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Abstract This paper investigates the distributed model pre-
dictive control (DMPC) problem for multi mobile robots.
The distributed system model is obtained by the kinematic
model of single mobile robot. By including the coupling
terms in the cost function, cooperation between subsys-
tems can be incorporated in the distributed control problem.
Then, each robot has its own optimal control problem, and
neighboring subsystems can exchange information with one
another by using wireless communication. The distributed
model predictive control problem is formulated by the local
cost function and solved by using Nash-optimization algo-
rithm. The convergence condition of the proposed algorithm
is presented. Finally, an illustrative example is given to
demonstrate the effectiveness of the proposed method.
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1 Introduction

Cooperative control for multi mobile robots has been a topic
of significant interest in recent years. In many applications,
a group of mobile robots are required to follow a predefined
trajectory while maintaining a desired spatial formation.
Moving in formation has many advantages over conven-
tional systems, for example, it can reduce the system cost,
increase the robustness and efficiency of the system [1, 2].
As a result, a critical problem for cooperative control is to
design appropriate algorithms so that the group of robots
can converge to a desired formation. During the last decade,
various formation control strategies have been developed to
study the cooperative control for multi mobile robots, such
as leader-follower method [3, 4], behavior-based method [5,
6] and virtual structural method [7, 8], each of whom has
its own advantages and disadvantages. The leader-follower
method is one of the most studied in multi robots formation.
However, in this structure, if a follower fails to follow prop-
erly, no mechanism can guarantee the formation keeping.
The virtual structure method has the good formation main-
tenance and the easy setting of the coordinated behavior
for the group. This structure, however, cannot reconfigure
the formation [9]. In the behavioral structure, while seek-
ing a target, collision or obstacle avoidance are important
issues, and the desired behaviors are prescribed for each
agent accordingly [10].

One control approach that accommodates a general coop-
erative objective is model predictive control (MPC). It can
be regard as a kind of optimal control methods, which
employs a dynamic model of plant to forecast the future
behavior of state and determines the future control action
according to optimization of a certain performance target
function or an operation cost function at each sampling
time. It has been the target of study in multi-robot motion
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control in almost a decade [11–14]. The advantages of using
MPC for robot motion control are: (i) it can control the
robot motions and take input constraints into account so that
we can steer the robot safely with a high forward velocity,
and (ii) it can use future prediction to produce an predicted
trajectory at each time step [14]. In [12–14], the central-
ized MPC strategy is proposed to study the multi mobile
robots formation problem, through establishing the perfor-
mance index function of all the mobile robots to force
the mobile robots moving follow desired path and forma-
tion. Although the centralized MPC can handle some of the
multi mobile robots formation problems, the computation
and communication requirements of solving the central-
ized problem at every receding horizon update make it
impossible to satisfy the demand growth for multi mobile
robots system. An effective approach to overcome the above
mentioned drawbacks of centralized MPC is to employ dis-
tributed MPC (DMPC) in which the optimal trajectory is
obtained through solving a number of distributed optimiza-
tion problems with lower dimensionality [15]. In the context
of DMPC, each mobile robot has its own MPC controller,
and each MPC controller can exchange information with its
neighbor mobile robot controller [16].

In recent years, DMPC has attracted increasing research
interest [17–19]. Considering the information exchange
among local controllers according to different protocols,
DMPC algorithms can be divided into two groups: non-
iterative algorithm [20] and iterative algorithm [21, 22]. An
iterative DMPC algorithm was developed in [21] based on
Nash optimality for large-scale processes to tackle the state
coupling between subsystems, and the relevant computa-
tion convergence and the nominal stability condition were
presented for unconstrained DMPC scheme in [22]. Robust
DMPC algorithms were proposed in [23–26], in which the
model uncertain problem was converted into solving a linear
matrix inequality optimization problem. In [27], a coop-
erative linear DMPC strategy was presented for any finite
number of subsystems and a stabilizability condition was
also presented. Due to the great advantages of DMPC, it
has been widely used in formation control for multi mobile
robots. In [28], a new DMPC algorithm was proposed to
study the formation control problem for multi vehicle with
coupling terms in the cost function, but each distributed
optimal state trajectory satisfy a compatibility constraint
which introduces some conservatism. In [29], a distributed
nonlinear MPC algorithm was given to solve the problem of
steering and coordinating multi mobile robots along given
paths. Considering efficient computation, a DMPC algo-
rithm by using an interior point method was investigated
in [30] for leader-follower systems. In [31], a distributed
aperiodic MPC was investigated for multi-robot systems,
where each subsystem solves an optimal problem only when

certain control performances cannot be guaranteed accord-
ing to certain triggering rules. To the best of our knowledge,
although lots of results have been available, the issue of
simultaneously considering the DMPC and formation con-
trol problems has not been fully investigated to date. This
motivates the present research.

In this paper, we are concerned with the design of a
DMPC algorithm for multi mobile robots formation con-
trol. According to the kinematic model of the single mobile
robot formulated in [32], the distributed system model is
derived for multi mobile robots, where each robot is seen
as a subsystem. Cooperation between subsystems can be
incorporated in the distributed control problem by includ-
ing the coupling terms in the cost function. Subsystems that
are coupled in the cost function are referred to as neighbors.
each subsystem has its own optimal control problem, and
neighboring subsystems can exchange information with one
another by using wireless communication. Considering the
local cost function, the distributed optimal control problem
is formulated and solved by using Nash-optimization itera-
tion. Moreover, the convergence condition of the proposed
algorithm is presented. Finally, an illustrative example is
presented to show the effectiveness of the proposed method.

2 Kinematic model of mobile robot

A mobile robot together with a reference path � to be fol-
lowed is shown in Fig. 1. {B}, {T} and {U} denote the
robot body frame, the virtual vehicle frame and the world
frame, respectively. Q is the centroid of the mobile robot and
q = (xB, yB, αB) describes the position (xB, yB) and the
orientation αB of the mobile robot. P is the centroid of the
virtual vehicle which is the desired tracking position on ref-
erence path � and p = (xT, yT, αT) describes the position
(xT, yT) and the orientation αT of the virtual robot. Then,

Fig. 1 Illustration of the path following
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the kinematic model for mobile robot and virtual robot are
given as follows
⎡
⎣

ẋB
ẏB
α̇B

⎤
⎦ =

⎡
⎣
cosαB 0
sinαB 0
0 1

⎤
⎦

[
v

ω

]
, (1)

⎡
⎣

ẋT
ẏT
α̇T

⎤
⎦ =

⎡
⎣
cosαT 0
sinαT 0
0 1

⎤
⎦

[
vr

ωr

]
, (2)

where v and ω are the control input representing the for-
ward and angular velocities, respectively. vr and ωr are the
control input representing the desired forward and angular
velocities, respectively.

Let (xe, ye, αe) be the error state vector between the robot
state vector q and the virtual vehicle’s state vector p. Then,
we have
⎡
⎣

xe

ye

αe

⎤
⎦ =

⎡
⎣
cosαB sinαB 0
− sinαB cosαB 0

0 0 1

⎤
⎦ (p − q). (3)

Then, the path following problem shown in Fig. 1 is to find
a feedback control law u = [v ω]T such that

lim
t→∞ (p − q) = 0, (4)

with any initial robot posture.
By taking the derivative of Eq. 3 and rearranging with

Eqs. 1, 2, one obtains
⎧⎨
⎩

ẋe = ωye − v + vr cosαe

ẏe = −ωxe + vr sinαe

α̇e = ωr − ω

. (5)

Let us define

x =
⎡
⎣

xe

ye

αe

⎤
⎦ , u =

[ −v + vr cosαe

ωr − ω

]
.

Then, system (5) becomes

ẋ =
⎡
⎣

0 ω 0
−ω 0 0
0 0 0

⎤
⎦ x +

⎡
⎣

0
vr sinαe

0

⎤
⎦ +

⎡
⎣
1 0
0 0
0 1

⎤
⎦ u. (6)

By linearizing system (6) about the equilibrium point
(x = 0, u = 0), one has

ẋ = Apx + Bpu, (7)

where Ap =
⎡
⎣
0 ωr 0
−ωr 0 vr

0 0 0

⎤
⎦, Bp =

⎡
⎣
1 0
0 0
0 1

⎤
⎦. For simplic-

ity, the reference path � considered in this paper is a circular

path. Then, the controllability of system (7) can be easily
checked.

3 Path following and formation

The coordinated path following problem for multi mobile
robots is stated as that each mobile robot is required to fol-
low its own predetermined reference path while keeping a
desired inter-vehicle formation pattern with its neighbors in
time [29]. Considering the formation problem for N , N ≥ 2
mobile robots, a set of N mobile robots and a set of N

expected path �i , i = 1, 2, . . . , N are required. According
to Eq. 7, the model of mobile robot i follows path �i can be
described as follows

ẋi = Apixi + Bpiui (8)

where xi =
⎡
⎣

xe,i

ye,i

αe,i

⎤
⎦, Api =

⎡
⎣
0 kp,ivr,i 0
−kp,ivr,i 0 vr,i

0 0 0

⎤
⎦,

Bpi =
⎡
⎣
1 0
0 0
0 1

⎤
⎦, ui =

[ −vi + vr,i cosαe,i

ωr,i − ωi

]
.

Considered the sampling period of the sensors onboard
mobile robots is T , then the discrete-time model can be
derived by discretizing (8) with sampling period T

xi (k + 1) = Aixi (k) + Biui (k) (9)

where Ai = eApiT , Bi = ∫ T

0 eApiτ dτBpi .
Formation configuration and information exchange can

be generalized as a graph. The formation graph is defined
as G = (V , ε), where V = 1, · · · , N is the set of mobile
robots and ε ⊂ V × V is the set of relative vectors between
mobile robots. Two mobile robots i and j are called neigh-
bors if (i, j) ∈ ε, and the set of neighbors of mobile robot
i is denoted by ηi ∈ V . For convenience, we define �i

as the expected path for mobile robot i and � as the base
reference path for the whole system. The radius of �i and
� are denoted as Ri and R, respectively. Let si (k) be the
position of mobile robot i projected on the expected pace
�i and sj (k) be the position of mobile robot j projected
on the expected pace �j at time instance k. Denoted si

′ (k)

and sj
′ (k) be the projective position on the whole system

base reference path � of mobile robots i and j , respectively.
Then, the arc length between si

′ (k) and sj
′ (k) is denoted

as sij (k). Since the reference paths are circle paths, the arc
length can be described as follows

sij (k) = si
′ (k) − sj

′ (k)

= si (k) R/Ri − sj (k) R/Rj .
(10)

It should be noted that sij (k) = −sji(k).
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Fig. 2 Straight line formation
of three mobile robots

In order to keep a desired inter-vehicle formation pat-
tern, sij (k) is expected to close to the desired value in time.
Furthermore, the radius angle between two mobile robots
θij (k) is also expected to close to the desired value, and
satisfies sij (k) = Rθij (k). As an example, the formation
configuration for three mobile robots is shown in Fig. 2. In
this example, the position of virtual mobile robot 1, mobile
robot 2 and mobile robot 3 on the expected path �1, �2 and
�3 are s1 (k), s2 (k) and s3 (k), respectively. The path �2

for mobile robot 2 is assumed as the base reference path �.
Then, we can obtain the arc length as follows

s12 (k) = s1 (k) R2/R1 − s2 (k)

s23 (k) = s2 (k) − s3 (k) R2/R3 .

By the aforementioned discussion, it can be known that
the arc length is a constraint for the formation. Distributed
MPC is a popular technique for the control of large-scale
systems [17–19]. Its essential feature renders the MPC
approach very appropriate to incorporate the constraints into
the online optimization. Therefore, the formation problem
is to design a stabilizing local controller ui (k) for multi
mobile robots system by distributed MPC strategy.

4 Distributed MPC

The main idea of the distributed MPC algorithm is an online
optimization of MPC. For multi mobile robots, the opti-
mization formulation can be decomposed into a number of
small-scale optimizations, and each mobile robot is treated
as a subsystem. In the formation problem, each mobile robot
can communication with its neighbors and exchange their
state information without delay by wireless network [33,
34]. The communication topology is shown in Fig. 3. In
order to guarantee the multi mobile robots to work at given

references and a desired inter-vehicle formation pattern,
we propose a local optimization performance index for the
mobile robot as follows

Ji (k) =
P∑

j=1
xT
i (k + j |k)Qixi (k + j |k)

+
M−1∑
j=0

uT
i (k + j |k) Siui (k + j |k)

+ ∑
j∈ηi

wi,j

(
si (k+1|k)R

Ri
− sj (k+1|k)R

Rj
− sR

i,j

)2
.

(11)

where xi (k + j |k) and ui (k + j |k) are the predicted value
of the variables xi (k + j) and ui (k + j) based on the mea-
surements of time instance k, respectively. P and M are
the prediction horizon and control horizon, respectively, Qi

and Si are the given positive definite weight matrices with
appropriate dimension, wi,j is the given positive scalar. R

is the radius of the base reference �, sR
i,j is the expected

arc length between two position points for the position of
mobile robot i and robot j projected on �. si (k + 1|k)

and sj (k + 1|k) are the predicted value of the variables
si (k + 1) and sj (k + 1) for mobile robot i and robot j

based on the measurements of time instance k, respectively.
ηi is the set of neighbors for mobile robot i. The third term
on the right side of the Eq. 11 is a coupling cost between
mobile robots i and j , which involves the information from
the neighbors.

Remark 1 It should be noted that the position of mobile
robot si (k) is a nonlinear function. For simplicity, we use
the linearization method to approximate si (k). In order to
reduce the linearization error in the prediction horizon, one
step predictive value si (k + 1|k) is used to explain the cou-
pling terms of the performance index (11) for the multi
mobile robots.
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Fig. 3 Communication
topology for multi mobile robots

Considering the linearization method for the mobile
robot model, the position of mobile robot i can be expressed
as the following recursive formulation

si (k + 1) = si (k) + T Riωi (k) . (12)

Since the reference paths are concentric circles, it can be
known that all mobile robots have the same angular velocity,
such as ωr,i = ωr for all mobile robots. By the definition of
ui(k), (12) can be rewritten as follows

si (k + 1) = si (k) + T Ri [ωr − Fui (k)] (13)

where F = [
0 1

]
.

Let
Q̃i = diag (Qi, ...,Qi)︸ ︷︷ ︸

P×Qi

, S̃i = diag (Si, ..., Si)︸ ︷︷ ︸
M×Si

, F̃ =

[
0 1 0 · · · 0 ]

︸ ︷︷ ︸
2(M−1)×0

, x̃i (k) =
⎡
⎢⎣

xi (k + 1|k)
...

xi (k + P |k)

⎤
⎥⎦, ũi (k) =

⎡
⎢⎣

ui (k|k)
...

ui (k + M − 1|k)

⎤
⎥⎦.

Then, local performance index (11) can be rewritten as
follows

Ji (k) = x̃T
i (k) Q̃i x̃i (k) + ũT

i (k) S̃i ũi (k)

+ ∑
j∈ηi

wi,j

(
−RT F̃ ũi (k) + Rsi(k)

Ri

−Rsj (k)

Rj
+ RT F̃ ũj (k) − sR

i,j

)2

= x̃T
i (k) Q̃i x̃i (k) + ũT

i (k) S̃i ũi (k)

+ ∑
j∈ηi

wi,j

(
	ũi (k) + 
i,j

)2

(14)

where 	 = −RT F̃ , 
i,j = Rsi(k)
Ri

− Rsj (k)

Rj
+RT F̃ ũj (k)−

sR
i,j .

Therefore, the formation control target of mobile robot i

can be described as the following minimization problem

min
ui(k),...,ui (k+M−1)

Ji (k) . (15)

Remark 2 It can be seen that the local optimization problem
as in Eq. 15 for mobile robot i contains all the inputs uj (k)

and position information sj (k), j ∈ ηi of its neighbors. The
position information and control input exchange by wireless
communication network.

Such local optimization problem (15) with different goals
can be solved by means of Nash optimal concept [21]. Each
robot optimizes its local objective only using its own control
decision assuming that the neighbors optimal solutions are
known. It is obviously that the minimize problem (15) is a
QP problem. By using the first order KKT condition, the
solution to Eq. 15 is obtained as follows

ũi (k) = −
(

B̃T
i Q̃i B̃i + S̃i + ∑

j∈ηi

wi,j	
T 	

)−1

×
(

B̃T
i Q̃iÃixi (k) + ∑

j∈ηi

wi,j	
T 
i,j

) (16)

where

Ãi =
⎡
⎢⎣

Ai

...

AP
i

⎤
⎥⎦, B̃i =

⎡
⎢⎢⎢⎣

Bi 0 · · · 0
AiBi Bi · · · 0
...

... · · · ...

AP−1
i Bi AP−2

i B · · · AP−M
i B

⎤
⎥⎥⎥⎦.

The Nash optimization algorithm is one of the iterative
algorithms, which is developed to seek the local optimal
control decision for each subsystem at each sampling time.
If the algorithm is convergent, all the terminal conditions
of all the subsystems will be satisfied, and then the itera-
tion will be terminated; otherwise, each subsystem transfer
the newly computed control decision to its neighbors, and
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resolves its local problem with the updated values for neigh-
bors. The overall control system will converge at Nash
equilibrium. However, the Nash optimal solution to the local
optimization problem may not equal to the global optimal
control decision. In formation of multiple mobile robots
path following problem, the goal of performing commu-
nication and exchanging solutions among controllers is to
achieve the optimal solution of the each mobile robot in an
iterative fashion. The algorithm is summarized as follows.
Algorithm 1:

S1 : Initialization: At time instant k = 0, iterations p = 0,
the state of mobile robot i, i ∈ (1, ..., N) are xi (k)

and si (k), and the control input ũp
i (k).

S2 : Communication: Mobile robot i obtain its neighbors
position information sj (k) and control input ũ

p
j (k),

(i, j) ∈ η, and send its position information si (k) and
control input ũp

i (k) to its neighbors by using wireless
communication.

S3 : Local optimization: Each subsystem resolves its local
optimization problem described in Eq. 15, and then
calculates the local optimal input ũp+1

i (k) by Eq. 16.
S4 : Checking converge: Given error accuracy εi , if all

subsystems satisfy the terminal condition ||ũp+1
i (k)−

ũ
p
i (k) || ≤ εi , i ∈ (1, ..., N), then end the iteration,

set the local optimal control input ũ∗
i (k) = ũ

p
i (k),

go to S5, otherwise, let p = p + 1, each subsystem
communicates to exchange the new information ũ

p
i (k)

with its neighbors, and go to S2.
S5 : Implementation: Apply the first element u∗

i (k|k)

from the control input ũ∗
i (k) to its neighbors. Set

the initial control input for the next sampling time
ũ0i (k + 1) = ũ∗

i (k).
S6 : Receding horizon: p = 0, k = k + 1, move horizon

to the next sampling time, go to S1.

It is known that the overall control system will converge
at Nash equilibrium if Algorithm 1 is convergent. Then,

we will give the convergence analysis of the proposed dis-
tributed algorithm. For the sake of clarity of exposition, we
shall use the following definitions

Gi = B̃T
i Q̃i B̃i + S̃i +

∑
j∈ηi

wi,j	
T 	, Hi = B̃T

i Q̃i Ãi ,

�i,j = (Rsi(k)/Ri −Rsj (k)/Rj −sR
i,j )wi,j	

T,Ti,j = wi,j	
T RT F̃ .

Then, the local MPC controller (16) can be rewritten as
follows

ũi (k) = −G−1
i

⎡
⎣Hixi(k) +

∑
j∈ηi

�i,j + Ti,j ũj (k)

⎤
⎦ . (17)

From Algorithm 1 and Eq. 17, the relationship of con-
trol decision for the ith subsystem between iteration p and
iteration p + 1 can be derived as follows

ũ
p+1
i (k)=−G−1

i

⎡
⎣Hixi(k) +

∑
j∈ηi

�i,j + Ti,j ũ
p
j (k)

⎤
⎦ . (18)

From Eq. 18, we can obtain the control decision of the whole
system as follows

Up+1(k) = −G−1 [
Hx(k) + � + TUp(k)

]
(19)

where x(k) = [
xT
1 (k) · · · xT

N(k)
]T
, U(k) =[

ũT
1 (k) · · · ũT

N (k)
]T
, G = diag {G1, · · · , GN },

H = diag {H1, · · · , HN }, �(i, j) =
{

�i,j , i 
= j

0, i = j
,

T(i, j) =
{
Ti,j , i 
= j

0, i = j
.

Since xi(k) and si(k) are known in advance at time k, it
can be known that Hx(k) + � is a constant term at each
iteration. Then, it can be easily concluded that if the eigen-
values of G−1T are all in the unite circle,

∣∣λ(G−1T)
∣∣ < 1,

the proposed distributed algorithm is convergent.

Fig. 4 The expected formation
for three mobile robots
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Fig. 5 The states of mobile robot 1

5 Illustrative example

In this section, path following of three mobile robots on two
concentric circles path is used to illustrative the effective-
ness of the proposed algorithm. The expected formation of
these three mobile robots is shown in Fig. 4. In this for-
mation, mobile robot 1 and mobile robot 3 are expected
to follow reference path �1 , which is a circle with radius
of 2m, while mobile robot 2 is expected to follow refer-
ence path �2 = �, which is a circle with radius of 1m.
Moreover, the angle and arc length between two mobile
robots also should be satisfied constraints. Specifically, the
expected angle between mobile robot 1 and mobile robot
2 is θ12 = π

6 , and the arc length that between the pro-
jected position of mobile robot 1 and mobile robot 2 on �

is expected as s12 = π
3 ; the expected angle between mobile

robot 2 and mobile robot 3 is θ23 = π
6 , and the arc length
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Fig. 6 The states of mobile robot 2
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Fig. 7 The states of mobile robot 3

that between the projected position of mobile robot 2 and
mobile robot 3 on � is expected as s23 = π

3 .
It is assumed that the expected angular velocity of three

mobile robots is 1.5 rad/s and the systems is discretized
with sampling period T = 0.15 s. In order to drive the
mobile robots toward the desired formation, the proposed
distributed model predictive control is applied to the robot
system. For the distributed model predictive control, the
prediction horizon and control horizon are P = 3 and
M = 1, respectively. The weight matrices in the perfor-
mance index are chosen as Qi = 100 × I3, Si = I2,
wi = 100, i ∈ (1, ...N), where Ii shows the identity matrix
with dimension i. Then, by using the proposed method in
Algorithm 1, the distributed controllers are obtained and the
tracking performances are shown in Figs. 5, 6 and 7, where
the solid curve denotes the error of the horizontal direc-
tion, the dash-and-dot one denotes the error of the vertical
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Fig. 8 The angular separation for mobile robots
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Fig. 9 The trajectory of three mobile robots

direction and the dash one denotes the angle deviation. It
can be seen from Figs. 5, 6 and 7 that the mobile robot 1
and mobile robot 3 converge to the reference path �1 and
mobile robot 2 converges to reference �2 finally. The con-
straints, arc length on � between two robots, is shown in
Fig. 8. It is shown that the arc length that between the pro-
jected position of mobile robots 1 and mobile robot 2 on �

is converge to s12 = θ12×R2 ≈ 0.523, that means the angle
between mobile robot 1 and mobile robot 2 converge to
θ12 = π

6 ; the arc length that between the projected position
of mobile robots 2 and mobile robot 3 on � is converge to
s23 = θ23×R2 ≈ 0.523, and the angle between mobile robot
2 and mobile robot 3 converge to θ23 = π

6 . Figure 9 shows
the real trajectory of three mobile robots under the pro-
posed control algorithm, where the circle denotes the initial
position of the robot, and the triangle denotes the position
of the robot at time 45 s. As can be seen from the simulation
results, the designed distributed controller based on Nash
optimization algorithm performs well for multiple mobile
robots formation problem.

6 Conclusion

In this paper, the distributed model predictive control prob-
lem was addressed for multi mobile robots systems. Accord-
ing to the kinematic model of single robot, the distributed
system model was obtained for multi mobile robots. By
including the coupling terms in the cost function, the dis-
tributed optimal control problem was formulated by the
local cost function. The distributed controller was obtained
by using Nash-optimization iteration algorithm, and the
convergence analysis of the proposed algorithm was also

presented. Finally, the effectiveness of the proposed method
was verified by the simulations.
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