
Peer-to-Peer Netw. Appl. (2018) 11:139–151
DOI 10.1007/s12083-016-0505-9

Towards the oneM2M standards for building IoT
ecosystem: Analysis, implementation and lessons

Jaeho Kim1,2 · Sung-Chan Choi2 · Jaeseok Yun2 · Jang-Won Lee1

Received: 14 March 2016 / Accepted: 8 September 2016 / Published online: 30 September 2016
© Springer Science+Business Media New York 2016

Abstract As the Internet of Things (IoT) revolution
presents an enormous opportunity for all industry verticals
ranging from startups to large enterprises to create new
types of services, standard bodies and global alliances have
been working on establishing common standards for IoT
systems. The oneM2M is the global partnership developing
standards for Machine-to-Machine (M2M) communications
and the Internet of Things. It develops technical specifi-
cations for the globally-applicable, interoperable common
M2M/IoT service layer platforms, which play a pivotal role
in building the ecosystem driven by key players, includ-
ing developers and consumers. In this paper, we analyze
the oneM2M standards, and introduce Mobius and &Cube,
which are oneM2M-compliant M2M/IoT software plat-
forms for servers and devices, respectively. We also present
four pilot services using the platforms and several prototype

� Jaeho Kim
jaehokim@yonsei.ac.kr; jhkim@keti.re.kr

Sung-Chan Choi
csc@keti.re.kr

Jaeseok Yun
jaeseok@keti.re.kr

Jang-Won Lee
jangwon@yonsei.ac.kr

1 School of Electrical and Electronic Engineering, College
of Engineering, Yonsei University, 50 Yonsei-ro,
Seodaemun-gu, Seoul 120-749, South Korea

2 IoT Platform Research Center, Korea Electronics
Technology Institute, 25 Saenari-ro, Bundang-gu,
Seongnam 463-816, South Korea

IoT devices. Finally, we discuss three aspects, advanced dis-
covery, open API, and peer-to-peer that are required for the
oneM2M to build IoT ecosystem by attracting developers
and consumers into the emerging IoT ecosystem.

Keywords Internet of Things · oneM2M standards · IoT
platforms · Mobius · &Cube · Discovery · Open API ·
Peer-to-Peer · IoT ecosystem

1 Introduction

Over the past years, the Internet of Things (IoT) has been an
obvious trend and changed our everyday lifestyle with new
types of smart devices and applications. Due to advances in
the IoT enabling technologies including low-power sensors,
wearables, embedded systems, smartphones, and wireless
connectivity, things in the world can communicate each
other and thus share information about the changes in
their status and surroundings. Such Internet connectivity
for ‘things’ allows developers and manufacturers to build
creative products and entirely new services, which can ben-
efit people in an intelligent and proactive manner. In other
words, IoT gives us a chance to extend long-established
Internet-based services beyond existing business models.

The main obstacle for building the emerging IoT ecosys-
tem will be certainly the lack of standardized infrastructure
that enables IoT systems to be interoperated across different
industry verticals. Several studies have been conducted to
build an integrated and interoperable architecture for smart
grid systems [1, 2] and peer-to-peer (P2P) network and
communication [3]. Similarly, anticipating the new opportu-
nities and challenges by the emerging IoT industries, global
tech companies and standards development organizations

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-016-0505-9&domain=pdf
http://orcid.org/0000-0001-6597-7988
mailto:
mailto:csc@keti.re.kr
mailto:jaeseok@keti.re.kr
mailto:jangwon@yonsei.ac.kr

140 Peer-to-Peer Netw. Appl. (2018) 11:139–151

(SDOs) have established an international partnership project
for IoT standards, the oneM2M Global Initiative, in 2012
and announced the first release of oneM2M specifications
in 2015 [4].

Since the initial release of oneM2M specifications, we
have developed oneM2M-compliant IoT software plat-
forms, Mobius and &Cube, which serve as IoT service
server platform and device software platform, respectively.
The Mobius offers common service functions required by
oneM2M specifications and protocol bindings for hypertext
transfer protocol (HTTP), message queuing telemetry trans-
port (MQTT), constrained application protocol (CoAP).
We also develop additional parts (i.e., non-oneM2M fea-
tures) designed for establishing a global IoT ecosystem,
including global discovery, IoT application store, mashup
API organization, and open API scheme. The &Cube
offers common service functions that enable IoT devices
to communicate with the Mobius. Also, additional fea-
tures are developed for managing things connected (i.e.,
sensors and actuators) and applications running on the &
Cube.

In this paper, we introduce the oneM2M standards and
the full details on our oneM2M platforms, Mobius and
&Cube, focusing on how we implement their common ser-
vice functions and what functions we have additionally
developed. We also present several prototype devices and
pilot services to show the practical usability of the plat-
forms. From the lessons of the pilot services and experience
on collaborating with developers and manufacturers, we
also discuss the future direction for the oneM2M standards
to build IoT ecosystem.

The Mobius and &Cube have been under test in our insti-
tute over the past years, and SK Telecom Co., a telecommu-
nication operator in S. Korea, has launched a commercial
platform based on the Mobius, called ThingPlug in 2015.
In addition, we have established an open source-based part-
nership, OCEAN (Open allianCE for iot stANdards), in
order to provide alliance members with the open source
of the Mobius and &Cube [5]. We believe that such open
source platforms based on IoT standards will help startups
and small and medium-sized enterprises (SMEs) collaborate
across different industry verticals but also create new IoT
products and services.

The remaining organization of the paper is as follows.
Section 2 presents various IoT enabling technologies and
standards. Section 3 introduces oneM2M standards and
important features. In Section 4, we demonstrate our efforts
to build IoT ecosystem, including oneM2M IoT platforms
(Mobius and &Cube), prototype devices and services, and
experiences for IoT ecosystem. In Section 5, we summa-
rize the lessons from our experience, and Section 6 offers
concluding remarks.

2 IoT enabling technologies and standards

In IoT environment, we need to have standardized technolo-
gies in order to prevent missing interoperability between
IoT devices and services. Thus, the IoT standards develop-
ment has begun and those works mainly came from stan-
dard development organizations (SDOs) as well as industry
alliances. Besides, companies with big market power like
Apple and Google have developed and promoted their prod-
ucts to attract and keep customers in the emerging IoT
ecosystem.

The oneM2M started as a global partnership project
established by 7 SDOs and 5 industrial consortia in
2012. The oneM2M develops technical specifications for
globally-applicable and access-independent M2M/IoT solu-
tions, and it has standardized Release 1 specifications in
January 2015 [4]. Likewise, the 3GPP (3rd Generation Part-
nership Project) was organized from 7 SDOs as a global
partnership whose area is mainly mobile communication
technology. The 3GPP defines machine-type communica-
tion (MTC) specifications enabling machines to communi-
cate each other on cellular networks. The IETF (Internet
Engineering Task Force)’s objective is to develop Internet
protocols and IoT-related technologies. It has been devel-
oping various Internet protocols like 6LoWPAN [6] and
CoAP [7] to use in constrained environments. Major device
management technologies such as the open mobile appli-
ance device management (OMA-DM) and broadband forum
(BBF) TR-069 have been developed.

Industry alliances have been working on IoT standards as
well. The Thread Group started by Google in 2014 focuses
on the networking protocol with secure and low-power fea-
tures using IPv6 technology with 6LoWPAN. The AllJoyn
is a software framework announced by AllSeen Alliance,
which provides the functions of discovery, connectivity, and
interaction between devices on a same Wi-Fi network. A
rival consortium, Open Interconnect Consortium (OIC) was
launched in 2014 by Intel and Samsung Electronics. The
target is to develop standards and open source softwares
for IoT connectivity and resource framework supporting
mainly P2P communication in local area network like a
home environment.

Without pursuing a unified standard, there is another
activity led by tech companies with popular commercial-
ized products and big market power. For example, in 2014,
Apple released HomeKit framework, a smart home platform
for iOS through which every home appliance can be con-
nected and controlled. Google also started the IoT business
by acquiring Dropcam and Nest Labs.

To all appearances, it currently looks like all orga-
nizations and alliances are contending each other. How-
ever, as the IoT ecosystem grows, each IoT standard

Peer-to-Peer Netw. Appl. (2018) 11:139–151 141

technology and industry market will find a better way to
collaborate one another. As such an effort, the oneM2M
provides common service platforms which cover various
vertical domains, and it also makes progress on interwork-
ing with other standards e.g., AllJoyn and OIC. In this view,
the oneM2M already shows a global standard collabora-
tion model, and also echoes our motivation that we have
developed oneM2M-based platforms to build a global IoT
ecosystem.

3 Overview of oneM2M standards

There exist many vertical business service domains includ-
ing, energy, healthcare, transportation, residence, etc. Thus,
vertical M2M/IoT solutions have been designed indepen-
dently for different applications, which inevitably cause
the fragmentation of M2M service solutions and hinder
a large-scale M2M deployment. To combat with frag-
mentation and make a healthy ecosystem with economies
of scale, the oneM2M has made efforts to standardize
a common service layer platform for globally applicable
and access-independent M2M/IoT services. Specifically,
the oneM2M has six working groups (WGs): WG1-REQ
for use cases and requirements; WG2-ARC for architec-
ture; WG3-PRO for protocols; WG4-SEC for security;
WG5-MAS for management, abstraction and semantics;
WG6-TST for testing. Swetina et al. summarize well the
organization and standardization activities for the oneM2M
WGs [8].

In this section, we give an overview of the oneM2M
standards released in January 2015 (Release 1) in several
aspects: functional architecture, common services func-
tions, addressing and discovery, communication protocols,
and security. Also, we describe several ongoing work
items (WIs) for the next version of technical specifications
(Release 2).

3.1 Functional architecture

The oneM2M initiative aims to develop common technical
specifications for IoT platforms applicable across different
industry verticals. To this end, oneM2M collected use cases
from a wide range of vertical business service domains.
Using the collected use cases, oneM2M formulated require-
ments for the oneM2M service layer [9], and then designed
the system architecture [10].

As shown in Fig. 1, the oneM2M architecture divides
M2M/IoT environments into two domains (infrastructure
domain and field domain), and defines four types of nodes:
infrastructure node (IN), middle node (MN), application ser-
vice node (ASN), and application dedicated node (ADN),

where nodes are logical entities identifiable in theM2M sys-
tems [10, 11]. Exactly an IN can be located in the infrastruc-
ture domain of any given M2M service provider whereas
its field domain can contain any group of oneM2M nodes
including MN, ASN, and ADN, or even non-oneM2M
nodes.

For the node architecture, oneM2M defines a layered
model for supporting M2M/IoT services, composed of
application layer, common services layer, and underlying
network services layer, as shown in Fig. 2. Each layer is rep-
resented as an entity model using application entity (AE),
common services entity (CSE), and network service entity
(NSE), respectively. An AE represents an entity in the appli-
cation layer residing in a number of nodes and providing
various service logics. A CSE stands for an instantiation
of a set of common service functions (CSFs) of the M2M
environments, which will be explained in more detail in the
next section. A NSE provides network services from the
underlying network to the CSEs.

For interconnecting various entities in the oneM2M sys-
tem, the oneM2M defines four reference points for com-
munication flows between entities as shown in Fig. 1: Mca
(M2M Communication with AE); Mcc (M2M Communi-
cation with CSE); Mcn (M2M Communication with NSE);
Mcc’ (M2M Communication with CSE of different M2M
Service Provider).

3.2 Common services functions (CSFs)

CSFs are groups of common service capabilities residing in
a CSE, which can be shared by different applications. As
shown in Fig. 2, CSFs include registration, data manage-
ment and repository, device management, security, commu-
nication management and delivery handling, discovery, sub-
scription and notification, service charging, and location,
etc. We introduce the formal definition and responsibilities
of the CSFs (summarized from TS-0001 [10]):

– Application and Service Layer Management: provides
management of the AEs and CSEs on the oneM2M
nodes such as IN, MN, ASN, and ADN.

– Communication Management and Delivery Handling:
provides communications with other entities including
AEs, CSEs, and NSEs.

– Data Management and Repository: provides data stor-
age and mediation function.

– Device Management: provides management capabili-
ties for devices on the oneM2M nodes in the field
domain such as MN, ASN, and ADN.

– Discovery: provides capabilities for searching specific
resources or attributes containing information about
oneM2M services and applications.

142 Peer-to-Peer Netw. Appl. (2018) 11:139–151

Fig. 1 The oneM2M reference
architecture and interconnection
between entities

– Group Management: provides capabilities for handling
group related requests.

– Location: allows AEs to obtain geographical location
information of oneM2M nodes (e.g., ASN and MN) for
location-based services.

– Network Service Exposure, Service Execution and Trigger-
ing: manages communication with underlying networks
for access network services via Mcn reference points.

– Registration: processes registration requests from AEs
or other CSEs.

– Security: handle sensitive data handling, security
administration, provisioning and administration of sub-
scriptions, and security association establishment.

– Service Charging and Accounting: provides charging
functions for the service layer, e.g., online real-time
credit control.

– Subscription and Notification: provides notifications
pertaining to a subscription keeping track of changes
on an oneM2M resource (e.g., resource creation and
deletion).

Fig. 2 The oneM2M layered
model composed of AE, CSE,
and NSE, and common services
functions residing in a CSE

Peer-to-Peer Netw. Appl. (2018) 11:139–151 143

Such services are provided to AEs via Mca as well as to
CSEs via Mcc reference points. An instantiation of a CSE
can have a subset of CSFs described above.

3.3 Naming and addressing

oneM2M adopts a resource-oriented architecture (RoA) as
a naming structure [12]. Thus, IoT devices, data, and ser-
vices are represented by resource data model. In addition,
each resource can be uniquely identified by its resource
address where it supports two different methods for address-
ing: non-hierarchical and hierarchical way. Every resource
in CSE has resource name as well as resource ID. For
non-hierarchical addressing, each resource is addressable
via its resource ID. In contrast, for hierarchical address-
ing, resource name is used for addressing its resource.
Fig. 3 shows an example of oneM2M resource structures
illustrated by a tree style. Therefore, when it comes to
addressing a resource through hierarchical address, resource
names are concatenated from parent to child of the target
resource.

For enabling an actual connection establishment and
delivering data between nodes in IoT systems, each node
needs to know the peer’s network address to access it.
To this point, oneM2M introduces Point of Contact (PoC)
mechanism for providing peer’s network address. In regis-
tration process, oneM2M node provides its network address
as a PoC attribute of its resource, and then the PoC can be
used for finding actual network address as follows: when a
node receives a message including a target address whose
format is non-hierarchical or hierarchical name as above
mentioned, it discovers the target peer and finds its PoC
attribute for accessing it. Regarding that, oneM2M currently
does not support a fully distributed name to address transla-
tion mechanism, and thus there needs more considerations
regarding an optimization point such as how to handle name
to network address translation efficiently as in [13].

Fig. 3 Resource-oriented architecture (RoA) based oneM2M resource
structure

3.4 Communication protocols

Based on the architecture-level design, the oneM2M defines
a service layer protocol, including primitives (common
service layer message formats), APIs, and message proce-
dures exchanged over the Mca, Mcc, and Mcc’ reference
points [14]. After specifying the service layer protocol,
the oneM2M also developed standardizations of protocol
binding between the service layer protocol and underly-
ing protocols. The primitives are mapped to application
layer communication protocols like CoAP [15], HTTP [16],
and MQTT [17], which use TCP or UDP as the transport
layer. In addition, WebSocket binding has been developed
and will be included in the oneM2M Release 2 standards.
Comparing with other IoT platforms such as AllJoyn, OIC,
and OMA lightweight M2M, oneM2M considers various
protocols for enabling flexible operations according to the
communication environment of IoT services. Furthermore,
oneM2M currently started a study work item regarding data
distribution service (DDS) and open platform communica-
tions (OPC) unified architecture (UA) protocol in order to
consider real-time and reliable communication environment
required in industrial domain.

3.5 Security and device management

The oneM2M standards considers security aspects as one
of basic functions of a common service layer platform.
To this end, oneM2M reflects security capabilities as fol-
lows: credential deployment and management, secure con-
nection establishment and management, authorization, and
access control [18]. In addition, for device management, the
oneM2M specifies device abstraction resources to adapt the
specific device management technologies like OMA DM
[19] and BBF TR-069 [20].

3.6 Technical specifications release

The oneM2M initiative has issued its Release 1 technical
specifications in January 2015. Table 1 summarizes pub-
lished technical specifications (Release 1) categorized by
WGs. WG6-TST was not organized for Release 1, so no TS
was publically issued in 2015. All the TS documents are
available in the oneM2M website [4].

Currently, several new work items for Release 2 are in
progress. The newwork items include interworking between
oneM2M and other M2M/IoT standards like AllJoyn, OIC,
and 3GPP, and enhanced security solutions covering end-
to-end security and group authentication, and consideration
for the wide-scale deployment like home/industrial domain
enhancement. In addition, testing and certification related
activity has started and the advanced features (e.g., big

144 Peer-to-Peer Netw. Appl. (2018) 11:139–151

data analysis and semantic technology) are being discussed.
All these considerations would help the oneM2M stan-
dards deliver a solution that builds a standard-based IoT
ecosystem.

4 Our efforts to build IoT ecosystem based
on oneM2M standards

We look into the IoT ecosystem from two sides: develop-
ers (e.g., hardware manufacturers, application developers)
and end-users (i.e., consumers). For developers, it would
be important to support developer enablement components
(e.g., platforms, prototype devices, and APIs) that help
them create new innovative products quickly and easily. For
end-users, we first need to demonstrate appealing, easy-
to-find/use IoT services to bring about their attraction that
will eventually turn into sales. Fig. 4 shows our efforts
to build an IoT ecosystem with regard to developers and
end-users.

4.1 oneM2M-based IoT platforms: Mobius and &cube

Without standards, IoT solutions would be developed inde-
pendently for different vertical domains, causing high frag-
mentation problems and increasing the overall cost for
development. Thus, the oneM2M standards and its com-
pliant platforms enable device manufacturers and software
developers to develop IoT solutions using open APIs regard-
less of underlying networks, eventually facilitating interop-
erability of devices and softwares between vertical domains
and boosting up the IoT ecosystem.

We have implemented three types of oneM2M-
defined CSEs: IN (as a part of the Mobius), MN-
CSE (&Cube:Rosemary), ASN-CSE (&Cube:Lavender), as
shown in Fig. 5. The Mobius is a server platform located
in the infrastructure domain. Mobius consists of an IN of

Table 1 oneM2M technical specifications (Release 1) published in
January 2015

WGs Reference Title

WG1
TS 0002 Use cases and requirements

TS 0011 Common Terminology

WG2 TS 0001 Functional architecture

WG3

TS 0004 Service layer core protocol specification

TS 0008 CoAP protocol binding

TS 0009 HTTP protocol binding

TS 0010 MQTT protocol binding

WG4 TS 0003 Security solutions

WG5
TS 0005 Management enablement (OMA)

TS 0006 Management enablement (BBF)

oneM2M, GDP (global discovery platform), and ASP (IoT
application store platform). The IN-CSE provides CSFs
defined in the oneM2M. In addition, to interwork with exte-
rior points, the Mobius provides bindings for HTTP, MQTT,
and CoAP protocols. We now support certificate-based
security solutions working with an additional authentica-
tion server. For managing data from hundreds of thousands
of devices, the Mobius utilizes in-memory database Redis
and NoSQL database MongoDB in a hybrid way. With this
mechanism, the Mobius provides a very efficient method
through which a large amount of data can be handled in a
short time. Additionally, the IN of the Mobius provides the
functionality of creating mashup API with which users can
efficiently access to resources in the Mobius. The way of
forming a new mashup API composed of random number
and text will enhance security by not exposing the resource
topology in the Mobius and it can also provide APIs with
shortened URL.

The GDP supports interworking with other INs in dif-
ferent service providers by collecting their metadata with
open APIs. Those metadata information can be used for
discovery mechanism afterwards. The GDP also supports
real-time indexing regarding metadata saved in the database,
and provides various discovery criteria like keywords, loca-
tion, access rights, and ID. The GDP manages metadata for
devices as well as for users and services, e.g., registration,
profile, access authority of users and services. Additionally,
it provides a function for managing a ‘Topic’ under which
a community of users and devices can be managed as a
group.

The ASP supports the marketplace in IoT environment,
which can enlarge the IoT application ecosystem from the
existing smartphone application ecosystem. Developers can
publish their application, which can monitor and control an
IoT device, to the ASP via the AppManagement component
in Fig. 5. Once published, the application will be managed
in the App Repository component. Users can discover and
download the apps using the App Discovery component and
the Download Management component.

For the field domain, we have developed two types of
IoT device software platforms (i.e., &Cube) for providing
a base for IoT gateways and devices: &Cube:Rosemary
and &Cube:Lavender. The &Cube:Rosemary is designed to
be a MN-CSE in oneM2M standards, acting as a gateway
for IoT devices. In contrast, the &Cube:Lavender is devel-
oped to be an ASN-CSE in oneM2M standards, and be able
to directly interwork with Mobius as well as through the
&Cube:Rosemary.

4.2 Prototype devices and pilot services

For developers to get started with our oneM2M platforms,
we have been running the Mobius with a public domain

Peer-to-Peer Netw. Appl. (2018) 11:139–151 145

Fig. 4 Our efforts to build an
IoT ecosystem from developer
and end-user perspectives

name (http://iotmobius.com), and tested the &Cube on vari-
ous Linux-based embedded devices including Raspberry-Pi.
We have also developed several prototype devices that can
be used for developing IoT services. Finally, to show the
vision of the oneM2M standards and the practical usabil-
ity of our platforms, we have implemented four pilot
services.

4.2.1 Prototype devices

Fig. 6 shows five embedded hardware devices with which
we have tested &Cube and five prototype devices.

– IoT gateway devices
Because we developed the &Cube as a middleware

running on the Java Virtual Machine (JVM), it would
be easy for developers to install it to any embedded sys-
tem with a JVM. We have performed testing with three
open hardware kits including Raspberry-Pi (Fig. 6a),
BeagleBone Black (Fig. 6b), and IoTG100 from CRZ
tech (Fig. 6c) as well as 3G (Fig. 6d) and LTE (Fig. 6e)
modules.

– IoT devices
We have developed five types of IoT devices, includ-

ing multi-functional sensors, smart plugs, wireless

Search engine User
management

Metadata
management

Topic
management

App download
management

App discovery
management

App
management App repository

ASP (IoT app store platform)

Open APIs

GDP (global discovery platform)

Open APIs

ASP APIs

Mobius

ADN-AE ADN-AE

&Cube

Mca Mcc Mcc

Mca

Mca MccMca
ASN-AE

ASN-CSE
(&Cube:Lavender)

Mca
MN-CSE

(&Cube:Rosemary)

MN-AE

ASN-CSE
(&Cube:Lavender)

Mca
ASN-AE

IN of service provider C
IN of service provider Bp

IN-CSE (common service entity)

CoAP proxyHTTP server MQTT broker

Mashup API
management

Authentication
server

Open APIs IN of service provider A

Open APIs
Open APIs

Mcc’

Fig. 5 Overall configuration of oneM2M-compliant platforms, Mobius and &Cube

146 Peer-to-Peer Netw. Appl. (2018) 11:139–151

Fig. 6 IoT gateway devices running &Cube (a)-(e) and prototype IoT
devices (f)-(j), (a) Raspberry-Pi, (b) BeagleBone Black, (c) IoTG100,
CRZ tech, (d) NEO-W100 3G router, MDS tech, (e) BPL-R300 LTE

router, B&P, (f) multi-functional sensor for measuring temperature,
humidity, illumination, and occupancy, (g) smart plug, (h) wireless
switch, (i) smart dice, (j) wall light switch

switches, smart dices, and wall light switches. Multi-
functional sensors can measure temperature, humidity,
illumination, and occupancy (Fig. 6f). Smart plugs can
be used as both sensors and actuators (Fig. 6g). A
smart plug can measure electrical power consumed in
an electrical device that it was plugged in, and can
instantly turn on/off the device. For the easy-to-use
input interface, we have developed wireless switches
(Fig. 6h) and smart dice (Fig. 6i). Wireless switches
command smart plugs to turn electrical devices on/off
just like a remote controller. The smart dice embedded
with a 3-axis accelerometer provides six different out-
puts by positioning each sensitive axis (X, Y, Z) of the
accelerometer at +g and g, each of which can command
smart plugs or another devices to perform a task. For
wireless wall light switches (Fig. 6g), we have mod-
ified a commercially-available IR remote control wall
light. All devices use a Texas Instruments SoC solution
for IEEE 802.15.4 applications, CC2530, to provide
wireless connectivity to IoT gateway devices.

4.2.2 Pilot Services

We have developed four pilot services: iThing, TTEO,
Planty, and iDrone. We have uploaded each demonstration
video on YouTube, and Fig. 7 illustrates the still images
captured from the videos.

– iThing
The iThing provides a voice-based home control

service using Android’s SpeechRecognizer API con-
verting a user’s verbal command to text via Android
phones. According to the interpretation of the user’s
command, theMobius will send appropriate control sig-
nals (i.e., on/off) to smart plugs (i.e., home appliances).
The iThing can also be used to trigger user-defined
actions for the connected home, for example, “sleep
mode!” (see Fig. 7a and the video, http://youtu.be/
6pe1HdpUOnA).

– TTEO
The TTEO is a rule-based home automation service

that allows users to program the connected home by
setting rules for IoT devices to automate daily tasks
without human intervention. The TTEO app provides
a GUI with which users create simple but powerful
if-then rules between home appliances working with
our platforms. This easy-to-use GUI-based interaction
method will clearly help people deploy and configure
their connected homes without any technical or pro-
gramming knowledge (see Fig. 7b and the video, http://
youtu.be/9Veka6C2FrE).

– Planty
The Planty is a personal connected flowerpot that

allows users to remotely monitor and grow their flower.
It includes sensors that measure temperature, light, and

http://youtu.be/6pe1HdpUOnA
http://youtu.be/6pe1HdpUOnA
http://youtu.be/9Veka6C2FrE
http://youtu.be/9Veka6C2FrE

Peer-to-Peer Netw. Appl. (2018) 11:139–151 147

Fig. 7 Captured images of the
developed pilot services: (a)
iThing, (b) TTEO, (c) Planty, (d)
iDrone

soil moisture as well as actuators that control light and
water for plants. All functions can be automated via its
smartphone app (see Fig. 7c and the video, http://youtu.
be/xdMzjYU1xyM).

– iDrone
The iDrone is a connected drone (i.e., unmanned

aerial vehicle) that we can control in (almost) real-
time. Considering the hot trend of integrating IoT with
drones, we have developed a smartphone app that sends
control commands to a Parrot AR.Drone using its open
APIs and our platforms. We have also created an appli-
cation to control the drone by flipping over the smart
dice (see Fig. 7d and the video, http://youtu.be/azMP0
XY3-M).

4.3 Performance analysis

We conduct simulation tests to show stable operation of
the developed IoT platforms in terms of three performance
indicators: the number of devices that can be registered,
average response time and transactions per second (TPS) for
requests of resource creation and retrieval. We use Apache
JMeter, a performance measuring tool for Web applications,
to test functional behaviors and measure the performance
indicators we have chosen.

First, the device registration test shows that we can suc-
cessfully register over 300,000 of IoT devices with the
Mobius. Next, we perform two tests for measuring aver-
age response time and TPS when 300,000 of registered
IoT devices simultaneously request resource creation or

resource retrieval. Table 2 shows the result of simulation
tests. Both tests show around 50 msec of average response
time and over 300 TPS transaction processing capability.

4.4 Experiences for the IoT ecosystem

Besides developing IoT platforms and pilot services, we
have also made some efforts for establishing the IoT ecosys-
tem. For developers, we opened the core source codes
of the Mobius and &Cube to disseminate those oneM2M
platforms and to lower barriers for developers to create
oneM2M-compliant IoT products. To support these efforts,
we established an open-source based partnership, OCEAN
[5], to leverage collaboration among different verticals by
disseminating the open source codes and guidelines for
developing IoT services. Another keystone for developers
in the IoT ecosystem will be an open API-based develop-
ment framework because it will help developers separately
develop their products and applications just like a smart-
phone ecosystem. Thus, we have built a web portal, called
the Open API Site, for sharing the information about open
APIs for IoT devices [21].

From the perspective of consumers, in the emerging IoT
era, we will be surrounded by countless IoT devices, and
probably need a way of browsing them near the place where
we are or we want to explore. To this end, we have devel-
oped the IoT Browser, a map-based smartphone application
for searching IoT devices worldwide. It can display the
IoT device’s location on the map (currently available for
Google, Daum, Naver Map), and provide capabilities for

http://youtu.be/xdMzjYU1xyM
http://youtu.be/xdMzjYU1xyM
http://youtu.be/azMP0_XY3-M
http://youtu.be/azMP0_XY3-M

148 Peer-to-Peer Netw. Appl. (2018) 11:139–151

Table 2 Result of simulation
tests for resource creation and
resource retrieval

of requests Average response time (msec) TPS

Resource creation 190,869 42 317.4

Resource retrieval 190,887 53 317.3

discovering IoT devices in terms of ID, topic, keyword,
address, and location by working together with theMobius’s
open APIs. The IoT Browser is also designed to work as
an app launcher, which allows us to select the IoT device
we want to connect, and then run (or download if not
installed) its compatible smartphone app. The IoT Browser
can be found at the iOS and Android application stores
[22, 23].

5 Lessons from experience to support the IoT
ecosystem

In this chapter, we discuss three key features which
will be required for the oneM2M to build a global IoT
ecosystem: advanced discovery, open API and peer-to-peer
support.

5.1 Advanced discovery

In IoT environments, there are a myriad of devices and huge
data resources as well, so providing an efficient discov-
ery mechanism is considered as one of key technologies.
Edwards compared existing discovery systems and sug-
gested new challenging directions in ubiquitous computing,
including scalability, seamless interconnectivity covering
different protocols, and enhanced searching mechanism
e.g., context-awareness [24]. Meshkova et al. [25] presented
an extensive survey on service discovery frameworks in
various network scales from local-area to internet-scale.
Zhu et al. [26] analyzed the design of service discovery
protocols and compared them according to several criteria
like discovery scope (network topology and administra-
tive domain), the way of discovery and registration (query-
and announcement-based), communication method (uni-
cast, multicast, and broadcast). They also pointed out that
high-level context information like temporal, spatial, and
user activity information can save users’ time and effort in
discovering services. Those literatures stress scalability and
context-awareness of discovery systems as the key features
for enabling seamless IoT services.

In oneM2M standards, to support discovery, there exists
the discovery CSF which performs search mechanism
regarding information which represents applications and
services using resources in the directory administrated by
its service provider by matching the filter criteria like

a combination of time, keywords, type and size of con-
tents. However, oneM2M systems only support directory-
based discovery, but not peer-to-peer based discovery and
context-aware discovery. In the Mobius, the directory can
expand its scope by interlinking directories. As explained
in Section 4.1, the GDP can collect discovery information
regarding the resources located in distributed oneM2M plat-
forms of other service providers. The Mobius also supports
a way to specify location information representing various
physical locations on the map, working with street view and
augmented reality.

Cirani et al. [27] implemented a scalable and self-
configuring, peer-to-peer based architecture for large scale
IoT networks, aiming at providing an automated service
and resource discovery mechanism. They highlighted the
importance of scalability regarding service discovery in the
IoT system, and suggested a combining mechanism con-
sidering both Zeroconf-based local scope discovery and
P2P-based large-scale service discovery. As the Cirani’s
example explains, and learned from our work, we believe
that a well-established global discovery method will be piv-
otal in improving accessibility to IoT services. The aspect
for better accessibility is to provide users with an easy-
to-find way of discovering the IoT services they want.
Thus, we need to bring peer-to-peer, scalability and context-
awareness of discovery for IoT devices within the scope of
the next oneM2M standards.

5.2 Open API

Several literatures presented the necessity of providing stan-
dardized open APIs in a network platform. Mulligan [28]
summarized the activities of Google’s Open APIs and plat-
forms (i.e., OpenSocial and Android) for the developer
community, and highlighted the direction of open APIs for
the next generation networks (NGNs) and their standardiza-
tion. Sneps-Sneppe and Namiot [29] introduced the progress
of open APIs for M2M applications, in particular presented
as ETSI standards, and proposed a framework for client-side
service discovery and inter-application communication for
M2M systems to be able to find appropriate services based
on the user’s preference. Fraunhofer FOKUS’s team [30,
31] developed its own M2M platform (called OpenMTC)
together with a set of RESTful APIs that enable 3rd party
applications to access the platform. More recently, they
extended the OpenMTC architecture to support a software

Peer-to-Peer Netw. Appl. (2018) 11:139–151 149

development kit (SDK) that enables 3rd party developers to
create their own M2M applications.

As in the new OpenMTC architecture, the Mobius is
designed to support RESTful APIs available for develop-
ers to use oneM2M CSFs. In addition, as explained in
Section 4.4, Mobius allows device makers to create an
IoT device together with its open APIs. The device and
API information can be open via our web portal, Open
API Site [21], so 3rd party application developers will be
able to develop new applications for the device using the
APIs’ name and reference to the associated resources in the
Mobius platform. Accordingly, such developer enablement
resources will potentially help the developer community
create new IoT products in an efficient way.

Likewise, the latest trend in the IoT market shows the
role of open APIs to accelerate the involvement of 3rd party
software developers. One example is Philips Hue [32], the
Internet-connected LED lightbulb controllable via smart-
phone applications. Surprisingly, in 2013, Philips released
its open APIs and SDK for iOS developers (now also
available for Android), and guides for both hardware and
software makers [33]. Now, it is possible to see more than
90 iOS apps (even more Android apps) working with Hue
created by all different developers.

As the Hue example explains, and learned from the
Mobius implementation work, open APIs enable the rapid
creation of new IoT services by bringing device makers
and 3rd party application developers together via common
service platforms. Thus, this open innovation strategy com-
bined with open APIs ensures that we need to bring open
APIs supporting for IoT devices (just like Hue) within the
scope of the oneM2M standardization activities.

5.3 Peer-to-Peer support

Wu et al. presented a valuable survey on M2M/IoT systems,
and introduced a high-level IoT system architecture [34].
According to the literature, M2M/IoT systems are divided
into two different ones: hierarchical architecture and peer-
to-peer system architecture. A hierarchical system based
on a client-server model (e.g., oneM2M system) offers an
effective solution in IoT service environments. However,
there are several issues to be addressed.

First, a huge number of things joined to IoT services
lead to the explosion in the volumes of data collected and
exchanged. The explosion of data traffic causes network
and processing bottlenecks on the server side in the systems
based on a client-server model. Second, the client-server
model is not robust to large scale IoT services. If the server
providing IoT services fails, the whole IoT service system
goes down. Lastly, systems based on the client-server model
manage the personal data (e.g., user profile and health infor-
mation) on storages of their server. It could cause a serious

privacy issue–for example, due to cyber attacks, and thus
users do not prefer or agree that their personal data will be
filed into the central server.

To alleviate those problems, we need to take advantage of
peer-to-peer systems. Markatos in his research showed that
peer-to-peer computing and networking not only enables
clients to take a more active role in the information dis-
semination process, but also may significantly increase the
performance and reliability of the overall system, by elimi-
nating the traditional notion of the ‘server’ which could be
a single point of failure, and a potential bottleneck [35]. In
addition Chae et al. proposes a privacy data leakage preven-
tion method in P2P networks [36]. The proposed method
can prevent a privacy data from being leaked by releas-
ing a P2P sharing information without privacy data using a
privacy data removing technology.

Consequently, it will be carefully considered to take peer-
to-peer features into the next release of oneM2M standards,
and the following issues need to be tackled: how to sup-
port the zero configuration; how to add P2P discovery into
the previous discovery mechanism; how to support P2P
communication between ASN-CSEs using Mcc interface.

6 Conclusion

Although standard bodies and big tech companies now seem
to eagerly compete with each other to dominate the emerg-
ing IoT market, they will probably and eventually agree to
make their standards talk with each other to broaden their
IoT market share. We believe the oneM2M is at the core of
the overall vision as it will lead the collaboration together
with industry alliances like AllSeen Alliance and OIC, and
tech giants like Google and Apple. We have demonstrated
our works based on oneM2M standards including oneM2M-
compliant platforms, pilot services, and additional efforts
for an IoT ecosystem. We have also presented three key
aspects for the oneM2M to support the IoT ecosystem
including advanced discovery, open API and P2P system
support. Through our efforts, we hope to help accelerate
the diffusion of oneM2M standards, and thereby build an
unfragmented global IoT ecosystem by successfully attract-
ing both developers and consumers.

Acknowledgments Kim, Choi, and Yun were supported by Insti-
tute for Information & communications Technology Promotion (IITP)
grant funded by the Korea government (MSIP) (No.B0184-15-1003,
Development of oneM2M Conformance Testing Tool and QoS Tech-
nology) Lee was supported by Institute for Information & commu-
nications Technology Promotion(IITP) grant funded by the Korea
government(MSIP) (No.B0717-16-0024, Development on the core
technologies of transmission, modulation and coding with low-power
and low-complexity for massive connectivity in the IoT environment).

150 Peer-to-Peer Netw. Appl. (2018) 11:139–151

References

1. Mulla A, Baviskar J, Yerunkar A, Sarwadnya R (2015) Conver-
gence of Wireless Sensor Network with Smart Grid Environment
Based on IPv6 Protocol. In: Proceedings of the Fifth International
Conference on Communication Systems and Network Technolo-
gies (CSNT ’15), pp 153–158

2. Albano M, Ferreira LL, Pinho LM (2015) Convergence of Smart
Grid ICT Architectures for the Last Mile. IEEE Transactions on
Industrial Informatics 11:187–197

3. Jo S-M, Kim G, Han J (2016) Convergence P2P context aware-
ness. Peer-to-Peer Netw Appl 9:461–464

4. oneM2M. http://www.onem2m.org/technical/
published-documents (2016). Accessed 9 March 2016

5. OCEAN (Open allianCE for iot stANdard) http://iotocean.org
(2016). Accessed 9 March 2016

6. Shelby Z, Bormann C (2009) 6LoWPAN: The wireless embedded
Internet. Wiley

7. Bormann C, Castellani AP, Shelby Z (2012) CoAP: An Applica-
tion Protocol for Billions of Tiny Internet Nodes. IEEE Internet
Comput 16:62–67

8. Swetina J, Lu G, Jacobs P, Ennesser F, Song J (2014) Toward a
standardized common M2M service layer platform: Introduction
to oneM2M. IEEE Wirel Commun 21:20–26

9. oneM2M. TS-0002-Requirements-V-1.0.1. Technical Specifica-
tion (2015)

10. oneM2M. TS-0001-Functional-Architecture-V-1.6.1. Technical
Specification (2015)

11. oneM2M. TS-0011-Common-Terminology-V-1.2.1. Technical
Specification (2015)

12. Guinard D, Trifa V, Wilde E (2010) A resource oriented architec-
ture for the web of things. Internet of Things (IOT), pp 1–8

13. Amoretti M, Alphand O, Ferrari G, Rousseau F, Duda A (2014)
DINAS: a DIstributed NAming Service for All-IP Wireless Sen-
sor Networks. In: Proceedings of the IEEE Wireless Commu-
nications and Networking Conference (WCNC ’14), pp 2781–
2786

14. oneM2M. TS-0004-Service-Layer-Core-Protocol-Specification-
V-1.0.1. Technical Specification (2015)

15. oneM2M. TS-0008-CoAP-Protocol-Binding-V-1.0.1. Technical
Specification (2015)

16. oneM2M. TS-0009-HTTP-Protocol-Binding-V-1.0.1. Technical
Specification (2015)

17. oneM2M. TS-0010-MQTT-Protocol-Binding-V-1.0.1. Technical
Specification (2015)

18. oneM2M. TS-0003-Security-Solutions-V-1.0.1. Technical Speci-
fication (2015)

19. oneM2M. TS-0005-Management-Enablement(OMA)-V-1.0.1.
Technical Specification (2015)

20. oneM2M. TS-0006-Management-Enablement(BBF)-V-1.0.1.
Technical Specification (2015)

21. Open API Site. http://programmable-things.net (2016). Accessed
9 March 2016

22. IoT Browser for Android, https://play.google.com/store/apps/
details?id=com.einsware.iot browser (2016). Accessed 9 March
2016

23. IoT Browser for iOS, https://itunes.apple.com/us/app/
iot-browser-search-explore/id727763099 (2016). Accessed 9
March 2016

24. Edwards WK (2006) Discovery Systems in Ubiquitous Comput-
ing. IEEE Pervasive Comput 5:70–77

25. Meshkova E, Riihijrvi J, Petrova M, Mhnen P (2008) A sur-
vey on resource discovery mechanisms, peer-to-peer and service
discovery frameworks. Comput Netw 52:2097–2128

26. Zhu F, Matt WM, Lionel MN (2005) Service discovery in
pervasive computing environments. IEEE Pervasive Computing
4:81–90

27. Cirani S, Davoli L, Ferrari G, Leone R, Medagliani P, Picone M,
Veltri L (2014) A Scalable and Self-Configuring Architecture for
Service Discovery in the Internet of Things. IEEE IoT J 1:508–
521

28. Mulligan CEA (2009) Open API Standardization for the NGN
Platform. IEEE Commun Mag 47:108–113

29. Sneps-SneppeM., Namiot D. (2012) M2MApplications and Open
API: What Could Be Next? Internet of Things, Smart Spaces, and
Next Generation Networking:429–439

30. Elmangoush A, Magedanz T, Blotny A, Blum N (2012) Design
of RESTful APIs for M2M services. In: Proceedings of the
16th International Conference on Intelligence in Next Generation
Networks (ICIN ’12), pp 50–56

31. Elmangoush A, Steinke R, Al-Hezmi A, Magedanz T (2014) On
The Usage of Standardised M2M Platforms for Smart Energy
Management. In: Proceedings of the International Conference on
Information Networking (ICOIN ’14), pp 79–84

32. Philips Hue LED lightbulb. http://www.meethue.com (2016).
Accessed 9 March 2016

33. Philips Hue Developer Program. http://www.developers.meethue.
com (2016). Accessed 9 March 2016

34. Wu G, Talwar S, Johnsson K, Himayat N, Johnson KD (2011)
M2M: From Mobile to Embedded Internet. IEEE Commun Mag
49:36–43

35. Markatos EP (2002) Tracing a Large-scale Peer to Peer Sys-
tem: an Hour in the Life of Gnutella. In: Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGRID ’02)

36. Chae C-J, Shin Y, Choi K, Kim K-B, Choi K-N (2016) A Privacy
Data Leakage Prevention Method in P2P Networks. Peer-to-Peer
Netw Appl 9:508–519

Jaeho Kim is a managerial
researcher and a team leader in
IoT Platform Research Center
at the Korea Electronics Tech-
nology Institute. He is now
serving as IoT Convergence
Service Project Group chair
of TTA and Device Work-
ing Group chair of Korea IoT
Association. He received the
BS and MS degrees from the
Hankuk University of Foreign
Studies. Currently, he is a
Ph.D. candidate in the elec-
trical and electronic engineer-
ing from the Yonsei Univer-

sity. His research interests are in the areas of wireless sensor networks,
medium access protocols, and Internet of Things.

http://www.onem2m.org/technical/published-documents
http://www.onem2m.org/technical/published-documents
http://iotocean.org
http://programmable-things.net
https://play.google.com/store/apps/details?id=com.einsware.iot_browser
https://play.google.com/store/apps/details?id=com.einsware.iot_browser
https://itunes.apple.com/us/app/iot-browser-search-explore/id727763099
https://itunes.apple.com/us/app/iot-browser-search-explore/id727763099
http://www.meethue.com
http://www.developers.meethue.com
http://www.developers.meethue.com

Peer-to-Peer Netw. Appl. (2018) 11:139–151 151

Sung-Chan Choi is a senior
researcher in the IoT Platform
Research Center at the Korea
Electronics of Technology
Institute (KETI). He received
the BS and MS degrees in
Electrical and Electronic
Engineering from the Yonsei
University, South Korea, in
2006 and 2008, respectively.
Before he joined the KETI,
he worked as a Research Staff
at the Samsung Advanced
Institute of Technology in
Giheung, South Korea for 5
years. His research interests

are in the area of QoS for Internet of Things, Network Optimization,
and Flying Adhoc Networks.

Jaeseok Yun is a senior
researcher in the IoT Plat-
form Research Center at Korea
Electronics Technology Insti-
tute (KETI). Prior to his cur-
rent position, he worked as a
postdoctoral research scientist
in the Ubiquitous Computing
Research Group in the School
of Interactive Computing at
Georgia Institute of Technol-
ogy, GA, USA. He earned his
M.S. and Ph.D. in Mecha-
tronics fromGwangju Institute
of Science and Technology
(GIST). His research interests

include ubiquitous computing, Internet of Things (IoT), embedded
systems, and human-computer interaction.

Jang-Won Lee is a Professor
of the School of Electrical and
Electronic Engineering, Yon-
sei University, Seoul, Korea.
He received his B.S. degree in
Electronic Engineering from
Yonsei University, Seoul,
Korea in 1994, M.S. degree
in Electrical Engineering from
Korea Advanced Institute
of Science and Technology
(KAIST), Daejeon, Korea
in 1996, and Ph.D. degree
in Electrical and Computer
Engineering from Purdue
University, West Lafayette,

IN, USA in 2004. In 1997-1998, he was employed with Dacom
R&D Center, Daejeon, Korea. In 2004-2005, he was a Postdoctoral
Research Associate in the Department of Electrical Engineering at
Princeton University, Princeton, NJ, USA. Since September 2005, he
has been with the School of Electrical and Electronic Engineering at
Yonsei University, Seoul, Korea. He is a senior member of IEEE. His
research interests include resource allocation, QoS and pricing issues,
optimization, and performance analysis in communication networks,
and smart grid.

	Towards the oneM2M standards for building IoT ecosystem: Analysis, implementation and lessons
	Abstract
	Introduction
	IoT enabling technologies and standards
	Overview of oneM2M standards
	Functional architecture
	Common services functions (CSFs)
	Naming and addressing
	Communication protocols
	Security and device management
	Technical specifications release

	Our efforts to build IoT ecosystem based on oneM2M standards
	oneM2M-based IoT platforms: Mobius and &cube
	Prototype devices and pilot services
	Prototype devices
	Pilot Services

	Performance analysis
	Experiences for the IoT ecosystem

	Lessons from experience to support the IoT ecosystem
	Advanced discovery
	Open API
	Peer-to-Peer support

	Conclusion
	Acknowledgments
	References

