp 498–
514



430 Peer-to-Peer Netw. Appl. (2018) 11:409–430

Rohit Verma received his
B.Eng. and M.Tech. degrees
in Computer Science and
Computer Science & Infor-
mation Security in 2010 and
2012, respectively. He is
currently a PhD student at
the Indian Institute of Tech-
nology Indore, India. His
research interests broadly
include service-oriented sys-
tems, workflow management,
mobile based and P2P web-
services, information security
and crowdsourcing systems.

Abhishek Srivastava received
his B.Eng. and M.Eng.
degrees in Power-Electronics
Engineering and Software
Engineering in 2000 and 2002,
respectively, and his PhD
degree from the University
of Alberta in 2011. He is
currently working as an
Assistant Professor at the
Indian Institute of Technology
Indore, India. His research
interests are broadly in the
areas of Service Oriented
Systems, Internet of Things,
Mobile Crowd-sensing, and
Security/Reliability in Web-
services.


	A dynamic web service registry framework for mobile environments
	Abstract
	Introduction
	Motivation
	Motivating scenario
	Need for a novel mobile service registry
	Mobile service registry requirements

	Proposed approach
	Registry details
	Design concept
	Navigator nodes
	Registry nodes
	Failure management
	Use-case scenario


	Mobile registry operations
	Basic registry operations
	Registration
	Service discovery
	Service binding

	Mobile specific registry operations
	Presence notification
	Registry sharing
	Registry update
	Heartbeat operation
	Dynamic registry node election


	Implementation
	Prototype specification
	Message stanza
	Presence stanza
	IQ stanza



	Evaluation
	Discussion
	Assumptions and limitations

	Related work
	Centralized service registry
	Centralized mobile service registry
	Distributed service registry
	Distributed mobile service registry

	Conclusions
	Acknowledgments
	References


