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Abstract With recent advances in networking technology,
emerging networks continue to play an increasing role in the
lives of most users. The Internet search and retrieval sys-
tem is so powerful that it helps us to share information and
perspectives from across the world. However, the threat of
censorship exists on some centralized search engines, since
all of their information is currently controlled by these sites
administrators. The restriction and control of information
are pervasive enough within governments and organizations
to censor or intrude on even the most free and uncontrolled
communication media. For this reason, the Peer-to-Peer
(P2P) search and retrieval system is designed to resist cen-
sorship over the network. Nevertheless, its decentralized
nature makes it very difficult to infer information that can-
not be measured directly, such as the proportion of subverted
and selfish nodes. Moreover, the situation is even more
challenging when the network becomes extremely large.
Hence, I propose a dynamic adaptive algorithm that can:
1) tackle the censorship and security issues; 2) determine
the proportion of subverted and selfish nodes; 3) defend
against malicious and selective forwarding attacks by appro-
priately adjusting the number of requests to ensure high
match probability; 4) guarantee robustness and scalability
even with different random networks and varied network
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sizes. In several experiments, I demonstrate that my algo-
rithm can effectively and accurately estimate these metrics
and manage the system, even when the network has a large
proportion of malicious nodes, a large proportion of selfish
nodes, or a mere partial view of network membership.

Keywords Probability Density Function (pdf) -
Peer-to-Peer (P2P) search and retrieval - Message
forwarding - Probabilistic analysis - Distributed systems -
Random networks

1 Introduction

Traditionally, network technology was developed to enable
the transfer of information between devices, and inten-
tionally transferred information from the server to the
clients. With recent advancements in networking technol-
ogy, emerging networks continue to play an increasing role
in the lives of most users. The Internet, which is designed
to be uncontrolled and unbiased, has become the most pop-
ular information source in the post-industrial world. The
Internet is so powerful that it helps us to share information
and perspectives from across the world. Similarly, search
engines are a major driver of this revolution, which aims for
unbiased and uncontrolled information retrieval.

However, the threat of censorship appears to be one of
the problems on these centralized search engines, since the
information is controlled by these sites administrators. Cur-
rently, we all trust those administrators to remain benign
and allow us to access, publish, and retrieve the informa-
tion. However, history has shown that restriction and control
of information are pervasive enough within governments
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and organizations to censor or intrude on even the most free
and uncontrolled communication media. For example, inter-
net censorship is prevalent in China and its social media [9].
According to Chombhaill et al., even though censorship is
contrary to the very idea of freedom of speech [4], it seems
to be continuing to grow [9] in China.

Thus, I had previously presented the design of the
trustworthy information publication and retrieval system
[11], which is an unstructured P2P search system that takes
a probabilistic approach and avoids information censorship
over the network. However, the decentralized nature of this
system makes it very difficult to deduce the information
that cannot be measured directly, such as the proportion of
subverted nodes that do not reply when they have matches.
When we considered the question of malicious nodes, we
specifically considered an attack scenario in which the net-
work has a large number of malicious or Sybil nodes that
behave normally most of the time, but do not match requests
and return responses. For example, BitTorrent [59] might
suffer a Sybil attack when a few malicious nodes stand in
for a larger number of nodes and refuse to respond when
they have matches, thus affecting overall download time and
retrieval rate. These Sybil attacks also exist in Instant Mes-
saging (IM) applications, which use Distributed Hash Tables
(DHT) routing, where a few malicious nodes might insert a
large number of fake nodes and act as normal nodes in the
network, but drop queries or refuse to reply to queries even
when they have matches. As a result, I had previously intro-
duced a novel algorithm [10] in which every node maintains
a full view of the membership, and uses direct communi-
cations to protect against the subverted nodes in a small
network. With [10], I demonstrated that the network can
maintain the same high probability of a match when some
of the nodes are subverted as when all of the nodes are
operational.

Traditionally, when a source node needs to distribute
its message to multiple nodes, it multicasts its messages
directly to all of these nodes. However, this way might not
be a feasible method of communication, especially when in
a large network. As a result, most systems prefer an alter-
native strategy called probabilistic forwarding, such that the
source node first transmits the message to a set of nodes, and
has each of these nodes forward the messages to another set
of nodes, and so on. Probabilistic forwarding is an important
solution to multicasting and gossiping, and has been largely
applied to sensors in wireless sensor networks (WSNs),
mobile ad-hoc networks (MANETS), and vehicular ad-
hoc networks (VANETS) [7, 26, 29, 53], where there are
enormous numbers of mobile nodes distributed over a large
area. For example, WSNs are widely applied to military
sensing, habitat monitoring, and military tracking, where
their sensors are gathered together to sense and share
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information with other nodes. Similarly, VANETSs are
applied to traffic information systems [52], where sensors
collect and process current traffic data in cooperation with
others. The advantage of such a message-forwarding strat-
egy is that it allows nodes to share the load of processing,
buffering, and communication costs with others, rather than
placing the entire load on the source node. Moser and

Melliar-Smith [46, 47] hence perform a probabilistic anal-

ysis that finds the probability density function (pdf) for the

number of distinct nodes reached in terms of forwarding
fanouts, forwarding levels, and forwarding probability.

Nevertheless, the above works [10, 46, 47] would not
be applicable to a scenario that contains all of the follow-
ing cases: 1) when the network size is extremely large; 2)
when the network uses a message-forwarding strategy; 3)
when there exist subverted nodes that do not respond when
they have matches; or 4) when there exist selfish nodes
that do not forward messages. When the network size is
extremely large, such as in the case of file-sharing net-
works like Gnutella [49] or BitTorrent [13], the situation
is even more challenging, since many of the nodes cannot
afford to maintain a full view of the membership due to
limitations on memory space and bandwidth. In addition,
when considering networks where nodes are allowed only
for short-range communication (i.e., wireless sensor net-
works (WSNs), mobile ad-hoc networks (MANETS), and
vehicular ad-hoc networks (VANETS)), direct communica-
tion would not be feasible for data distribution and retrieval;
thus, the source or requesting nodes would need to first
forward their messages to a set of nodes, and then have
each of these nodes forward the messages to another set of
nodes. Moreover, when the network suffers Sybil attacks
[27, 59], malicious nodes refuse to respond when they have
matches. Furthermore, when the network has selected for-
warding attacks [1, 63], selfish nodes do not forward any
metadata or request messages. The fact that there is no work
applicable to a scenario that contains all four of the cases
mentioned above, and thus, this is why I have developed
a dynamic adaptive message forwarding algorithm in this
paper.

My algorithm can accurately estimate the proportion
of subverted and selfish nodes, adaptively adjust the
number of requests according to various network sizes,
and achieve high match probability even when the net-
work has a large proportion of malicious and selfish
nodes. The following summarizes the contributions of this
paper:

1. My algorithm tackles censorship and security issues,
such that it can assure Internet users that a small
number of administrators cannot prevent them from
distributing their messages and information, or from
retrieving information from others.
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2. My algorithm employs the probability density func-
tion (pdf), Exponential Weighted Moving Average
(EWMA) method, and modified chi-squared test to
determine the proportion of subverted and selfish nodes.

3. My algorithm defends against malicious and selective
forwarding attacks by appropriately adjusting the num-
ber of requests to ensure high match probability, even
when the network has large proportions of subverted
and selfish nodes.

4. My algorithm guarantees robustness and scalability in
different random networks (e.g., Erdos-Renyi, Watts-
Strogatz, and Barabasi-Abert networks) and across var-
ied network sizes.

We know that it is important to develop such an algorithm
for P2P search and retrieval systems before it is needed, to
ensure that it is available when it is needed. As with other
questions of trust, we must create our defenses before a
problem arises.

Section 2 of this paper discusses related work, and
Section 3 describes how my system works. Section 4
describes the architecture of the P2P search and retrieval
system, and Section 5 provides foundations for the sys-
tem. Section 6 describes the message forwarding algorithm,
and Section 7 presents an experimental evaluation. Lastly,
Section 8 presents the conclusion and future work.

2 Related work

2.1 Peer-to-peer network

Mischke and Stiller [44], Risson and Moors [50], along with
Tsoumakos and Roussopoulos [57], provide comparisons of
distributed search methods for peer-to-peer networks. The
structured approach [5, 28] requires the nodes to be orga-
nized in an overlay network based on distributed hash tables,
trees, or rings, which is efficient, but is vulnerable to con-
trol by its administrators. The unstructured approach [12,
22, 35,49, 54, 55, 61] is typically a gossip-based approach,
which uses randomization, and requires nodes to find each
other by exchanging messages over existing links. My sys-
tem, therefore, uses the unstructured approach, which is less
vulnerable to manipulation.

Gnutella [49], one of the first unstructured networks, uses
flooding of requests to find information. Freenet [12] is
more sophisticated and efficient than Gnutella because it
learns from previous requests. In Freenet, nodes that suc-
cessfully respond to requests receive more metadata and
more requests; thus, it is easy for a group of untrust-
worthy nodes to gather together and collect the most
searches into their group, making Freenet vulnerable to
subversion.

Ferreira et al. [22] used random walks to replicate
both queries and data in an unstructured network. Bub-
bleStorm [54], a probabilistic system for unstructured
peer-to-peer search, replicates queries and data, and com-
bines random walks with flooding. Pub-2-Sub [55] is a
publish-and-subscribe service for unstructured P2P net-
works of cooperative nodes, as it uses directed routing to
distribute subscription and publication messages to other
nodes.

Quasar [61] and OneSwarm [35] are concerned with
trust like my system. Quasar is a probabilistic publish-or-
subscribe system that uses local gradients of aggregated
vectors (e.g. gravity wells), and then applies a rendezvous-
less event routing infrastructure to route messages directly
to the nearby group members. The authors state that privacy
and scalability concerns make centralized systems undesir-
able to the users of social networks. On the other hand,
OneSwarm [35] is a P2P data-sharing system that allows
data to be shared either publicly or anonymously, using
a combination of trusted and untrusted nodes. My system
does not use a structured overlay, nor use the combination
of trusted and untrusted nodes, and has a different trust
objective than Quasar and OneSwarm.

2.2 Exponential weighted moving average
and chi-squared statistics

Several network security researchers use the EWMA algo-
rithm and the chi-squared statistics. [25] applies the chi-
squared test to detect intrusions, and [51, 58] discusses how
to appropriately determine the smoothing factor for detect-
ing network anomalies based on a known window size.
Similarly, [64, 66] presents anomaly-detection techniques
for intrusion detection based on the EWMA method and the
chi-squared test. My dynamic adaptive message forwarding
algorithm does not fix a window size, but rather, I consider
all of the results starting from the time that a node joins to
the network until the time it leaves the network. In addition,
my algorithm uses the EWMA method and the modified
chi-squared test to determine the proportion of malicious
nodes in a node’s view of the membership. Furthermore,
I make the smoothing factor tunable, so that the user can
freely set it for his/her particular network environment.

Press et al. [48] use a modified chi-squared statistic to
balance the weights of the buckets, in favor of comparing
two datasets. Similarly, Belen [3] and Heckert [32] apply
modified chi-squared statistics to determine the similari-
ties between attribute couples of a dataset and a projected
subset. Similarly, in this paper, my algorithm employs the
modified chi-squared statistic for achieving high accuracy in
estimating the proportion of non-malicious and non-selfish
nodes in the network.
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2.3 Message forwarding and probability density
function

Probabilistic forwarding, an alternative and important solu-
tion to multi-cast routing and gossiping, has been largely
applied for sensors and ad-hoc networks [7, 26, 29,
53]. Hedetniemi [33] presents an overview of gossiping
and broadcasting in communication networks. Similarly,
Farley [20] presents algorithms that require nodes to broad-
cast with a minimum number of links, and determines
upper and lower bounds of broadcast messages [19]. Like-
wise, [8, 18] uses forwarding in delay-tolerant networks
to reduce overall performance cost. In addition, Deering
et al. [15] present extensions to two routing algorithms,
distance-vector routing and link-state routing, to achieve
greater efficiency when messages are forwarded in both
inter-networks and extended LANs.

Moser and Melliar-Smith [46, 47] present a paper that
finds: 1) the probability density function (pdf) for the num-
ber of distinct nodes reached, 2) the expected number of
distinct nodes to which a message is forwarded within
a fixed and small size of the network, 3) the probabil-
ity density function (pdf) for the number of new nodes
at a given forwarding level, and 4) the expected number
of new nodes at a given forwarding level. My scalable
and adaptive forwarding algorithm thus applies the prob-
ability density function (pdf) like [46, 47] to estimate the
expected number of distinct nodes that would receive the
metadata and requests. However, rather than just estimat-
ing the expected number of requests and metadata, my
algorithm calculates the match probabilities in terms of
the forwarding fanout, forwarding level, forwarding prob-
ability, number of nodes that report matches, proportion
of subverted nodes, and proportion of selfish nodes. In
addition, my algorithm can estimate the proportion of sub-
verted and selfish nodes, and can appropriately determine
the appropriate number of requests to achieve high match
probabilities.

2.4 Detecting and defending against malicious attacks

Some prior work has been focused on trustworthiness, in
particular for detecting and protecting against malicious
attacks. Jesi et al. [36] identify malicious nodes in an over-
lay network based on gossiping, and place such nodes on
a blacklist. They focus on hub attacks in which malicious
nodes collude and divide the network by spreading false
rumors. [38] proposes a techniques to cope with malicious
behavior, as well as coping with nodes that do not respond
in order to reduce their workloads [31]. Some approaches
use a prediction model obtained by training decision trees
over a sequence of normal data [40], or use neutral networks
to obtain a model [24] to detect novel attacks. [34] uses a
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statistical method for ranking each sequence and determin-
ing how often the sequence should occur in normal traces
or in intrusions. Nevertheless, my algorithm does not use
gossiping, training decision trees, or neutral networks to
detect novel attacks, but rather, my algorithm detects mali-
cious attacks based on the probability density function (pdf),
EWMA method, modified chi-squared test, and the number
of matches received for a node’s request.

Condie et al. [14] present a protocol for finding adap-
tive P2P topologies to protect against malicious peers that
upload corrupt, inauthentic, or misnamed content. Peers
improve the trustworthiness of the network by forming
connections based on its past trust scores, disconnect-
ing malicious peers, and moving them to the edge of
the network. Morselli et al. [45] describe an adaptive
replication protocol that uses random walks, and have a
feedback mechanism that adjusts the number of replicas
according to the mean search length, for determining suf-
ficient replications. However, my algorithm does not dis-
connect malicious nodes, nor does it use random walks;
rather, my algorithm increases the number of nodes to dis-
tribute requests in order to maintain high probability, even
when the network contains a large proportion of malicious
nodes.

2.5 Detecting and defending against selective
forwarding attacks

There are various techniques to detect and defend against
selective forwarding attacks. According to [63], malicious
nodes might refuse to forward certain messages, or drop
the messages passing through them, resulting in a failure to
propagate the messages any further. As noted in [1], selec-
tive forwarding attacks are even harder to detect in WSN,
since sensor nodes all have limited signals.

Deng et al. [16] propose a Secure Data Transmission
(SDT) that uses watermark technology to detect selec-
tive forwarding attacks. [30] uses Lightweight Detection to
generate the alert packet and detects selective forwarding
attacks. Alajmi and Elleithy [1] demonstrate that their sys-
tem obtains safe data transmission between nodes and effec-
tively detect the selective forwarding attacks, and achieves
reasonable design issues. Similarly, Yu and Xiao [62, 65]
present a Lightweight Security Scheme (LWSS) to detect
selective forwarding attacks in WSN, which uses multi-hop
acknowledgement techniques to launch alarms by obtain-
ing responses from intermediate nodes. Yu and Xiao further
claim that their scheme is reliable because they randomly
select some nodes as the checkpoint to send acknowledge-
ment in order to detect the adversary nodes. However, my
algorithm detects selective forwarding attacks by applying
the probability density function (pdf), EWMA method, and
modified chi-squared test, using the number of matches
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received for a node’s request to estimate the proportion of
non-selfish nodes in the network, and thus is quite different
from the techniques as discussed above.

Mathur et al. [41] propose an algorithm that detects
black-hole and selective forwarding attacks, defends against
these attacks by employing cryptographic hashes for black-
hole attacks, and applies a neighborhood watch and
threshold-based analysis to correct selective forwarding
attacks. In [23], the authors uses multipath routing scheme
to defend against selective forwarding attacks in WSN, such
that when a node detects the packet drop during the rout-
ing process, it will resend the packet to the alternative
route. Karlof et al. [37] propose multi-path routing to defend
against the selective forwarding attacks, in which they basi-
cally allow every packet to choose its next hop probability
from a set of possible nodes, thus reducing the chances of
having adversary nodes gain complete control of data flow.
Likewise, Lee and Cho [39] propose a fuzzy-based reliable
data-delivery method to defend against selective forward-
ing attacks, where the number of paths for packet delivery
is based on the fuzzy method. However, for protecting
against selective forwarding attacks, my algorithm increases
the number of nodes that forward the requests to maintain
high match probability, rather than using threshold-based
analysis, multipath routing, or a fuzzy-based scheme.

2.6 Random networks

Some prior work has focused on random networks that
might contain the following properties: 1) the network has
a small-world effect; 2) the network follows a power-law
distribution; 3) the network follows a binomial distribution.
The first property means that most nodes are reachable from
other nodes within a small number of hops, and this prop-
erty can also apply to the existing social networks [43]. The
second property means that the probabilities of the node
degrees vary as a power-law. The third property indicates
that degree of any node follows a binomial distribution.

In my experimental evaluation section, I have consid-
ered three different random networks, namely, Erdos-Renyi
(ER) network, Watts-Strogatz (WS) network, and Barabasi-
Albert (BA) network, in the context of my algorithm for
a P2P search and retrieval system. Therefore, I briefly
introduce these random networks in the below subsections.

2.6.1 Erdos-Renyi (ER) network

Erdos-Renyi (ER) network [17], a classic random net-
work that contains small-world effect, forms a connection
between two nodes with random probabilities. The ER net-
work has the following properties: 1) every link /;; has a
probability of p € (0, 1) of being selected, 2) every link [;;
is independent from other links, 3) the total number of edges

is w, 4) the degree of any node forms a binomial
distribution, 5) the presence of the link /;; is based on:

1, with probabilit
I = { p yp 0

0, with porbability 1 — p
2.6.2 Watts-Strogatz (WS) network

The Watts-Strogatz (WS) network [60], another classic ran-
dom network with small-world effects, is formed after the
Erdos-Renyi (ER) network. The author created this net-
work to address the limitations of ER networks, where the
aim is to avoid a low clustering coefficient. Therefore, the
WS network is claimed to solve the low-clustering issue,
while still maintaining the short average path lengths of the
ER network. The WS network is constructed with the fol-
lowing rules: 1) network initially places nodes to one or
multi-dimensional lattices (e.g., circle or grid), 2) network
connects each node with its max N of nearest neighbors, 3)
nodes add a few long-range links based on the re-wiring
probability B, such that the overall network has a short aver-
age path lengths [56], 4) the re-wiring probability B that
connects the random pair of nodes for each link I;; in the
network is based on:

1, with probabilit
Iij:{ with probability 8 ?)

0, with porbability 1 — 8

If the re-wiring probability g is high, the network might
have more chances to establish long-range connections
between two random nodes. On the other hand, if the re-
wiring probability S is low, the network would look the
same as the original lattices.

2.6.3 Barabasi-Albert (BA) network

Barabasi-Albert (BA) network [2], a scale-free network
with preferential attaching to high-degree nodes, follows a
power-law distribution. As a result, the BA network tends to
form a rich-get-richer process. The BA network contains the
following properties: 1) network begins with an initial con-
nected network of small N nodes, 2) when a new node joins
the network, it forms a connection to the existing small N
nodes with a connecting probability p;, which is propor-
tional to the summation of links from these existing small N
nodes, 3) the connection probability p; that a new node is
connected to node i is based on:

ki
Pi=
l ijj

where k; is the degree of node i, and j is the number of
existing nodes. From Eq. 3, we can see that the high-degree
nodes tend to accumulate more links, while low-degree
nodes acquire hardly any new links.

3

@ Springer



1084

Peer-to-Peer Netw. Appl. (2017) 10:1079-1100

3 System model

The steps of my system are given below:

1. A new node initially called get BootView() (Section
4.1) to obtains some members from the bootstrapping
nodes selected at random, and joins the network. Once
that node has successfully joined to the system, it can
become a source node or a requesting node at any time.

2. When a node wishes to distribute its metadata, it
becomes a source node. The source node first calls
alDistribution() (Section 5.6) to determine the appro-
priate forwarding fanouts a and forwarding levels /,
based on the expected number of nodes to which the
metadata should be distributed m. Finally, the source
node calls the distribute() (Section 4.2) to distribute
and forward the metadata message to randomly chosen
nodes in its view.

3. Similarly, when a node wishes to distribute its request,
it becomes a requesting node. The requesting node
first calls the EW M A() (Section 5.3) to calculate the
current non-normalized observed probability array O,
and then applies xfGet() (Section 5.7) (the method
that contains norm() (Section 5.4) and modChiSq()
(Section 5.5)) to estimate the proportion of subverted
and selfish nodes in the network, based on its pre-
vious request results. Next, the requesting node calls
the alGet() (Section 5.8) (the method that contains
pdf () (Section 5.1) and findMatchProbability()
(Section 5.2)) to calculate the appropriate value of a

Fig.1 System Flow Diagram Start
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forwarding fanouts and the [/ levels of message for-
warding to which a request is distributed. Finally, the
requesting node calls request() (Section 4.3) to dis-
tribute and forward the request to randomly chosen
nodes in its view.

Figure 1 shows the flow diagram of my system, including
all the steps mentioned above.

4 Design of P2P search and retrieval system

The P2P Search and Retrieval system is a fully distributed
system with no centralized mechanisms and no centralized
control. The nodes that participate in the network constitute
the membership of the network. The source nodes pro-
duce metadata that describes its information, and distribute
this metadata, along with the URL of the information, to a
subset of the participating nodes selected at random. The
requesting nodes generate requests that contain search key-
words, and distribute the requests to a subset of the par-
ticipating nodes selected at random. Nodes that receive
such a request compare the keywords from the request
with the metadata they hold. If there is a match, the
matching node returns the URL of the associated infor-
mation to the requesting node. The requesting node can
then use this URL to further retrieve the information from
the source node. In my system, nodes do not aim to
maintain an agreed membership, but rather are allowed
have their own and limited local view of the membership.

—» Type

Source "0"% EWMA() (Section 5.3)
alDistribution() (Section 5.6) *
* xfGet() (Section 5.7)
R = norm() (Section 5.4)
distribute() (Section 4.2) modChiSq() (Section 5.5)
YesY ‘
—Enough ] | alGet() (Section 5.8)
~Forwarding- | pdf() (Section 5.1)
. |findM atchProbability () (Section 5.2) |
Yes ki " * :
~"Enough | request() (Section 4.3)
Distribut@on —~
| Yes Y.
_——Enough ™~ |
o rF,onvNardrng
Yes *‘
Enough .|
Requests.
s

\ GetBootView() (Section 4.1) ’

Yes l

Requesting Node
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2.Bootstrapping
Return members

1. Contact
bootstrapping

Joining

to its vie
randomlb

Fig. 2 A joining node first obtains membership from a set of boot-
strapping nodes, randomly selects up to max N nodes, and adds them
to its view

The following subsections describe the detailed design of
my system.

4.1 Joining the membership, getBootView()

The steps of joining the membership are given below, and
are shown in Fig. 2.

1. A node joining the membership first senses all of the
nodes near itself. Next, it randomly selects a number of
nodes to be its bootstrapping nodes, to which it needs to
distribute membership requests, and asks for all of their
members. Some of these bootstrapping nodes might for-
ward these membership requests to other nodes in the
network, based on the chosen forwarding probability.

2. The bootstrapping nodes return all of its members to the
joining node.

3. The joining node then randomly chooses up to maxN
nodes, and adds them to its membership view.

Source Node

O O
2. Nodes forward

meta

1. Distribut

metadaté)

Fig. 3 A source node distributes its metadata and the URL of the
advertisement to random nodes. Some nodes might forward metadata
to other nodes

2. Match node

O returns URL
1a. Fo d request é

Source Node O

Requesting
4\ . Node

O
1. Distributes request
O O

1a. Forward request

Fig. 4 The requesting node distributes requests. Some nodes might
forward requests to other nodes. The matching node replies its URL

4.2 Distribution metadata, distribute()

The steps involved when a source node distributes its meta-
data are given below, and are illustrated in Fig. 3

1. The source node first randomly chooses some nodes to
which it needs to distribute its metadata. The source
node then distributes its metadata together with the
URL to the selected nodes.

2. Based on the chosen forwarding probability, some
nodes might further forward this metadata to other
nodes in the network.

4.3 Distribution requests, request()

The steps involved when a requesting node distributes
requests are given below, and are illustrated in Figs. 4 and 5.

1. A requesting node randomly chooses some nodes to
which it needs to distribute its requests, and distributes

3. Retrieve ads from O

source nod O O

Shurce Nodeo
0 o0 © 0O

0]

=

ORequesﬁng

Fig. 5 The requesting node retrieves actual sources from the source
node
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its request to the selected nodes. Based on the cho-
sen forwarding probability, some nodes might further
forward this request to other nodes in the network.

2. A node that receives a request compares the keywords
in the request with the metadata it holds. If it finds a
match, the node responds to the requesting node with
the URL.

3. The requesting node contacts and retrieves the actual
sources from the source node.

5 Foundations

In this section, I describe the foundations of my proposed
algorithm. The algorithm detects two kinds of attacks,
where one attack is such that nodes do not match requests
or metadata (called subverted nodes), and the other attack
is such that nodes do not forward messages (called selfish
nodes).

5.1 Probabilistic Analysis with probability density
function, pdf()

In order to calculate the expected number of distinct nodes
to which ng’s message is forwarded, I employ the following
equation, as described in [6, 21, 46], to first calculate the
probabilities of intersection between two subsets in order
to eliminate duplicates. The parameters for the equation are
described as follows:

—  N:The set having cardinality n
— Y: A subset of N having cardinality y
— Z: A subset of N having cardinality z, where y < z.

The probability density function (pdf) v(k) for0 < k < y,
that ¥ N Z has cardinality k is then given by:

y min(z,k—1) 7 — ] min(n—z,y—k—1) n—z— J
k) = NTEITI
v <k> [1 n—j [1 k= @

j=0 j=0

fork—1>0,n—2z>0,and y — k — 1 > 0. If any of
these conditions is not satisfied, then v(k) = 1.

Next, I employ the algorithm described in [46], to cal-
culate the probability density function (pdf) [6, 21] for the
number of nodes that receive the messages in terms of
forwarding level, forwarding fanout, and forwarding prob-
ability. The algorithm calculates the probability density
function (pdf) for the number of nodes at the level of mes-
sage forwarding to which ng’s message is forwarded from
levels O through L, and the probability density function
(pdf) for the number of nodes to which n(’s message is for-
warded from levels O through L. In addition, the algorithm

@ Springer

calculates the expected number of nodes at level /, and the
expected number of nodes from level O through L.

5.2 Match probabilities with message forwarding,
findMatchProbability()

The primary parameters for the match probabilities with
message forwarding are:

— a: The upper bound on the number of forwarding
fanouts that a node should forward the message

— [: The upper bound on the number of forwarding levels
that a node should forward the message

— m: The upper bound on the number of nodes in the net-
work that have received n(’s metadata with fanout of a
from level O to /, and is given by:

m=1+a+a*+---+d = al;%ifa>l 5)

— r: The upper bound on the number of nodes in the net-
work that have received ng’s requests with fanout of a
from level O to /, and is given by:

I+1_1 .
r=1l4+a+a*+---+d = aa_lllfa>l ©)

— n: The number of participating nodes in the network.

— X: The number of participating nodes that are opera-
tional.

—  k: The number of nodes that report matches to a request-
ing node.

— F: The number of participating nodes that are non-
selfish and forward messages.

The analytical model is based on the hypergeometric
distribution [21], which describes the number of successes
in a sequence of random draws from a finite population
without replacement. The analytical model that finds match
probabilities of k matches is given by:

mx\ (n—mx
iy < (0
()
(% Wllcx—_ll N .mx—lk-f-l )(nr—_n]zcx nr—_n;(x_—ll N

nn—1
G-

n—mx—r+k+1 )
. 1

.n—I—H)
@)

formx +r < n and k < min{mx, r}. If either of those two
conditions is not satisfied, then P (k) = 0.

From Eq. 7, the match probabilities P(k > 1) of one or
more matches is given by:

Pk>=1) =1—-P(0)
=]_n—mxn—mx—1.”n—mx+l—r @)
n n—1 n—r+1
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where mx +r < n.

The calculation for finding match probabilities of k
matches with message forwarding is given in below, which
combines both hypergeometric distribution and pdf() func-
tion [6, 21, 46, 47]:

MP= " 3" P(k) xpdf(n.a,l, F).get(m)

m=a+1r=a+1
xpdf(n,a,l, F).get(r) )

Basically, the method calculates the probability of
k match P(k), as described in Eq. 7, and probabilis-
tic analysis with probability density function (pdf), as
described in Section 5.1 for both pdf(n,a,l, F).get(m)
and pdf(n,a,l, F).get(r), for the number of nodes
reached when forwarding to m and to r nodes. The match
probability is the summation of the product of these match
probabilities for all values of m and r.

5.3 Exponential Weighted Moving Average Algorithm,
EWMA()

My dynamic adaptive forwarding algorithm uses the expo-
nential weighted moving average (EWMA) algorithm to
smooth the observations and average the non-normalized
observations for k matches over a sequence of requests. In
this way, the overall result would decrease the noise that is
inherited in the individual samples.

The primary parameters for the EWMA algorithm are:

— c¢: The smoothing factor,0 < ¢ < 1

— &2 The output of the EWMA algorithm at time ¢.

— v;: The current non-normalized observed probabilities
O (k) for k matches

The EWMA algorithm is defined by:

S1 = V]

s =cexv+(1—c)xs—p ifr>1 (10)

~

In addition, I offer the user the opportunity to choose the
appropriate value of ¢ for his/her network environment. Dif-
ferent users, operating in different network environments
with different objectives, might choose different values of
¢, and my system allows them to do so.

5.4 Normalization, norm()

In real-world deployments and in my experiments, it’s
impossible to use a request to estimate the proportion of
subverted nodes and selfish nodes when all of the responses
indicate no match. This is because such responses can arise
in the following situations: 1) when the metadata and the
requests are distributed to disjoint subsets of nodes, 2)

when there exist subverted nodes that have a match and
do not report it, 3) when there exist selfish nodes that
have received a message but did not forward this mes-
sage, and 4) when there exists no metadata that match
a request.

Thus, I exclude requests for which all responses indicate
no match. Moreover, for large values of k, the probability
of k matches is negligibly small, so I further exclude those
requests as well. That is, I first determine a value kMax,
exclude requests that return k responses for k > kMax,
and normalize the probabilities P(k), 1 < k < kMax. To
find the normalized probabilities Q(k), 1 < k < kMax, 1
perform the following calculation:

P (k)
YR PG)

5.5 Modified chi-squared method, modChiSq()

Q(k) = (1)

My algorithm first uses the modified chi-squared goodness-
of-fit test [48] to first compare the normalized observed
probabilities with the normalized analytical probabilities for
different values of X. Next, my algorithm determines which
of the analytical curves best matches the observed probabil-
ities, in order to estimate the proportion of non-subverted
nodes in its membership view. The modified chi-squared
statistic is given as follows:

kMax

2
X2 = Z (or — ex) (12)

0, e
P k + ek

where: .
—  0g: The actual number of observations that fall

into the kth bucket

— ek: The expected number of observations for
the kth bucket

— kMax: The number of buckets into which the
observations fall

5.6 Calculate appropriate a and / for metadata
distribution, alDistribution()

According to [42], Melliar-Smith et al. have shown that the
probability of one or more matches satisfied:

Pk>1)>1—expn (13)

If the source node distributes its metadata to m = 2./n
of nodes, and the requesting node distributes its requests to
r = 24/n of nodes, with x = 1 proportional of nodes that
are operational, then

2/n2/n
Plh>1)>1—exp i >1—exp®>09817 (14)
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Therefore, in order to obtain a high probability of one
or more matches, I choose m = 2./n for the total number
of nodes to distribute metadata. However, since my algo-
rithm follows a message forwarding approach, the source
node would need to first determine an appropriate num-
ber of fanouts (a) and forwarding levels (/). Therefore, my
algorithm applies the algorithm, as shown in Fig. 6, that
determines the appropriate number of a and [, such that the
overall number of distributions would still be appropriate to
achieve m = 2/n of nodes.

The parameters and variables for al Distribution() that
determine the appropriate value of @ and / to which a source
node distributes its metadata are described as follows:

— n: The number of nodes in a node’s view of the mem-
bership.

— mL: The upper bound on the number of nodes in the
network that should receive the source node’s metadata.

— [: The upper bound on the number of forwarding levels
that a node should forward the source node’s metadata

— a: The upper bound on the number of forwarding
fanouts that a node should forward the source node’s
metadata

— m: The expected number of nodes to which the meta-
data should be distributed

5.7 Detecting subverted and selfish nodes, xfGet()

If the requesting node determines that there exist nodes that
receive both metadata and the requests, but did not report
the match, those nodes are all considered subverted nodes.
In addition, if the requesting node discovers that there exist
nodes that did not forward the message, those nodes are con-
sidered selfish nodes. My algorithm for detecting subverted
and selfish nodes estimates the proportion of non-subverted
and non-selfish nodes. For given values of n, a, [, kMax,
xfGap, and xf Min, my algorithm first computes the ana-
lytical probabilities for the number k of matches for various
values of X and F. These values of X and F enable
the algorithm to find the estimated proportion x of non-
subverted nodes and the proportion of f of non-selfish
nodes, which yields significant changes in the number of
nodes to which to distribute requests.

My algorithm first collects data on the number of
responses that a requesting node receives for its request
using the probability density function (pdf), EWMA
method, and modified chi-squared test. Next, it calculates
the empirical probabilities from the data. The algorithm then
applies the normalization method to exclude zero matches,
since it cannot distinguish a case in which no metadata
exists from a case in which no node holds both the meta-
data and the request, or in which nodes do not forward
messages. Using the probability density function (pdf),
EWMA method, and modified chi-squared test, my algo-
rithm compares the normalized observed probabilities O (k)
and the normalized analytical probabilities P[F, X](k), for
k=1,2,..., kMax with the various combinations of curves
[F, X].

The total combinations of curves [F, X] depend on the
value of xfGap and xf Min, and my system allows users
to set these values for their particular network environ-
ments. When the value of xfGap is low (e.g. xfGap =
0.1), it provides a faster reaction to change the values of
x and f, as well as having a higher risk of making mis-
takes. On the other hand, when the value of xfGap is
high (e.g. xfGap = 0.5), it gives slower reactions to
change the values of x and f, and has a lower risk of
making wrong estimates. Consequently, for different net-
work environments with different objectives, users might
choose different value of xfGap, and my system allows
them to do so. For example, if an user sets xfGap = 0.3,
xfMin = 0.4, it will create the following 9 combinations of
curves [F, X: ) [F=1,X=1],2)[F=1,X =0.7],3)
[F=1,X=04],9)[F=07,X=1],9[F =07, X =
0.7, 6) [F = 0.7,X = 04],7) [F = 04,X = 1], 8)
[F=04,X=0.7],and 9) [F =04, X = 0.4].

After the system has finished creating the combination of
curves [F, X], my algorithm then chooses as the observed
proportion of non-subverted and non-selfish nodes, the
value of x and f for which the modified chi-squared value
is the smallest. This value of f and x is the algorithm’s best
estimate of the proportion of non-subverted and non-selfish
nodes, and corresponds to the curve with the best fit.

The parameters for detection method x f Get () that deter-
mines the estimated proportion x of non-subverted nodes
and f of non-selfish nodes are described as follows:

Fig. 6 Method for finding the alDistribution(n)
appropriate value of a and [ for 1 a=01=0
the metadata distribution 2 m e 2 ﬁ

return a, !

3 for(l < 2 to 10000)

4 for(a + 1 to 10000)
5 mL <+ 22:1 al

6 if (mL > m) break
7
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— O;: The array of unnormalized observed probabilities at
time .

— n: The number of nodes in a node’s view of the mem-
bership.

— kMax: The upper bound on the number & of responses
to a request.

— P[F, X]: The array of analytical probabilities for a
particular value of F and X.

— x: The estimated proportion of non-subverted nodes in
anode’s view

—  f: The estimated proportion of non-selfish nodes in a
network that forward messages.

— [: The upper bound on the number of forwarding lev-
els that a node should forward the requesting node’s
requests

— a: The upper bound on the number of forwarding
fanouts that a node should forward the requesting
node’s requests

— xfGap: The gap between each curve [F, X]

—  xfMin: The minimum value for F and X curve.

Pseudocode for detection algorithm is given in Fig. 7.

5.8 Protecting against subverted and selfish nodes,
alGet()

If the detection algorithm estimates that the proportion x of
non-subverted nodes is less than x = 1.0, or the proportion
f of non-selfish nodes is less than f = 1.0, my algorithm
makes an adjustment in which it first determines the value
of yo for the point on the X = 1.0 and F = 1.0 curve,
and then computes the probability of one or more matches
to obtain yg = P(k > 1). Finally, the algorithm increases
the number of / levels and a fanouts to which the requests
are distributed, to achieve the same probability of a match
aswhen X = 1.0and F = 1.0.

The parameters and variables for the defensive method
alGet () that determines the number a fanout and [ levels to

which a requesting node distributes its request are described
as follows:

— n: The number of nodes in a node’s view of the mem-
bership.

— yo: The probability yo = P(k > 1) of one or more
matches whenr = m = 2,/n and X = 1.0.

— x: The estimated value of x returned by the detection
method xf Get ().

—  f: The estimated value of f returned by the detection
method xf Get ().

— a: The number of forwarding fanouts

— [: The number of forwarding levels

Pseudocode for the defensive method is given in
Fig. 8.

6 Message forwarding algorithm

6.1 Dynamic adaptive message forwarding algorithm,
dynamicAdaptive()

In this section, I describe my dynamic adaptive message-
forwarding algorithm, dynamicAdaptive(), which deals with
attacks by subverted and selfish nodes. In addition, my algo-
rithm addresses situations where every node cannot have
knowledge of all the nodes in its membership, especially
on a very large-scale network. In summary, the aims of
my algorithm are to: 1) utilize the probability density func-
tion (pdf), EWMA method, and modified chi-squared test
to detect subverted and selfish nodes; 2) defend against
subverted and selfish nodes by appropriately adjusting the
number of requests to achieve high match probability; and
3) ensure network robustness and scalability with differ-
ent random networks and varied network sizes. The basic
idea of my algorithm is described as follows, and the pseu-
docode for the dynamic adaptive algorithm is given in
Fig. 9.

Fig. 7 Detecting values of
subverted (x) and selfish (f)
nodes

[F, X][CC] + i, j
cC++
for (j + 1 to CC) do
F, X « [F, X][j]

0~ O U W N

Nej

13 return f, x

xfGet(O,n,a,l, kMax,xfGap, xf Min)

O < norm(0, kMazx); CC <+ 0

for (i - 1 to zfMin; i— = zfGap) do
for (j < 1 to xfMin; j— = zfGap) do

for (KK < 1 to kMax) do
P[F, X|[K K] + findMatchProbability(n, a,l, F, X, KK)
10  P[F, X][KK] + norm(P[F, X||[KK)], kMax)
11 modChiSq[F, X][K K| + modChiSq(O, P|F, X][K K], kM ax)
12 f, 2 < min(modChiSq[F,X][0],modChiSq[F,X][1], ... modChiSq[F,X][CC])
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Fig. 8 Determining the value of alGet(n, yo, 2, /)

a and [ that maintains the same 1 for(l “9to 10000)

probability of a match when 2 for(a + 1 to 10000)

some of the nodes are subverted 3 y < 1— findMatchProbability(n, a,, f,z,0)

as when none of the nodes is 4 if (y > yo) break

subverted 5 return a,l

1. A newly joining node calls get BootView() to get its
initial view of the membership from a bootstrapping
node, randomly chooses up to max N nodes, and adds
them into its initial view.

2. A source node waits until the current time reaches
nextTime, or the time to send its next metadata
message. It then calls the alDistribution() method
to determine the appropriate a and / for the meta-
data distribution, and then calls the distribute()
method to distribute the metadata message to ran-
domly chosen nodes in its view. Some nodes may
forward the metadata they receive to other nodes in the
network.

3. Similarly, a requesting node waits until the current time
reaches nextTime, or the time to send its next request
message. The requesting node first checks whether its
a and [ have been previously determined. If not, it sets
X = 1and F = 1, then calls alGet() to calculate the
value of @ and /.

4. After that, the requesting node calls the request()
method to distribute the request to randomly cho-
sen nodes in its view. Some nodes may forward
the requests they receive to other nodes in the
network.

The requesting node further applies the EWMA()
method to calculate the current non-normalized
observed probability array O.

Next, the requesting node waits until it has collected
up to d requests, and then calls the x f Get () method to
estimate the proportion of subverted and selfish nodes
in the network.

The requesting node checks the number of succes-
sive estimates hair by a modified chi-squared test that
indicates the same changes in the value of x and f,
determines whether it should accept the change and
allows the algorithm to take action to change the value
of a and [. If the number of successive estimates is
greater than hair, the requesting node calls the alGet ()
method to adjust the number a forwarding fanouts and
the / levels of message forwarding to which a request is
distributed. Otherwise, the requesting node simply sets
x and f to its previous determined values (x = x Prev,
f = fPrev).

The requesting node sets the the previous x and pre-
vious f to its current values (x Prev = x, f Prev =
Wy

The algorithm then goes back to Line 3 and repeats
these steps indefinitely.

Fig. 9 Pseudocode for the
Dynamic Adaptive Message
Forwarding Algorithm

1

2

3 while (true) do
4 1+i+1

9 if (firstTime)

12 prevO « O

14 if (i >=d)

17 x < xzPrev
18 f < fPrev
19 else

21 rPrev < x
22 fPrev <+ f

Adaptive(n, kMaz, c,d, maxN, hair, z fGap, x f Min)
x,xPrev, f, fPrev < 1.0; i,numMatches, O(k) + 0
view = getBootView(mazN)

5 if (isSourceNode) then

6 a,l < alDistribute(n)

7 distribute(view, numNodes, a, 1)
8 else if (isRequestingNode) then

10 a,l + alGet(n,0.999,1.0,1.0)
11 nwmMatches = request(view, a,l)

13 O «+ EWMA (numMatches, prevO, kMax, c)

15 x, f + xtGet(O,n,a,l, kMaz,zfGap,x f Min)
16 if (successive estimate of z & f < hair)

20 a,l « alGet(n,0.999, z, f)
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6.2 Non-adaptive message forwarding algorithm,
nonAdaptive()

In this section, I describe my non-adaptive message-
forwarding algorithm that deals with attacks by sub-
verted and selfish nodes, nonAdaptive(). Basically, the
non-adaptive algorithm is exactly the same as the dynami-
cAdaptive() algorithm, described in Section 6.1, except that
it does not call the alGet () method to adjust the value of
a and [. In other words, the non-adaptive algorithm only
focuses on detecting the proportion of subverted and self-
ish nodes in the network, but does not defend against these
malicious and selfish nodes. The pseudocode for the non-
adaptive algorithm is nearly the same as Fig. 9, except that
lines 19, and 20 are omitted. The basic ideas of the non-
adaptive algorithm and pseudocode are omitted due to space
constraints.

7 Experimental evaluation

In this section, I performed a simulation to evaluate my
non-adaptive and dynamic adaptive message-forwarding
algorithms. My system operates over the Internet, and is
implemented using HTTP, which operates over TCP. As
such, communication is “reliable”. However, nodes may
become malicious and selfish at any time. That is, nodes in
the network are assumed to follow the algorithms, except
that:

— Anode is allowed to have a certain number of members
in its local view, in which case it only maintains a partial
view of the actual network.

— A malicious node responds to a request but, if it has
a match between the keywords in a request and the
metadata it holds, it fails to report that match.

— A selfish node that sends metadata responds to requests,
but does not forward messages.

In the simulation program, I first initialized the numbers
n, maxN, kMax, c, d, a, [, and hair. Next, I constructed
a random network (e.g., an Erdos-Renyi network, a Watts-
Strogatz network, or a Barabasi-Albert network), and added
up to max N of nodes to each node’s view. Then, at each
time step, some nodes might distribute metadata messages,
distribute request messages, or forward messages. Some
nodes might behave maliciously by not responding to a
request with a match when they do have a match. Similarly,
some nodes might behave selfishly by not forwarding to a
message. Then, I evaluated the network robustness and scal-
ability for the following scenarios: 1) various network sizes,
2) various values of max N, 3) various random networks, 4)
various values of X, and 5) various values of F. Lastly, in

order to reflect a realistic network, I designed an extended
scenario such that X and F increases or decreases its value
slowly, and tested the effectiveness and scalability of my
adaptive algorithm with this extended scenario.

7.1 Controlled variables

Malicious nodes can disrupt the behavior of the system
and network by hiding or censoring information. Thus,
my adaptive algorithm must adapt to circumvent such
malicious nodes. A node can’t know or control propor-
tion of the malicious nodes in the actual membership,
but it can adjust the number of request messages in
order to obtain more responses, and obtain high match
probability. To do so, nodes make use of the following
quantity:

—  X: The proportion of non-malicious nodes in the actual
membership at a particular point in time.

When the overall network size is extremely large (e.g.,
N >> maxN), it is unrealistic and difficult to have all
nodes maintaining a full view of the membership due to lim-
itations on memory space and bandwidth. In other words,
when a node’s maximum view max N is much smaller than
the actual network size N, it would contain too many undis-
covered nodes from the network. As a result, my adaptive
algorithm must adapt to circumvent such a scenario, and still
allow nodes to obtain high match probabilities even when
maxN is much lower than N. For my algorithm, a node
cannot directly detect the number of nodes that it has not
discovered, but it can adjust the number of nodes to which
it distributes its requests in order to obtain more responses
to its requests. In my system, each node has the following
quantity:

— maxN: This is the maximum number of nodes that a
node is allowed to have in its current view.

Similarly, selfish nodes can disrupt the behavior of the
system and network by ceasing the information flow to
other nodes. As a result, my adaptive algorithm must adapt
to circumstances when selfish nodes send metadata or
respond to requests, but do not forward messages. A node
cannot control the proportion of selfish nodes in the net-
work, but it can adjust the number of forwarding levels
and the number of forwarding messages to obtain more
responses to its requests and ensure high match probabil-
ity. In order to do so, nodes make the use of the following
quantity:

— F: The probability of message forwarding in the net-
work at a particular point in time, where 0 < F <
1.0.
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7.2 Performance metrics

The performance metrics for the scalable and dynamic
message-forwarding algorithm are explained as follows:

— M P: The match probability of one or more responses
for a request, averaged over all requesting nodes.

— MC: The message cost per node per time unit.

— x: The estimated proportion of non-malicious nodes in
the actual network at a particular point in time.

—  f:The estimated probability of non-selfish nodes in the
actual network at a particular point of time.

— MA: The accuracy of my algorithm for estimating the
correct values of f and x.

7.3 Varying n and a with fixed max N on Erdos-Renyi
network

I first considered the scenario in which I applied a non-
adaptive algorithm and varied n and a with fixed maxN on
an Erdos-Renyi network. In the simulation, I set maxN =
1000, n = 1000, 5000, 10000, a = 8,12, 14, kMax = 9,
¢ =1099,d = 50,1 = 2, hair = 6, xfGap = 0.3, and
xfMin = 0.4. 1 performed the experiment on the following
nine cases:

— Casel: F=10,X=1.0
— Case2: F=1.0,X=0.7
— Case3: F=10,X=04
— Case4d: F=07,X=1.0
— Case5 F=07,X=07
— Case6: F=07,X=04
— Case7: F=04,X=1.0
— Case8: F=04,X=0.7

— Case9: F=04,X=04

Figure 10 shows the M P curves of: 1) n = 1000, a = 8§;
2)n = 5000, a = 12; and 3) n = 10000, a = 14, where
all the curves were generated with a non-adaptive algorithm

1
0.9
08
0.7
0.6
05

04

Match Probability

0.3

0.2 n=1000,3=8
n=5000,a=12
0.1 ——n=10000,5=14
0
Cases 1 2 3 4 5 6 7 8 9

Fig. 10 M P where n = 1000, 5000, 10000, a = 8,12,14,1 = 2,
maxN = 1000, kMax = 9, ¢ = 0999, d = 50, hair = 6,
xfGap = 03, xfMin = 0.4 with non-adaptive algorithm on
Erdos-Renyi network
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on an Erdos-Renyi network. Each node is allowed to have
its current view of the membership up to maxN = 1000,
regardless of actual network size n. In Fig. 10, I first noticed
that when X and F decreases, the M P also decreases for
n = 1000, n = 5000, and » = 10000. Similarly, when
both X and F decrease, the M P dramatically drops to about
MP = 0.301818 for n = 1000, n = 5000, and n = 10000.
In addition, for n = 1000, n = 5000, and » = 10000, the
mean value of MC is MC = 72 forn = 1000, MC = 156
for n = 5000, and MC = 210 for n = 10000. Lastly, I
noticed that the match probabilities M P for n = 1000 are
all very close to n = 5000 and n = 10000. This shows
the effectiveness of my algorithm, because a node can still
obtains similar match probabilities, even with different val-
ues of n. Subsequently, I chose n = 10000, a = 14, for the
following experiment.

7.4 Varying max N with fixed n on Erdos-Renyi network

I considered a scenario in which I applied a non-adaptive
algorithm and varied max N with fixed n on an Erdos-Renyi
network. In the simulation, I set n = 10000, maxN =
1000, 5000, 10000, a = 14, kMax = 9,c = 0.999,d = 50,
I = 2, hair = 6, xfGap = 0.3, and xfMin = 0.4.1
performed the experiment on the following nine cases:

— Casel: F=10,X=1.0
— Case2: F=1.0,X=0.7
— Case3: F=10,X=04
— Case4: F=07,X=1.0
— Case5 F=07,X=07

— Case6: F=07,X=04
— Case7: F=04,X=1.0
— Case8: F=04,X=0.7
— Case9: F=04,X=04

Figure 11 shows the M P curves of maxN = 1000,
maxN = 5000, and maxN = 10000, where all the
curves were generated with a non-adaptive algorithm on an

w1 =10000,maxN=1000
e n=10000,maxN=5000
~n=10000,maxN=10000

1 f—
09 - \/\
0.8 -

0.7 - A

06 - \

05 \\

04 - \

03 - ~

Match Probability

0.2 A
0.1 -

0
Cases =1 2 3 4 5 6 7 8 9

Fig. 11 M P where maxN = 1000, 5000, 10000, a = 14,1 = 2,
n = 10000, kMax =9, ¢ = 0.999, d = 50, hair = 6, xfGap = 0.3,
xfMin = 0.4 with non-adaptive algorithm on Erdos-Renyi network
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Erdos-Renyi network. In Fig. 11, I first noticed that when X
and F decrease, the M P also decreases for maxN = 1000,
max N = 5000, and max N = 10000. Similarly, when both
X and F decrease, the M P dramatically drops to about
MP = 0.294318 for maxN = 1000, maxN = 5000,
and maxN = 10000. In addition, for maxN = 1000,
maxN = 5000, and maxN = 10000, the overall mean
values of MC are all MC = 210. Moreover, I noticed
that the match probability for maxN = 1000 is close to
maxN = 5000 and maxN = 10000. Lastly, by comparing
Figs. 10 and 11, I concluded that even when the network has
different values of max N or n, my algorithm still produces
a similar M P. Consequently, I chose max N = 1000 for my
following experiment.

7.5 Varying different random networks

In this section, I considered a scenario in which I applied a
non-adaptive algorithm and set n = 10000, a = 14,1 = 2,
maxN = 1000, kMax =9, ¢c = 0.999, d = 50, hair = 6,
xfGap = 0.3, and xf Min = 0.4 on an ER network, a WS
network, and a BA network. For the WS and BA networks,
the source node distributes its metadata evenly across the
overall network in order to obtain a fair amount of responses
to its request messages. In addition, by having metadata dis-
tribute evenly to the network, some popular nodes would not
be more vulnerable to attacks. I performed the experiment
on the following nine cases:

— Casel: F=10,X=1.0
— Case2: F=1.0,X=0.7
— Case3: F=10,X=04
- Case4: F=07,X=1.0
— Case5 F=07,X=07
— Case6: F
— Case7: F =
— Case8: F
- Case9: F

. Erdos-Renyi
= — Non-Adaptive ——\\/5tts-Strogatz

0.9 8 Barabasi-Albert
08
0.7
0.6
05
04

Match Probability

03
0.2
0.1
0
Cases =1 2 3 4 5 6 7 8 9

Fig. 12 M P with non-adaptive algorithm on ER network, WS net-
work, and BA network, where n = 10000, a = 14,1 = 2, maxN =
1000, kMax = 9, ¢ = 0.999, d = 50, hair = 6, xfGap = 0.3,
xfMin=0.4

Figure 12 shows the M P curves with non-adaptive algo-
rithms on the ER network, WS network, and BA network. In
Fig. 12, I first noticed that when X and F' decrease, the M P
also decreases for all three random network. Similarly, when
both X and F decrease, the M P dramatically decreases to
about M P = 0.292045 for all three random networks. In
addition, for all three random networks, the overall mean
values of MC are all MC = 210. Moreover, I noticed
that the match probability for the ER network remains quite
close to that for the WS network and BA network.

Figure 13 shows the M A curves with a non-adaptive
algorithm on the ER network, WS network, and BA net-
work. In Fig. 13, I noticed that the accuracy M A for
detecting the value of X and F' remains high on all three
random networks. As a result, these figures demonstrate the
robustness and scalability of my algorithm, because a node
can still obtain similar match probabilities with different
random networks.

7.6 Non-adaptive vs. dynamic adaptive algorithm

In this section, I considered a scenario where I compared
the non-adaptive and dynamic adaptive message-forwarding
algorithm on the ER network, WS network, and BA net-
work. In the simulation, I set n = 10000, a = 14, =
2, maxN = 1000, kMax = 9, ¢ = 0.999, d = 50,
hair = 6,xfGap = 0.3, xf Min = 0.4, and performed the
experiment using the following nine cases:

— Casel: F=10,X=1.0
- Case2: F=10,X=0.7
— Case3: F=10,X=04
— Case4: F=0.7,X=1.0

— Case5 F=07,X=07
— Case6: F=07,X=04
— Case7: F=04,X=1.0
— Case8: F=04,X=0.7
— Case9: F=04,X=04

Non-Adaptive

T N
0.95

0s
>
g
s 085
8
<
08
Erdos-Renyi
0.75 Watts-Strogatz
Barabasi-Albert
0.7
Cases= 1 2 3 4 5 6 7 8 9

Fig. 13 M A with non-adaptive algorithm on ER network, WS net-
work, and BA network, where n = 10000, a = 14,1 = 2, maxN =
1000, kMax = 9, ¢ = 0.999, d = 50, hair = 6, xfGap = 0.3,
xfMin=0.4
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Table 1 MC for ER network

Non-Adaptive

O 00 N N Lt AW N~

210
210
210
210
210
210
210
210
210

Table 2 MC for WS network

Non-Adaptive

© 00 9 O Lt A W N~

210
210
210
210
210
210
210
210
210

Table 3 MC for BA network

Non-Adaptive

© 00 N O Lt A W N —

210
210
210
210
210
210
210
210
210

Erdos-Renyi
1
Adaptive .
0.9 - :
210 0.8 - -
280.40 £ 07
452.43 R 06
361.54 E 0.5
494.02
5 04 -
656.65 8 s
703.72 s 7
801.71 02 4
0.1 +
1105.10 o Non-Adaptive —Adaptive
Cases=1 2 3 4 5 6 7 8 9
Fig. 14 MP for ER network
Watts-Strogatz
1
Adaptive 0.9
210 087
£ 07
295.34 5
47237 g 06
. a
369.50 2 05-
511.52 § 0.4 -
1]
463.32 s 0.3
739.40 0.2
908.19 0.1
1145.06 0 —Non-Adaptive —Adaptive
Cases=1 2 3 4 5 6 7 8 9
Fig. 15 MP for WS network
Barabasi-Albert
1
0.9 \/\‘\
0.8 - ' ‘
Adaptive 2 07
210 _§ 0.6
296.82 & 0.5
464.98 5 04
=
1]
356.21 S 03
501.46 0.2
672.44
0.1 ] -
707.26 Non-Adaptive —Adaptive
0
801.55 Cases=1 2 3 4 5 6 7 8 9
1156.53
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Tables 1, 2, and 3 show the message costs M C for non-
adaptive and adaptive algorithms on the ER network, WS
network, and BA network. First of all, the MC of the
non-adaptive algorithm remains MC = 210 for all three
networks. Next, as X and F decrease, M C from the adaptive
algorithm increases. When the values of X and F are both
low, such as X = 0.4 and F = 0.4, the M C increases mod-
erately from MC = 210 to MC = 1145.06. The increased
value of M C is still within a reasonable range because when
X and F are both low (e.g. X = 0.4 and F = 0.4), the
requesting node only increases its requests to about 10 % of
the total nodes in the network. Lastly, I noticed that the mes-
sage costs of non-adaptive and adaptive algorithms for the
ER network are quite close to those of the WS network and
BA network.

Figures 14, 15, and 16 show the M P for non-adaptive
and adaptive algorithms on the ER network, WS network,
and BA network. From these three figures, I noticed that
when X and F decrease, the M P of the non-adaptive algo-
rithm decreases for all three random networks. However, the
M P of my adaptive algorithm increases significantly for all
three random networks. In addition, these figures demon-
strated the robustness and effectiveness of my dynamic
adaptive algorithm, because when the network only has
relatively low values of X and F, my algorithm can still
adjust the number of requests to ensure high M P for
all three random networks. For example, for x = 0.4
and f = 0.4, the MP is still about MP = 0.81 for
all three random networks. Moreover, I observed that the
M P of non-adaptive and adaptive algorithms for the ER
network remains very close to the WS network and BA
network.

7.7 Effectiveness of dynamic adaptive message
forwarding algorithm

In this section, I considered an extended scenario in which
I applied the dynamic adaptive algorithm and varied X and
F with n = 10000, a = 14,1 = 2, maxN = 1000,
kMax =9, c =0.999, d = 50, hair = 6, xfGap = 0.3,
xfMin = 0.4 on the ER network, WS network, and BA
network. In order to reflect a realistic network, I designed
my extended scenario such that X and F decrease or
increase their value slowly, which comprises the following
scenarios:

— Scenario 1: X =1, F =1, time 0 ~ 500

— Scenario 2: X =0.95, F = 1, time 500 ~ 600
— Scenario 3: X = 0.9, F = 1, time 600 ~700
— Scenario 4: X = 0.85, F = 1, time 700 ~ 800

— Scenario 5: X = 0.8, F = 1, time 800 ~ 900
—  Scenario 6: X = 0.75, F = 1, time 900 ~ 1000
— Scenario7: X = 0.7, F = 1, time 1000 ~ 1500

— Scenario 8: X = 0.65, F = 1, time 1500 ~ 1600

— Scenario 9: X = 0.6, F =1, time 1600 ~ 1700

— Scenario 10: X = 0.55, F = 1, time 1700 ~ 1800
—  Scenario 11: X = 0.5, F = 1, time 1800 ~ 1900

— Scenario 12: X = 0.45, F = 1, time 1900 ~ 2000
— Scenario 13: X = 0.4, F = 1, time 2000 ~ 2500

— Scenario 14: X = 0.4, F = 0.95, time 2500 ~ 2600
— Scenario 15: X = 0.4, F = 0.9, time 2600 ~ 2700
— Scenario 16: X = 0.4, F = 0.85, time 2700 ~ 2800
— Scenario 17: X = 0.4, F = 0.8, time 2800 ~ 2900
— Scenario 18: X = 0.4, F = 0.75, time 2900 ~ 3000
—  Scenario 19: X = 0.4, F = 0.7, time 3000 ~ 3500
—  Scenario 20: X = 0.4, F = 0.65, time 3500 ~ 3600
— Scenario 21: X =04, F = 0.6, time 3600 ~ 3700
— Scenario 22: X = 0.4, F = 0.55, time 3700 ~ 3800
— Scenario 23: X = 0.4, F = 0.5, time 3800 ~ 3900
— Scenario 24: X = 0.4, F = 0.45, time 3900 ~ 4000
— Scenario 25: X = 0.4, F = 0.4, time 4000 ~ 4500
— Scenario 26: X = 0.45, F = 0.4, time 4500 ~ 4600
— Scenario 27: X = 0.5, F = 0.4, time 4600 ~ 4700
—  Scenario 28: X = 0.55, F = 0.4, time 4700 ~ 4800
— Scenario 29: X = 0.6, F = 0.4, time 4800 ~ 4900
— Scenario 30: X = 0.65, F = 0.4, time 4900 ~ 5000
— Scenario 31: X = 0.7, F = 0.4, time 5000 ~ 5500
— Scenario 32: X = 0.75, F = 0.4, time 5500 ~ 5600
— Scenario 33: X = 0.8, F = 0.4, time 5600 ~ 5700
— Scenario 34: X = 0.85, F = 0.4, time 5700 ~ 5800
— Scenario 35: X = 0.9, F = 0.4, time 5800 ~ 5900
— Scenario 36: X = 0.95, F = 0.4, time 5900 ~ 6000
— Scenario 37: X = 1.0, F = 0.4, time 6000 ~ 6500
— Scenario 38: X = 1.0, F = 0.45, time 6500 ~ 6600
— Scenario 39: X = 1.0, F = 0.5, time 6600 ~ 6700
— Scenario 40: X = 1.0, F = 0.55, time 6700 ~ 6800
—  Scenario41: X = 1.0, F = 0.6, time 6800 ~ 6900
—  Scenario 42: X = 1.0, F = 0.65, time 6900 ~ 7000
— Scenario 43: X = 1.0, F = 0.7, time 7000 ~ 7500
— Scenario 44: X = 0.95, F = 0.7, time 7500 ~ 7600
— Scenario 45: X = 0.9, F = 0.7, time 7600 ~ 7700
—  Scenario 46: X = 0.85, F = 0.7, time 7700 ~ 7800
— Scenario 47: X = 0.8, F = 0.7, time 7800 ~ 7900
— Scenario 48: X = 0.75, F = 0.7, time 7900 ~ 8000
—  Scenario 49: X = 0.7, F = 0.7, time 8000 ~ 850

><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><

Figure 17 shows the graphs of X, F, and M P for the
ER network, WS network, and BA network. In the extended
scenario, X decreases from 1 to 0.7, to 0.4, then increases
to 0.7, to 1, and finally decreases to 0.7. Similarly, F first
decreases from 1 to 0.7, then drops to 0.4, and finally
increases back to 0.7.

First of all, from Fig. 17, when X and F are low, there
are few nodes that report a match, resulting in a low match
probability. Thus, the values of M P of non-adaptive algo-
rithm on the ER network change from M P = 1 at time 1,
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Fig. 17 Graphs of X, F, and M P of non-adaptive and adaptive algorithms, where X and F vary with n = 10000, a = 14,1 = 2, maxN = 1000,
kMax =9,¢ =0.999,d = 50, hair =6, xfGap = 0.3, and xf Min = 0.4 on ER, WS, and BA networks

to MP = 0.9820 at time 1000, to M P = 0.9545 at time
2000, to M P = 0.8877 at time 3000, to M P = 0.7898 at
time 4000, to M P = 0.6969 at time 5000, to M P = 0.6592
at time 6000, to M P = 0.6602 at time 7000, and finally
to MP = 0.6859 at time 8000. Similarly, for the WS net-
work, the value of M P of non-adaptive algorithm changes
from MP = 1 attime 1, to MP = 0.9740 at time 1000,
to MP = 0.9505 at time 2000, to M P = 0.8927 at time
3000, to M P = 0.7998 at time 4000, to M P = 0.7013 at
time 5000, to M P = 0.6627 at time 6000, to M P = 0.6595
at time 7000, and finally to M P = 0.6845 at time 8000.
Likewise, for the BA network, the value of M P of the non-
adaptive algorithm changes from M P = 1 at time 1, to

@ Springer

M P = 0.9780 at time 1000, to M P = 0.9530 at time 2000,
to MP = 0.8920 at time 3000, to M P = 0.8008 at time
4000, to M P = 0.7081 at time 5000, to M P = 0.6741 at
time 6000, to M P = 0.6736 at time 7000, and finally to
M P = 0.6980 at time 8000.

Next, when the values of X and F' are low, the requesting
node receives fewer matches, and the consequently affects
the modified chi-squared to estimate low values of X and
F. Hence, my dynamic adaptive algorithm increases a and
[ in order to maintain high match probability M P. Subse-
quently, the overall value of M P of the dynamic adaptive
algorithm on the ER network changes from M P = 1 at time
1,to MP = 0.9780 at time 1000, to M P = 0.9615 at time
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Table 4 Mean value of MC and M P on ER network

Table 6 Mean value of MC and M P on BA network

N-Adaptive Adaptive N-Adaptive Adaptive
MP 0.6875 0.9019 MP 0.7032 0.9194
MC 210 520.565 MC 210 535.633

2000, to M P = 0.9583 at time 3000, to M P = 0.9333 at
time 4000, to M P = 0.8872 at time 5000, to M P = (0.8825
at time 6000, to M P = 0.8919 at time 7000, and finally to
M P = 0.8996 at time 8000. Similarly, the value of M P of
dynamic adaptive algorithm on WS network changes from
MP = 1 attime 1, to MP = 0.9780 at time 1000, to
M P = 0.9685 at time 2000, to M P = 0.9620 at time 3000,
to MP = 0.9348 at time 4000, to M P = 0.8910 at time
5000, to M P = 0.8877 at time 6000, to MP = 0.8943
at time 7000, and finally to M P = 0.9023 at time 8000.
Likewise, the value of M P of dynamic adaptive algorithm
on BA network changes from MP = 1 at time 1, to
M P = 0.9810 at time 1000, to M P = 0.9740 at time 2000,
to MP = 0.9650 at time 3000, to M P = 0.9378 at time
4000, to M P = 0.9016 at time 5000, to M P = 0.9022 at
time 6000, to M P = 0.9116 at time 7000, and finally to
MP = 0.9171 at time 8000.

From Fig. 17, I notice that the curve of M P on the ER
network is quite similar to the curve of M P for both the
WS and the BA network. In addition, it is clear to see that
the match probability M P for the ER network, WS net-
work, and BA network remains high even when X and F
are low, and that showed the effectiveness and robustness of
my dynamic adaptive algorithm.

Tables 4, 5, and 6 show the mean values of M P and MC
for the entire extended scenario on the ER network, WS
network, and BA network. First of all, the value of M C of
the non-adaptive algorithm for all three random networks
remains M C = 210 from the beginning to the end. Next, it
is obvious to see that the mean values of M P and M C on the
ER network are similar to the values of M P on both the WS
and the BA network. In addition, I noticed that by apply-
ing my dynamic adaptive algorithm to the system, the mean
match probability M P for each random network increases
from MP = 0.6862 to about MP = 0.9046, which is
quite effective. Thus, these tables confirmed the effective-
ness and scalability of my dynamic adaptive algorithm, and

Table 5 Mean value of MC and M P on WS network

N-Adaptive Adaptive
MP 0.6862 0.9046
MC 210 544.879

have demonstrated that a node can still find a match even
when the network has low values of X and F. Furthermore,
it is clear to notice that my algorithm can appropriately
adjust MC to ensure high value of M P. Finally, the over-
all mean value of MC for all three random networks is
about MC = 544.633, which is considered a reasonable
cost.

Overall, these experiments have demonstrated the scala-
bility and effectiveness of my algorithm in estimating the
proportion of non-malicious and non-selfish nodes, and that
false alarms rarely occur. When the actual proportion X
of non-malicious nodes increases or decreases, my algo-
rithm quickly estimates the changes of x of non-malicious
nodes. Similarly, when the actual proportion F of non-
selfish nodes increases or decreases, my algorithm quickly
determines the changes of f of non-selfish nodes. In addi-
tion, I have showed that my dynamic adaptive algorithm can
effectively adjust the value of a and [ for achieving high
match probability M P. Moreover, I have verified that when
the allowable number of nodes maxN in a node’s view is
much smaller than the actual network size n, my algorithm
can still accurately estimate the value of x and f, and appro-
priately adjusts the number of @ and / to achieve high M P.
Furthermore, I considered the ER network, WS network,
and BA networks in the context of my algorithm, and have
showed the robustness of my algorithm on several experi-
ments with varied network sizes. Lastly, [ have constructed
an extended scenario in which I varied X and F with various
random networks, and have demonstrated the effectiveness
and scalability of my algorithm, such that it can accurately
estimate the value of x and f, appropriately adjust a and /
to ensure high match probability M P, and still maintain the
reasonable message cost M C.

8 Conclusion

In this paper, I have presented a dynamic adaptive message-
forwarding algorithm for P2P search and retrieval system,
where the main goal is to: 1) tackle the censorship and secu-
rity issues; 2) employ the probability density function (pdf),
Exponential Weighted Moving Average (EWMA) method,
and modified chi-squared test to determine the proportion
of subverted and selfish nodes; 3) defend against malicious
and selective forwarding attacks by appropriately adjusting
the number of requests to ensure high match probability,
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even when the network has large proportions of subverted
and selfish nodes; and 4) guarantee robustness and scala-
bility of my algorithm in different random networks (e.g.,
Erdos-Renyi, Watts-Strogatz, and Barabasi-Abert networks)
and varied network sizes.

I have first explained the theory behind my dynamic
adaptive message-forwarding algorithm, which uses ran-
dom sampling and statistical inferences to accurately esti-
mate the metrics that cannot be observed (e.g. malicious and
selfish nodes), and thereby appropriately changes the num-
ber of requests in order to maintain a high match probability.
Extensive experimental evaluations demonstrated the scala-
bility and robustness of my algorithm, which can work well
under a range of network conditions: 1) when the network
has a large proportions of malicious nodes, 2) when the net-
work has a large proportions of selfish nodes, and 3) when
nodes only allow to have a mere partial view of network
membership.

In the future, I plan to continue investigating and expand-
ing my adaptive algorithms, incorporating scenarios when
the network has a high rate of membership churn. In addi-
tion, I also plan to extend my work and test my algorithm
when the network contains a very large membership, such
as containing millions of nodes. When the network contains
millions of nodes, the communication and computational
costs will be larger. Therefore, I plan to investigate an algo-
rithm that forwards messages, deals with a large number of
nodes, and protects against malicious and selective forward-
ing attacks, but still maintains reasonable communication
and computation costs.
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