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Abstract This paper studies the network utility maxi-
mization (NUM) problem in dynamic-routing rechargeable
sensor networks (RSNs), where rate control, routing, and
energy management need to be jointly optimized. This prob-
lem is very challenging since the flow constraint is spatially
coupled and the energy constraint is spatiotemporally cou-
pled (energy causality). Existing works either do not fully
consider the two coupled constraints together, or heuristi-
cally remove the temporally-coupled part, both of which
are not practical, and may degrade network performance.
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In this paper, we attempt to jointly optimize rate control,
routing, and energy management by carefully tackling the
flow and energy constraints. To this end, we first decouple
the original problem equivalently into separable subprob-
lems by means of dual decomposition. Then, we propose
a distributed algorithm, which can converge to the globally
optimal solution. Numerical results based on real solar data
are presented to evaluate the optimality and scalability of
the proposed algorithm.
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1 Introduction

With rapid development of microelectronics and wireless
communications in recent years, wireless sensor networks
(WSNs) have been widely used in a broad range of appli-
cations [1–4]. Although wireless sensor nodes are low-cost,
small-sized and easy for deployment, they are powered by
batteries and replacing the battery is not feasible in many
applications. Hence, a critical challenge in WSNs is their
finite lifetime [5]. Recent years have witnessed the emer-
gence of a promising technology to address this issue -
harvesting energy from environment to extend the lifetime
of WSNs. Known examples of harvestable energy resources
include solar [6], electromagnetic wave [7], thermal [8],
wind [9], and vibration [10], which opens up a new research
area referred to as rechargeable sensor networks (RSNs)
[11, 12].

Consider an RSN with a number of source nodes and
a sink node. Each source samples data and transmits
data, through some other sources (relays) to the sink. If
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each source transmits data through a single path of time-
invariable relays to the sink, the RSN is referred to as a
static-routing RSN. Otherwise, if each source transmits data
through multiple paths of time-variable relays to the sink,
the RSN is referred to as a dynamic-routing RSN. Exist-
ing works on RSNs mainly focus on optimal lexicographic
rate assignment [13], minimizing data loss [14] or maximiz-
ing total throughput [15], and network utility maximization
(NUM) [16]. In this paper, our objective is to maximize the
network utility. This paper will focus on the NUM problem
in dynamic-routing RSNs, while the static-routing case has
been well studied in the previous work [17]. In [17], each
source has a single fixed relay. In other words, the routing
structure is a given tree, and the NUM problem is rate con-
trol and energy management. In our work, each source needs
to choose relays and determine flow rates. In this context,
flow rates will be the additional variables in the problem for-
mulation to design the optimal routing. Thus, rate control,
routing, and energy management need to be jointly opti-
mized. However, since the energy consumption rate for data
transmission depends on routing and is no longer fixed as
in the static-routing case, the problem would become more
complicated to solve. In both cases, there exist two aspects
of constraints on each source [18, 19]. One is the flow con-
straint, i.e., the incoming flow rate plus the sampling rate
should not exceed the outgoing flow rate, and the flow rate
should not exceed the link capacity. The other is the energy
constraint, i.e., the energy consumption rate should be nei-
ther too large such that the source depletes the battery and
stops working (aggressive case), nor too small such that
the battery level reaches maximum and misses recharging
opportunities (conservative case).

From the above, we need to jointly consider the flow
and energy constraints to maximize the network utility
of dynamic-routing RSNs. This problem is very chal-
lenging since the flow constraint is spatially coupled and
the energy constraint is spatiotemporally coupled (energy
causality). Therefore, the distributed NUM problem in
dynamic-routing RSNs needs to be thoroughly investigated.
Existing works either do not fully consider the two coupled
constraints together, or heuristically remove the temporally-
coupled part, both of which are not practical, and may
degrade network performance. For example, the flow con-
straint is addressed in dynamic-routing WSNs [20]; how-
ever, the recharging technology and energy constraint are
not taken into consideration. The energy constraint consid-
ered in [21] is that the energy consumption rate does not
exceed the energy harvesting rate instead of the current bat-
tery level, let alone the finite battery capacity. Zhang et al.
[22] consider the energy constraint that the energy con-
sumption rate does not exceed the energy allocation; how-
ever, the energy constraint is heuristically solved without
considering the global optimality.

In this paper, we take the attempt to jointly optimize
rate control, routing, and energy management by carefully
tackling the flow and energy constraints. To this end, we
first decouple the original problem equivalently into sepa-
rable subproblems by means of dual decomposition. Then
we propose a distributed algorithm, which can converge to
the globally optimal solution. The main contributions are
summarized as follows:

1. By carefully tackling the flow and energy constraints
through primal-dual approach, we propose a distributed
algorithm to obtain the globally optimal solution.

2. Numerical results based on real solar data are pre-
sented to evaluate the optimality and scalability of the
proposed algorithm.

The remainder of this paper is organized as follows. In
Section 3, we formulate the NUM problem in dynamic-
routing RSNs with the flow and energy constraints. The
problem is dually decomposed into separable subproblems
in Section 4. Then in Section 5, we propose a distributed
algorithm to obtain the globally optimal solution. Numerical
results are provided in Section 6, and concluding remarks
are drawn in Section 7 with future work.

2 Related works

In RSNs, harvestable energy resources include solar,
electromagnetic wave, thermal, wind, and vibration. The
research on harvesting energy from these resources has
drawn considerable attention in recent literatures, e.g., har-
vesting energy from wireless charging and wireless power
transfer processes [23–25]. The problem of rate control,
routing, and energy management in dynamic RSNs has been
addressed by prior works. For example, Marašević et al. [26]
provide a comprehensive algorithmic analysis of max-min
fairness in energy harvesting networks by rate allocation
and routing. Chen et al. [27] address the problem of joint
energy allocation and routing to maximize the total utility
of an RSN, without prior knowledge of the replenishment
profile. They propose a low-complexity online solution that
achieves asymptotic optimality. Liu et al. [28] study the
problem of computing the lexicographically maximum data
collection rate and routing paths for perpetual and fair data
sensing. They compute the optimal rate when the rout-
ing structure is a given tree, and further jointly compute a
routing structure and the near-optimal rate.

There are several recent works that aim to maximize the
network utility of dynamic-routing RSNs. For example, Liu
et al. [21] propose the QuickFix algorithm for computing
the data sampling rate and routes, and the SnapIt algo-
rithm to adapt the sampling rate to the battery level. They
show that these two algorithms can track the instantaneous
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optimum network utility while maintaining the battery
level at a target value. However, they only consider the
energy consumption rate less than the energy harvesting rate
instead of the current battery level, let alone the finite bat-
tery capacity. Without considering the current battery level,
such constraints are not coupled across the time horizon,
making the problem easier to solve. However, since the
excessive harvested energy cannot be stored in the battery
for later use, there is no flexibility to allocate the sampling
rate evenly among sources and time horizon, and hence the
network utility is not optimized. Zhang et al. [22] are con-
cerned with how to maximize the overall network perfor-
mance with finite battery capacity. They develop the BEAS
algorithm to efficiently manage the battery energy usage,
and the DSR2C algorithm for obtaining the optimal sam-
pling rate and routing. They consider the energy constraint
that the energy consumption rate does not exceed the energy
allocation. Although the energy allocation problem is for-
mulated based on the energy harvesting rate and current
battery level, it is heuristically solved without considering
the global optimality.

Different from aforementioned works, this paper is con-
cerned with the NUM problem in dynamic-routing RSNs
with the flow and energy constraints. Our goal is to jointly
optimize rate control, routing, and energy management by
carefully tackling the flow and energy constraints. Besides,
the proposed distributed algorithm can converge to the
globally optimal solution.

3 System model and problem formulation

3.1 System model

We now consider a dynamic-routing RSN with a set N �
{1, · · · , N} of source nodes and one sink node s, as shown
in Fig. 1a, where dij (or dis) is the physical distance between
source i and source j (or sink s). Each source has a solar

photovoltaic panel and a rechargeable battery, such that the
excessive harvested energy can be stored in the battery for
future use. Each source consumes energy in its battery to
sample data and transmit data to the sink via multi-hop
communications. We assume a time-slotted system where
the time cycle of energy harvesting is divided into a set
H � {1, · · · , H } of equal time slots. In this paper, we con-
sider one day (daytime) as a time cycle, e.g., from 8:00 to
16:00. An example of the energy harvesting rate (J/s) over
this time cycle is shown in Fig. 1b, which is based on the real
solar data collected from the Baseline Measurement System
at the NREL Solar Radiation Research Laboratory [29] on
December 12, 2012. If we assume that the duration (granu-
larity) of a time slot is � = 10 min, then the total number
of time slots is H = 48. Since this work mainly focuses on
jointly optimizing rate control, routing, and energy manage-
ment to maximize the network utility of dynamic-routing
RSNs, the channel model and link scheduling in the MAC
layer can be referred to existing literatures [30]. The prime
role of MAC is to coordinate access to and transmis-
sion over a common medium (wireless channel). The sur-
vey [30] provides a comprehensive state-of-the-art study
on WSN MAC protocols, which can be trivially employed
in RSNs.

Some important notations used in this paper are sum-
marized in Table 1. In the remainder of this work, we also
use the following mathematical notations: ‖x‖2 denotes
the L2 (Euclidean) norm of x; [·]+ denotes max {·, 0}; [·]ba
denotes min {max {·, a} , b}; f ′ (·) denotes the first deriva-
tive of function f (·); and f −1 (·) denotes the inverse of
function f (·).

3.2 Flow constraint

At each time slot h ∈ H, let rh
i denote the source i’s sam-

pling rate, and f h
ij (or f h

is) for the flow rate from source i to
source j (or sink s). The link from source i to source j (or
sink s) has finite link capacity ch

ij (or ch
is), which changes at

Fig. 1 System model
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Table 1 Summary of notations

Symbol Definition Unita

i (or j ), N , N index, number, set of source nodes n/a

s sink node n/a

h (or t), H , H index, number, set of time slots n/a

� duration (granularity) of a time slot s

r , r sampling rate, sampling rate vector kbps

f , f flow rate, flow rate matrix kbps

c link capacity kbps

d physical distance m

er , es , et energy consumption rates for receiving,
J/kb

sampling, transmitting a unit of data

α, β parameters for calculating et n/a

π energy harvesting rate J/s

ψ total energy consumption rate J/s

B, B0, Bmax battery level, initial battery level, battery capacity J

δ missed energy J

D accumulated energy demand J

L, U lower, upper bound of energy constraint J

W (·) utility function n/a

λ, μ, ν Lagrangian (energy, flow) multiplier n/a

ε comprehensive energy multiplier n/a

pe, pe, ωe, ωe energy price, weight (vector) n/a

p, ω comprehensive price, weight n/a

R, F , � matrix of r , f , δ n/a

�, M , ν matrix of λ, μ, vector of ν n/a

F (·) joint rate control and routing subproblem n/a

G(·) energy management subproblem n/a

X (·) rate control subproblem n/a

Y (·) routing subproblem n/a

γλ, γμ, γν step size in iterations of λ, μ, ν n/a

θf , θδ step size in iterations of f , δ n/a

k, m index of iterations n/a

ε error tolerance (stopping criterion) n/a

aThe unit of a quantity may be omitted in the rest of the paper if it is specified here

each time slot h ∈ H. We consider fractional routing in this
paper. Thus, the flow constraint of each source1 is

∑

j∈N
f h

ji + rh
i ≤

∑

j∈N∪{s}
f h

ij , (1)

f h
ij ≤ ch

ij ∀j ∈ N ∪ {s}, (2)

which indicates that the incoming flow rate plus the sam-
pling rate should not exceed the outgoing flow rate,2 and

1The sink is the terminal of the entire network, and thus there is no
need to consider the flow constraint on it.

the flow rate should not exceed the link capacity. This is the
spatially-coupled constraint which couples one link’s flow
rate with those of others.

3.3 Energy constraint

At each time slot h ∈ H, let πh
i denote the source i’s

energy harvesting rate, which is a random variable as shown
in Fig. 1b. In this paper, we assume it to be predicted and
estimated with high accuracy based on historical data and
advanced technology [31]. Each source consumes energy

2Obviously, f h
ii = 0, therefore, we do not separate f h

ii out of∑
j∈N f h

ji or
∑

j∈N∪{s} f h
ij .
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for sensing and communication (including data reception
and transmission). Let er

i and es
i denote the source i’s energy

consumption rates for receiving and sampling a unit of data,
respectively. Further, let et

ij (or et
is) denote the source i’s

energy consumption rate for transmitting a unit of data to
source j (or sink s) which is dij (or dis) apart: et

ij = α1 +
α2d

β
ij (or et

is = α1 + α2d
β
is), where α1, α2 > 0 are the con-

stant coefficients and β is the path loss exponent (2 ≤ β ≤ 4
for the free-space and short-to-medium-range radio com-
munication) [32]. The total (here the term “total” includes
receiving, sampling, and transmitting) energy consumption
rate of each source is defined by

ψh
i � er

i

∑

j∈N
f h

ji + es
i r

h
i +

∑

j∈N∪{s}
et
ij f

h
ij , (3)

where one source’s flow rate is coupled with those of others.
Let Bh

i denote the source i’s battery level at the end of
time slot h, which is calculated as

Bh
i =

[
Bh−1

i + πh
i � − ψh

i �
]Bmax

i

0
, (4)

where � indicates the duration (granularity) of a time slot,
and Bmax

i denotes the source i’s battery capacity. For ease
of presentation, define a surplus variable [16, 28]

δh
i �

[
Bh−1

i + πh
i � − ψh

i � − Bmax
i

]+

as the “missed energy”, whose physical meaning is the
amount of the harvested energy that cannot be stored in the
source i’s battery at time slot h if the battery is full. If the
source i’s battery at time slot h is not full, then δh

i = 0. By
use of δh

i , Eq. 4 can be recursively calculated by

Bh
i = Bh−1

i + πh
i � − ψh

i � − δh
i

= B0
i +

h∑
t=1

πt
i � −

h∑
t=1

ψt
i � −

h∑
t=1

δt
i ,

(5)

where the source i’s initial battery level B0
i is assumed to be

known.
With finite battery capacity, the energy consumption rate

of each source3 is constrained by

0 ≤ Bh
i = Bh−1

i + πh
i � − ψh

i � − δh
i ≤ Bmax

i , (6)

which indicates that the energy consumption rate should be
neither too large such that the source depletes the battery

3The sink is assumed to connect to the mains, and thus there is no need
to consider the energy constraint on it.

and stops working (aggressive case), nor too small such that
the battery level reaches maximum and misses recharging
opportunities (conservative case).

By substituting (5) for Bh
i , Eq. 6 can be rewritten as

0 ≤ Bh
i = B0

i +
h∑

t=1

πt
i � −

h∑

t=1

(
ψt

i � + δt
i

) ≤ Bmax
i .

For simplicity, we define a variable

Dh
i �

h∑

t=1

(
ψt

i � + δt
i

)
(7)

as the source i’s accumulated energy demand from begin-
ning to time slot h, and two constants
⎧
⎨

⎩

Lh
i � Uh

i − Bmax
i

Uh
i � B0

i +
h∑

t=1
πt

i �

to be the lower and upper bounds of the energy constraint.
Thus, the energy constraint of each source is

Lh
i ≤ Dh

i ≤ Uh
i , (8)

where the energy consumption rate of each source is cou-
pled across the time horizon. This is the spatiotemporally-
coupled constraint which couples one source’s flow rate
with those of others across the time horizon.

3.4 Problem formulation

The source i attains utility W
(
rh
i

)
when it samples data at

rate rh
i at time slot h, where the utility can be a specific

performance (e.g., data gathering) required by applications.
The utility function W (·) is assumed to be continuously
differentiable, increasing, and strictly concave [16]. For
example, let W

(
rh
i

)
� log

(
rh
i

)
, which is known to guar-

antee the fairness of each source. The NUM problem in
dynamic-routing RSNs is to maximize the network utility∑

h∈H
∑

i∈N W
(
rh
i

)
over the sampling rate matrix R �

[
rh
i

]
i∈N ,h∈H, flow rate matrix F �

[
f h

ij

]

i∈N ,j∈N∪{s},h∈H,

and missed energy matrix � �
[
δh
i

]
i∈N ,h∈H, under the flow

constraints (1) and (2), and energy constraint (8):
Primal Problem:

max
R,F ,�

∑

h∈H

∑

i∈N
W

(
rh
i

)
(9)

s.t.

{
(1), (2), and (8)

rh
i , f h

ij , δ
h
i ≥ 0

∀i ∈ N , ∀h ∈ H.

4 Dual decomposition

With the coupled flow and energy constraints, especially the
spatiotemporally-coupled constraint (8) which couples one
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source’s flow rate with those of others across the time hori-
zon, the primal problem (9) is very challenging. However,
by means of dual decomposition [33–35], we can decouple
the original problem equivalently into separable subprob-
lems and then solve them locally. Due to strong duality, the
primal problem and its dual problem are equivalent.

4.1 Lagrangian

Define the Lagrangian

L (R, F , �;�, M) =
∑

h∈H

∑

i∈N
W

(
rh
i

)

+
∑

h∈H

∑

i∈N

[
λh

i

(
Dh

i − Lh
i

)
+ μh

i

(
Uh

i − Dh
i

) ]
,

where we relax the energy constraint (8) by introducing
the Lagrangian multipliers λh

i , μ
h
i ≥ 0 (interpreted as the

energy multipliers) for each source at each time slot, and
� �

[
λh

i

]
i∈N ,h∈H, M �

[
μh

i

]
i∈N ,h∈H are the energy

multiplier matrixes.
Note that if we set λh

s = μh
s = 0 (no energy constraint on

the sink), and define a variable

εh
i �

H∑

t=h

(
λt

i − μt
i

)
(10)

as the comprehensive energy multiplier for each source
(obviously εh

s = 0) at each time slot, then we have

⎧
⎪⎪⎨

⎪⎪⎩

∑
h∈H

[ (
λh

i − μh
i

)
Dh

i

]
= ∑

h∈H

(
ψh

i � + δh
i

)
εh
i

∑
i∈N

ψh
i εh

i � = ∑
i∈N

[
rh
i es

i ε
h
i � + ∑

j∈N∪{s}
f h

ij

(
et
ij ε

h
i + er

j ε
h
j

)
�

]
.

The above equations can be proved through the expansion
of both sides and mathematical induction.

Thus, the Lagrangian is rewritten as

L (R, F , �;�, M) =
∑

h∈H

∑

i∈N

(
−λh

i L
h
i + μh

i U
h
i

)

+
∑

h∈H

∑

i∈N

⎡

⎣W
(
rh
i

)
+ p

e,h
i rh

i +
∑

j∈N∪{s}
ω

e,h
ij f h

ij + εh
i δh

i

⎤

⎦,

where

denote the energy price for each source i, the energy weight
for each link (i, j), respectively.

4.2 Subproblem and dual problem

The dual function is the maximum value of the Lagrangian
over the system variables R, F , and �:

D (�, M) = sup
R,F ,�

L (R, F , �;�, M) .

Define Subproblem:

Fh (�, M) �

max
rh
i ,f h

ij

∑
i∈N

[
W

(
rh
i

) + p
e,h
i rh

i + ∑
j∈N∪{s}

ω
e,h
ij f h

ij

]

s.t.

{
(1) and (2)

rh
i , f h

ij ≥ 0
∀i ∈ N

(12)

as the hth Lagrangian to be maximized at time slot h, and
Subproblem:

Gh
i (�, M) � max

δh
i ≥0

(
εh
i δh

i

)
(13)

as the (i, h)th Lagrangian to be maximized by source i at
time slot h. Thus, the dual function is rewritten as

D (�, M) =
∑

h∈H

∑

i∈N

(
−λh

i L
h
i + μh

i U
h
i

)

+
∑

h∈H
Fh (�, M) +

∑

h∈H

∑

i∈N
Gh

i (�, M).

The dual problem is to minimize the dual function over
the energy multipliers � and M:

Dual Problem:

min
�,M

D (�, M) (14)

s.t. λh
i , μ

h
i ≥ 0 ∀i ∈ N , ∀h ∈ H.

The dual problem (14) can be iteratively solved using the
subgradient projection method, and the energy multipliers
are updated in an opposite direction to the subgradient of
the dual function:

⎧
⎪⎪⎨

⎪⎪⎩

λ
h,k+1
i =

[
λ

h,k
i − γλ

∂D
(
�k,Mk

)

∂λ
h,k
i

]+

μ
h,k+1
i =

[
μ

h,k
i − γμ

∂D
(
�k,Mk

)

∂μ
h,k
i

]+
,

where γλ, γμ > 0 are the step sizes which adjust the con-
vergence rate, and k ∈ N

+ denotes the index of iterations.

Theorem 1 The primal problem (9) has strong duality.
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Proof First, the primal problem (9) is the maximization over
a concave function, which is equivalent to the minimization
over a convex function. Then, the inequality constraint func-
tions (1), (2), and (8) are affine. It is proved in [33, Sec.
5.3.2] that strong duality holds since (9) satisfies the con-
straint qualification.

With strong duality, the optimal duality gap is zero.
Therefore, to solve the primal problem (9) is equivalent to
solving its dual problem (14).

5 Solution

By means of dual decomposition, the global optimization
problem (9) has been equivalently decoupled into separable
local optimization subproblems. The dual function is com-
posed of two subproblems: (12) is joint rate control and
routing; and (13) is energy management — to determine the
missed energy due to finite battery capacity. We solve these
subproblems in the context of joint rate control, routing, and
energy management.

5.1 Joint rate control and routing

Since the primal problem (9) of maximizing the network
utility across the time horizon has reduced to the subprob-
lem (12) of maximizing that separately at each time slot, we
drop the superscript h from the notation for simplicity:

Primal Problem 2:

max
r,f

∑

i∈N

⎡

⎣W (ri) + pe
i ri +

∑

j∈N∪{s}
ωe

ij fij

⎤

⎦ (15)

s.t.

⎧
⎪⎨

⎪⎩

∑
j∈N

fji + ri ≤ ∑
j∈N∪{s}

fij

fij ≤ cij ∀j ∈ N ∪ {s}
ri, fij ≥ 0

∀i ∈ N ,

where r = [ri]i∈N is the sampling rate vector, and f =[
fij

]
i∈N ,j∈N∪{s} is the flow rate matrix. Similarly, since

the problem has the spatially-coupled constraint which cou-
ples one link’s flow rate with those of others, it is very
challenging. However, by means of dual decomposition, we
can decouple it equivalently into separable subproblems and
then solve them locally. Due to strong duality, the primal
problem and its dual problem are equivalent.

Define the Lagrangian

L (r, f ; ν) =
∑

i∈N

⎡

⎣W (ri) + pe
i ri +

∑

j∈N∪{s}
ωe

ij fij

⎤

⎦

+
∑

i∈N
νi

⎛

⎝
∑

j∈N∪{s}
fij −

∑

j∈N
fji − ri

⎞

⎠,

where we relax the flow constraint by introducing the
Lagrangian multiplier νi ≥ 0 (interpreted as the flow multi-
plier) for each source, and ν = [νi]i∈N is the flow multiplier
vector. Note that if we set νs = 0 (no flow constraint on the
sink), then we have

∑

i∈N
νi

⎛

⎝
∑

j∈N∪{s}
fij −

∑

j∈N
fji

⎞

⎠=
∑

i∈N

∑

j∈N∪{s}
fij

(
νi − νj

)
.

Thus, the Lagrangian is rewritten as

L (r, f ; ν) =
∑

i∈N

⎡

⎣W (ri) + piri +
∑

j∈N∪{s}
ωijfij

⎤

⎦,

where

denote the comprehensive price for each source i, the
comprehensive weight for each link (i, j), respectively.

The dual function is the maximum value of the
Lagrangian over the system variables r and f :

D (ν) = sup
r,f

L (r, f ; ν) .

Define
Subproblem 2:

as the ith Lagrangian to be maximized by source i. Thus, the
dual function is rewritten as

D(ν) =
∑

i∈N

[
Xi(νi) + Yi(ν)

]
.

The dual problem is to minimize the dual function over the
flow multiplier ν: Dual Problem 2:

min
ν

D(ν) (18)

s.t. νi ≥ 0 ∀i ∈ N .

The dual problem (18) can be iteratively solved using
the gradient projection method, and the flow multiplier is
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updated in an opposite direction to the gradient of the dual
function:

νm+1
i =

[
νm
i − γν

dD (νm)

dνm
i

]+
,

where γν > 0 is the step size which adjusts the convergence
rate, and m ∈ N

+ denotes the index of iterations.

Theorem 2 The primal problem (15) has strong duality.

Proof The proof is similar to that of Theorem 1.

With strong duality, the optimal duality gap is zero.
Therefore, to solve the primal problem (15) is equivalent to
solving its dual problem (18).

By means of dual decomposition, the global optimiza-
tion problem (15) has been equivalently decoupled into N

separable local optimization subproblems (17a) and (17b)
at each source. The dual function is composed of two sub-
problems: (17a) is rate control — to determine the sampling
rate; and (17b) is routing — to determine the outgoing flow
rate. We solve these subproblems in the context of joint rate
control and routing.

1. Rate control: for the subproblem (17a) at each source,
given νm

i , the sampling rate

r̃i =
[(

W ′)−1 (−pm
i

)]+
(19)

is unique due to the strict concavity of W (·). Besides,
the function

(
W ′)−1

(·) is monotonely decreasing.
Under arbitrary νm

i , the local maximizer r̃i may not
be globally optimal. However, by duality theory, there
exists dual optimal ν̂i such that r̂i will be globally
optimal.

2. Routing: for the subproblem (17b) at each source, given
νm, the outgoing flow rate can be iteratively solved
using the gradient projection method:

f̃ij =
[
f̃ij + θf ωm

ij

]cij

0
∀j ∈ N ∪ {s}, (20)

where θf > 0 is step size which adjusts the convergence
rate.

From the above, given dual optimal ν̂ from the dual prob-
lem (18), each source can solve the subproblems (17a)
and (17b) distributively without the need to coordinate
with other sources. In other words, the flow multipliers ν̂

serve as coordination signals which align the local opti-
mality of Eq. 17a and 17b with the global optimality
of Eq. 15.

Recall that the subproblems (17a) and (17b) have the

local optimal solutions r̃i and
[
f̃ij

]

j∈N∪{s}, respectively.

Thus, we have

⎧
⎨

⎩
Xi

(
νm
i

) = W (r̃i) + pm
i r̃i

Yi (νm) = ∑
j∈N∪{s}

ωm
ij f̃ij ,

and

dD (νm)

dνm
i

=
∑

j∈N∪{s}
f̃ij −

∑

j∈N
f̃j i − r̃i .

We obtain the following flow multiplier update rule:

νm+1
i =

⎧
⎨

⎩νm
i − γν

⎡

⎣
∑

j∈N∪{s}
f̃ij −

⎛

⎝
∑

j∈N
f̃j i + r̃i

⎞

⎠

⎤

⎦

⎫
⎬

⎭

+
,

(21)

which indicates that, if the source’s incoming flow rate plus

sampling rate
(∑

j∈N f̃j i + r̃i

)
exceeds its outgoing flow

rate
∑

j∈N∪{s} f̃ij , the flow multiplier νi will rise, decreas-
ing the comprehensive price pi and weight

[
ωji

]
j∈N , and

increasing the comprehensive weight
[
ωij

]
j∈N∪{s}, which

will in turn decrease the sampling rate r̃i and incoming

flow rate
[
f̃j i

]

j∈N , and increase the outgoing flow rate
[
f̃ij

]

j∈N∪{s}, and vice versa.

From the discussion, each source can be treated as
processors in the distributed computation system to solve
the problem (15). We propose a distributed algorithm
(Algorithm 1) in the context of joint rate control and
routing (JR2), which converges to the optimal solution.
Given the energy price pe �

[
pe

i

]
i∈N and weight ωe �[

ωe
ij

]

i∈N ,j∈N∪{s}, the JR2 algorithm will return the optimal

sampling rate r̂
h and flow rate f̂

h
in a distributed man-

ner. The algorithm runs until flow multipliers ν converge
within a small range ε, which indicates the error tolerance
(stopping criterion).

5.2 Joint rate control, routing, and energy management

1. Joint rate control and routing: for the subproblem (12)
at each time slot, given the energy price pe,h and weight
ωe,h, the JR2 algorithm will return the optimal sampling

rate r̂
h and flow rate f̂

h
in a distributed manner.
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2. Energy management: for the subproblem (13) at each
source at each time slot, given �k , Mk , the missed
energy can be iteratively solved using the gradient
projection method:

δ̂h
i =

[
δ̂h
i + θδε

h,k
i

]+
, (22)

where θδ > 0 is the step size which adjusts the
convergence rate.

From the above, given dual optimal �∗ and M∗ from the
dual problem (14), each source can solve the subproblems
(12) and (13) distributively without the need to coordinate
with other sources or time slots. In other words, the energy
multipliers �∗ and M∗ serve as coordination signals which
align the local optimality of Eqs. 12 and 13 with the global
optimality of Eq. 9.

Recall that the subproblems (12) and (13) have the local

optimal solutions r̂
h, f̂

h
, and δ̂h

i , respectively. Thus, we
have
⎧
⎪⎨

⎪⎩
Fh

(
�k, Mk

) = ∑
i∈N

[
W

(
r̂h
i

)
+ p

e,h,k
i r̂h

i + ∑
j∈N∪{s}

ω
e,h,k
ij f̂ h

ij

]

Gh
i

(
�k, Mk

) = ε
h,k
i δ̂h

i ,

and
⎧
⎪⎨

⎪⎩

∂D
(
�k,Mk

)

∂λ
h,k
i

= D̂h
i − Lh

i

∂D
(
�k,Mk

)

∂μ
h,k
i

= Uh
i − D̂h

i .

We obtain the following energy multiplier update rules:

which indicates that, if the source’s accumulated energy

demand D̂h
i is less than the lower bound Lh

i (conserva-
tive case), the energy multiplier λh

i will rise, increasing the
comprehensive energy multiplier εh

i , and thereby the energy

price p
e,h
i and weight ω

e,h
ij , which will in turn increase the

energy consumption rate ψ̂h
i and missed energy δ̂h

i ; how-
ever, if it exceeds the upper bound Uh

i (aggressive case), μh
i

will rise, decreasing εh
i , and thereby p

e,h
i and ω

e,h
ij , which

will in turn decrease ψ̂h
i and δ̂h

i .
From the discussion, each source can be treated as pro-

cessors in the distributed computation system to solve the
NUM problem in dynamic-routing RSNs with the flow
and energy constraints. We propose a distributed algorithm
(Algorithm 2) in the context of joint rate control, rout-
ing, and energy management (JR2E), which converges to
the globally optimal solution. Given the network topology
and configuration, energy consumption rate and energy har-
vesting profile, and link/battery capacity and initial battery
level, the JR2E algorithm will return the globally opti-
mal sampling rate R∗, flow rate F ∗, and missed energy
�∗ in a distributed manner. Note that the JR2E algorithm
involves two levels of iterations: the upper-level itera-
tion, i.e., Eq. 23a and 23b, adjusts the energy multipliers
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of each source at each time slot to satisfy the energy
constraint; while the lower-level iteration, i.e., Eq. 21 in the
JR2 algorithm, adjusts the flow multiplier of each source to
satisfy the flow constraint. The algorithm runs until energy
multipliers � and M converge within a small range ε, which
indicates the error tolerance (stopping criterion). The com-
munication overhead is a few signaling messages to broad-
cast by each source. The amount of signaling messages

is relatively small, compared to that of one day’s sampling
data. Besides, since we assume the energy harvesting rate
to be predicted and estimated with high accuracy, the algo-
rithm performs only once at the beginning of the time cycle
(one day) in an offline manner. Compared to the amount of
battery capacity and one day’s energy harvesting, the sig-
naling energy has relatively small impact on the problem
investigated.

6 Numerical results

6.1 Simulation setup

In this section, we provide numerical results to demonstrate
the performance of the proposed algorithm. Each source
has a 37×33 mm2 solar photovoltaic panel, and a super
capacitor as the rechargeable battery, whose capacity is 304
J . Besides, each source has a wireless transceiver mod-
ule such as Telos [36], and the energy consumption rates
for receiving and sampling a unit of data are 0.069 J/kb

and 0.0054 J/kb, respectively [16, 28]. The energy con-
sumption rate for transmitting a unit of data over a physical

distance d is (0.003+0.0002×d3.14) J/kb [32]. We use the
real solar data collected from the Baseline Measurement
System at the NREL Solar Radiation Research Laboratory
[29]. For example, the data at noon on December 12, 2012
is 512 W/m2, so the energy harvesting rate at that time
is 0.625 J/s, as shown by the energy harvesting profile
in Fig. 1b.4 Assume that the initial battery level of each
source is zero. Let the utility function be W

(
rh
i

)
� log

(
rh
i

)
,

which is known to guarantee the fairness of each source.

4The following figures are based on the solar data of December 12,
2012. We focus on the daytime since the energy harvesting rate is zero
at night.
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Table 2 Parameter setting

Parameter Value Parameter Value

er 0.069 J/kb α1 0.003

es 0.0054 J/kb α2 0.0002

Bmax 304 J β 3.14

The above simulation parameters are summarized in Table 2
for reference. All the following results are obtained by
MATLAB R2011a running on a laptop PC with Intel Core
i5-3320 CPU @ 2.6 GHz, 4 GB RAM memory, and 32-bit
Windows 7 OS.

6.2 Joint rate control and routing

We first consider the case of joint rate control and routing. In
order to clearly illustrate the simulation result, we consider
a simple dynamic-routing RSN comprised of two source
nodes and one sink node, with the network topology and
physical distances shown in Fig. 1a. The link capacity is set
as 0.5 kbps in order to evaluate the impact of link capacity
on the simulation result. The reason is that, since the net-
work scale is small, if the link capacity is set too large, then
the flow constraint will be slack. At one time slot, given the
energy price and weight of all sources pe = [−1, −1] and
ωe = [−3, −1; −1, −1], the JR2 algorithm returns the opti-
mal sampling rate and flow rate of all sources. The iterative
process is shown in Fig. 2a. Initially each source begins with
an arbitrary flow multiplier. Through iteration, it is observed
that the sampling rate of each source and the flow rate of
each link converges to the optimum. The solution obtained
by the JR2 algorithm is shown in Fig. 2b, which satisfies the
flow constraint and yields the maximum network utility.

6.3 Joint rate control, routing, and energy management

We then consider the case of joint rate control, routing,
and energy management. Given the network topology and

configuration [shown in Fig. 1a], and energy harvesting
profile [shown in Fig. 1b], the JR2E algorithm returns the
globally optimal sampling rate, flow rate, and missed energy
of all sources at all time slots. The simulation results are
shown in Fig. 3. It is observed that the sampling rates are
allocated evenly among sources and time horizon. The rea-
son is that, for the logarithmic utility function, the flatter the
curves of source rate, the higher the network utility. Across
the time horizon, no source depletes the battery and stops
working. The solution obtained by the JR2E algorithm sat-
isfies both the flow and energy constraints, and yields the
maximum network utility.

6.4 Optimality and scalability

In this paper, we propose the JR2E algorithm to solve the
problem (9) in a distributed manner. As a nonlinear prob-
lem (NLP), it could be centrally solved through an NLP
solver. On one hand, to demonstrate the global optimal-
ity of the distributed algorithm, we compare the solution
of JR2E with that of a centralized solver YALMIP [37].
On the other hand, to investigate the scalability issue of
the JR2E algorithm, we extend the above simulation to
densely-deployed and large-scale RSNs with more sources.
We consider dynamic-routing RSNs with the number of
sources equal to 2l , which increases exponentially with l.
To be more practical, we set the link capacity as 10 kbps

based on some real WSN platforms [38]. In Table 3 we
list sample solutions for comparison. It is observed that the
JR2E and YALMIP solutions are almost the same, where the
very small differences result from the error tolerance ε (here
we choose 10−4). Since JR2E can achieve almost the same
results as a centralized solver, its global optimality is guar-
anteed. This is where our propose algorithm outperforms
existing distributed approaches. On the other hand, we can
see that YALMIP returns NaN (not a number) when the
source number is larger than 26, while JR2E reports out of
memory when the source number is larger than 211. This is
because the centralized approach requires the control center

Fig. 2 Joint rate control and
routing
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Fig. 3 Joint rate control,
routing, and energy management
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with large memory space and powerful computing capabil-
ity, while the distributed approach distributes the memory
space and computing capability to each source, at the cost
of increased communication overhead.

Table 3 Comparison between JR2E and YALMIP solutions

Number of sources Network utility

JR2E YALMIP

2 −3.3864 −3.3863

22 −6.7729 −6.7726

23 −13.5457 −13.5452

24 −27.0914 −27.0904

25 −54.1828 −54.1811

26 −108.3657 NaN

27 −216.7314 NaN

28 −433.4628 NaN

29 −866.9255 NaN

210 −1733.9 NaN

211 Out of memory NaN

7 Conclusion and future work

In this paper, the NUM problem in dynamic-routing RSNs
with the flow and energy constraints has been fully inves-
tigated. The challenge lies in that the flow constraint is
spatially coupled and the energy constraint is spatiotempo-
rally coupled. We attempt to jointly optimize rate control,
routing, and energy management by carefully tackling the
flow and energy constraints. By means of dual decompo-
sition, we decouple the original problem equivalently into
separable subproblems, which can be locally solved. Based
on this, we propose a distributed algorithm to obtain the
globally optimal solution. Numerical results based on real
solar data are presented to validate our theoretical analysis.

Based on our work in dynamic-routing RSNs, selecting
only one path per source is harder since it is not allowed to
split traffic. It will be formulated as a mixed-integer linear
programming (MILP) problem and will be considered as our
future work. On the other hand, since the energy harvesting
rate can be considered as a random variable, how its stochas-
ticity will affect the network utility needs to be further
investigated. Besides, if the energy harvesting rate can-
not be accurately predicted, especially over long interval,
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then the proposed algorithm should be performed at each
time slot. In this online manner, the signaling messages and
energy may not be ignored, and their impact on the problem
investigated is worth exploring.
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