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Abstract An unmanned ground vehicle (UGV) network
operates as an ad hoc autonomous tactical network. In this
paper, we study the deployment of a UGV network and its
ability to use location estimation to provide reliable data
forwarding. This analysis involves (1) location estimation
to obtain realistic estimates of the node’s (UGV) spatial
positions and (2) real-time path planning to obtain reliable
routing among nodes using the estimates of the node posi-
tions. Conventional approaches commonly use the popular
Random Waypoint (RWP) model (or its variants) as the
mobility model. The RWP approach uses randomly selected
node positions and has no way to cope with nodes mov-
ing in and out of transmission range. These deficiencies
cause the route reliability to suffer. Our approach (1) uses an
Extended Kalman Filter (EKF) for node mobility/location
estimation and (2) uses a modified Ad Hoc On Demand Dis-
tance Vector (AODV) algorithm for route selection using a
new routing parameter called contact time. We refer to this
combined approach as the AODV-LocPred algorithm. We
compare the AODV-LocPred algorithm with AODV using
the RWP model. This is referred to as AODV-RWP. Our
simulations show that the AODV-LocPred algorithm sig-
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nificantly outperforms the AODV-RWP algorithm in terms
of packet delivery ratio (PDR), because it provides real-
istic node position estimates and it copes in a reasonable
way with nodes moving in and out of transmission range.
However, the AODV-LocPred incurs an increase in end-to-
end delay. Nonetheless, we expect that in many real-world
settings, this tradeoff is acceptable.

Keywords Kalman Filter · Routing · Location
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1 Introduction

In recent years, there has been increasing interest in the
design and deployment of unmanned systems. Unmanned
systems are equipped with data processing units, sen-
sors and communications systems that are used to exe-
cute tactical missions without direct human intervention.
Unmanned systems include unmanned aircraft (drones),
ground robots and underwater explorers. With the introduc-
tion of unmanned systems, the traditional concept of warfare
has shifted to a network centric view of military systems.
This involves the integration of wireless communication
networking and information sharing into tactical military
operations.

Communication and information distribution using
unmanned aerial vehicles (UAVs) has dominated research in
the unmanned systems arena because of the prevalent use of
drones in combat operations. However, unmanned ground
vehicles/robots (UGV) continue to be important in post-
conflict regions, where humanitarian needs exists, including
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detection and neutralization of landmines [1, 2]. UGVs are
also commonly used for providing information surveillance
in areas where combat forces can not enter.

Multiple UGVs form a mobile ad hoc network
(MANET). To effectively implement communication pro-
tocols among UGVs, the nodes need to know position
information. Obtaining knowledge about the UGV position
requires effective estimation techniques and is an integral
part of data forwarding among the network nodes.

1.1 Motivation and contributions

The problem of position estimation, also referred to as local-
ization, is central in mobile robotics [3], and the need for
accurate positional information is crucial to not only reduce
the probability of collision among nodes in a UGV network
but also to conduct its mission.

The most common navigational aid is the Global Posi-
tioning System (GPS). Over the years, GPS receivers have
become cheaper, smaller, and can be found in everything
from commercial aircraft to cell phones. However, most
GPS receivers operate using the Standard Positioning Ser-
vice (SPS) where it is only possible to reach a 15-meter
accuracy in the best case [4]. Military users who have spe-
cially equipped receivers and the required cryptographic
equipment and keys can use the Precise Positioning Service
(PPS), where one meter accuracy or better can be achieved
[4]. GPS, however, is prone to errors, and at times is unre-
liable due to a combination of noise and bias. Sources of
error in GPS include: measurements in signal arrival time,
numerical calculations, atmospheric effects, and multi-path
signals. Furthermore, since GPS signals at the receivers tend
to be rather weak, signals can easily be blocked by buildings
and other high obstacles, and are vulnerable to jamming;
unmanned systems must be able to operate in GPS denied
environments [5]

A group of techniques that uses probabilistic and sta-
tistical approaches to aid in localization are very com-
mon in unmanned systems. The most common localization
approaches use recursive Bayesian estimation, where an
unknown probability density function is estimated recur-
sively over time using a mathematical process model and
incoming measurements of the environment. A variety of
algorithms exist for recursive state estimation [6]. Because
the observations (i.e., measurements) are nonlinear, we
must choose an estimator that will handle nonlinearities.
The most commonly-used, workhorse, baseline estimator of
the industry is the Extended Kalman Filter (EKF), which
exploits a linear approximation to the nonlinear system
model. More advanced estimators include the Unscented
Kalman Filter (UKF) and the Sequential Monte Carlo
(SMC) estimator or Particle Filter (PF), which have perfor-
mance advantages over the EKF in many circumstances, but

cost additional computational complexity. In addition, sev-
eral variants of the Particle Filter offer improvements (e.g.
the Rao-Blackwellized Particle Filter (RBPF)) [6, 7]. The
Particle filter and the EKF tend to be the most commonly
used approaches in autonomous systems [4].

In a cooperative multi-UGV system, reliable and effec-
tive communication is critical for enhancing the network’s
performance. A common assumption in research on multi-
UGV systems is that a fully connected network is contin-
uously available and that it is always possible for infor-
mation from one node to reach another. This assumption,
though, is not always realistic in all environments. Missed
measurements are also possible in a dynamic network. In
those applications where more measurements are needed
for better estimates, a missed measurement could cause
sub-optimal performance.

As discussed above, due to the errors in measurement
that GPS can introduce, measurements can be obtained
more accurately and with less time consuming computa-
tions when using received signal strength indicator (RSSI)
transmitters at fixed position base stations [8, 9]. RSSI is
the measure of the power level/signal strength received at
the node from a given fixed base station. In this paper, we
use RSSI signals from known fixed position base stations
to triangulate the UGV node. The use of such fixed RSSI
transmitters is appropriate for the mission setting (human-
itarian applications, land mind detections, as stated earlier)
in which UGV ad hoc networks are deployed.

For the application (UGV ad hoc network) discussed in
this paper, we choose the EKF as the state estimator. We
do so for the following reasons: (1) The main focus and
contribution of this work is not the state estimator (EKF),
but rather the new modified Ad Hoc On Demand Vector
(AODV) Location Prediction (AODV-LocPred) algorithm
that is developed in this paper. The conventional network-
ing literature uses the popular Random Waypoint (RWP)
Model (or its variants) for the node dynamics, coupled
with the AODV routing protocol. We refer to this as the
AODV-RWP algorithm. The RWP model uses randomly-
selected node positions, which are not realistic for our
operational scenario, as our UGVs move according to their
dynamics. In addition, the AODV-RWP protocol has no
way to cope with nodes moving in and out of transmis-
sion range. These deficiencies cause the route reliability to
suffer. The contribution of our work lies in using the combi-
nation of the state-space dynamic model and state estimator
(i.e., EKF) coupled with the new AODV-LocPred routing
protocol. We show that this novel combination performs
well against AODV-RWP in terms of packet delivery ratio
(PDR), but there is a tradeoff in end to end delay for the
AODV-LocPred algorithm compared with that of the stan-
dard AODV-RWP algorithm.We assert that the performance
difference between the use of the EKF versus the PF is
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much smaller than the performance difference between the
AODV-RWP and the AODV-LocPred algorithms. In other
words, the value added by using a state-space model and
state estimator rather than the RWP model far exceeds the
relative performance advantages of the PF over the EKF;
(2) Our future planned work includes exploring the relative
advantages of the UF and PF over the baseline EKF for this
application.

The focus of this paper is to demonstrate the use of the
EKF for UGV position estimation in the implementation
of a data forwarding protocol based on the AODV routing
algorithm. We develop a modified AODV algorithm that
adopts the EKF derived position estimates to find data for-
warding paths between nodes using contact time (defined in
Section 4) as a routing metric that quantifies link reliability.
We refer to this algorithm as AODV-LocPred. We provide
evaluation of the algorithm using OPNET and MATLAB.
To the best of our knowledge, this is the first work that inte-
grates the use of signal processing and control techniques
for location estimation in a wireless network of UGV nodes.

2 Related work

Routing using position estimation has been studied in var-
ious networks, ranging from vehicular networks to sensor
networks.

Zaidi et al. [10] study ad hoc networks with intermittent
connectivity. The algorithm for mobility tracking devel-
oped in [10] uses RSSI measurements from neighboring
nodes modeled as a linear system driven by a discrete
semi-Markov process in combination with an efficient aver-
aging filter and an EKF. The proposed algorithm allows
robust mobility tracking in ad hoc networks using RSSI
measurements. Root Mean Square Error (RMSE) is used
as the performance measure. The algorithm is able to fol-
low mobile trajectories accurately over a wide range of
parameter values.

Yang et al. [11] consider a SMC method for joint mobil-
ity tracking and cellular handoff in wireless communication
networks. The mobility tracking is based on the measure-
ment of RSSI signals from known fixed position base
stations. The system dynamics are described by a nonlinear
state space model. The mobility tracking includes estima-
tion of the position and velocity of the mobile node. The
EKF is identified as the main technique for solving online
estimation in a nonlinear dynamic system. Using the SMC
framework, Yang et al. jointly solve the problem of online
estimation and online prediction of RSSI at some future
time instance. The SMC was compared with the modi-
fied EKF and was shown to improve tracking accuracy
and minimize the tradeoff between quality of service (QoS)
and resource utilization [12]. However, the SMC-based

approach comes with a significantly high computational
cost.

Mihaylova et al. [13] also consider a SMC technique
for mobility tracking in wireless communication networks
by means of RSSI signals from known fixed position base
stations. The technique allows for estimation of mobile
position, velocity and acceleration. A PF and RBPF are pro-
posed and analyzed over real world and simulated data. A
comparison with an EKF is performed with respect to accu-
racy and computational complexity in scenarios with abrupt
maneuvers. Advantages of the RBPF compared with the
PF are decreased computational complexity exhibiting simi-
lar accuracy and smaller peak-dynamic errors during abrupt
maneuvers, which is important for practical purposes [14].
In this paper, we adapt the state space mobility model from
[13].

There has been extensive study in the literature on rout-
ing and data forwarding mechanisms for MANETs. In the
realm of unmanned systems, routing protocols have been
primarily focused on UAVs [15–17]. Algorithms and per-
formance metrics used in MANETs have been co-opted for
use in unmanned systems. Recently, routing protocols have
been developed for highly mobile aerial networks using a
combination of AODV and greedy algorithms. The Reactive
Greedy Reactive (RGR) algorithm [18–20] is one such algo-
rithm that was developed for use in networks of unmanned
aerial vehicles with speeds up to 60 m/s.

With mobile ground vehicles/robots, the closest network
paradigm is that of vehicular ad hoc networks (VANETs).
Routing protocols for VANETs have also been studied quite
thoroughly in the literature. VANET based routing protocols
have been adopted in networks of unmanned robots [21].
Like unmanned aerial vehicle networks, common routing
protocols used in MANETs such as AODV and Dynamic
Source Routing (DSR), have been modified for use in net-
works of ground robots [22, 23]. However, there is limited
study on how routing protocols for UGV networks adapt to
position information. The combination of location estima-
tion using Bayesian methods (EKF) with known dynamic
routing protocols has not been studied in the literature in the
realm of mobile UGVs.

In this paper we modify AODV for use in UGV net-
works by incorporating position estimation using EKF to
improve route accuracy and reliability. As discussed, we use
RSSI signals from fixed position base stations to aid in the
localization.

3 Location prediction models

The location estimation algorithm design requires several
key problem specifications, or attributes. These are: (1) the
operational mission setting and physical constraints, (2) the
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set of available sensor measurements or observations, (3) an
appropriate physics model, (4) an appropriate performance
index or set of performance indices, and (5) an appropri-
ate estimation/tracking algorithm or set of algorithms. We
describe and compose an algorithm in terms of these five
key attributes.

3.1 UGV network topology

The network environment considered in this paper is shown
in Fig. 1. Spatially distributed UGV clusters are assumed to
be connected via an unmanned aerial vehicle (UAV) which
can act as a relay node to carry information among groups
of UGV clusters. This is a common network topology for
unmanned systems [2]. No direct communication exists
among nodes of different clusters. UGVs within a clus-
ter communicate cooperatively to forward messages from
source to destination within one cluster. This paper explores
position estimation within one individual UGV cluster, thus
we exclude the role of the UAV when developing our algo-
rithms. The purpose of the position estimation algorithm is
to produce estimates of position, velocity and acceleration
versus time for a particular node or nodes in the cluster.

3.2 UGV dynamic model

We use a discrete time nonlinear state space model for
the UGV dynamics [6, 10, 24–26]. Specifically, we use a
discrete-time variant of the Singer model originally pro-
posed in [27]. Mihaylova et al. [13] has shown that the

modified Springer model used by Yang and Wang [11] per-
forms well, is simple, and allows efficient computation of
performance indices. This is a Gauss-Markov type model
modified to include a discrete semi-Markov model for the
input command function. The state propagation model for
the mobile node is linear, but the measurement model is
highly nonlinear.

3.2.1 Model for the state of the mobile node

Let the two-dimensional spatial coordinates be denoted by
(x, y). Let k denote the discrete time index, and let T

denote the temporal sampling period. We let (xk, yk) denote
the position of the mobile node at discrete time k. We
then denote the speed by (ẋk, ẏk) and the acceleration by
(ẍk, ÿk). The state of the mobile node at discrete time k is
then denoted by xk = [xk, ẋk, ẍk, yk, ẏk, ÿk]T where the
superscript T denotes vector transpose. The linear state for
the mobile node is given by:

xk = A(T , α)xk−1 + Bu(T )uk + Bw(T )wk (1)

where uk = [ux,k, uy,k]T is the discrete time command pro-
cess, or system input and wk = [wx,k, wy,k]T is a white
Gaussian noise vector with zero mean and covariance matrix
Q = σ 2

wI where I denotes the unit or identity matrix and
σ 2

w is the noise covariance. The parameter α depends on
the duration of a maneuver, and is the reciprocal of the
maneuver time constant. Note that the matrix A(T , α) is a
function only of the sampling period and the reciprocal of

Fig. 1 The UGV network topology consists of clusters of UGVs. UGVs communicate with one another within one cluster. Inter-cluster
communication is performed via the UAV relay
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the maneuver constant, and the matrices Bu(T ) and Bw(T )

are functions only of the sampling period [13].
In the real world, a mobile node is likely to have both

discontinuous motion and continuous motion. A mobile
node is likely to have sudden and unexpected accelera-
tion changes. Simultaneously, we must account for the fact
that node acceleration is likely to be correlated over time,
due to momentum. For these reasons, we model the mobile
node as a dynamic system driven by a semi-Markov accel-
eration process ak = uk + rk . This acceleration is the
sum of a two-dimensional semi-Markov driving command
uk = [ux,k, uy,k]T and a two-dimensional time-correlated
random acceleration vector rk = [rx,k, ry,k]T . Both ux,k

and uy,k are independent semi-Markov processes acting in
the x and y directions [10, 27, 28]. The model produces cor-
related random accelerations using a representative model
of the autocorrelation function given by [28].

Rrr(τ ) = E{r(t)rT (t + τ)} = σm
2e−α|τ |I (2)

where α ≥ 0, σm
2 is the variance of the random acceleration

in a single dimension, and α is the reciprocal of the random
acceleration time constant. The final mobile node dynamic
model is summarized in Eq. 3.
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3.3 Measurement (Observation) model

The measurements consist of RSSI signals from known-
location base stations. Locating a node in a two-dimensional
spatial plane requires a minimum of three base stations.
Increasing the number of base stations to seven will improve
accuracy [13]. Let M denote the number of base stations.
We are given measurements of the location (ai,k, bi,k) of
each of the base stations at discrete time k, where i =
i, ..., M . Let us denote the measurement model by a nonlin-
ear vector equation of the form:

z
k

= h[xk] + vk (4)

where z
k
denotes the measurement vector, h[xk] is a non-

linear function, and vk is the measurement noise. The RSSI
signal can be modeled as a sum of two terms: path loss
(h[xk]) and shadow fading (vk). The RSSI (measured in dB)
signal of a single BS is modeled by:

zk,i = z0,i − 10ηlog10(dk,i[xk]) + vk,i (5)

where z0,i is a constant characterizing the transmission
power of the base station. It is a function of wavelength,
antenna, height and gain of node i. The constant η is called
the slope index, and it takes on various values, depend-
ing on the characteristics of the physical environment (i.e.,
η=2 for highways, or 4 for microcells in a city). The dis-
tance dk,i[xk] is the distance between the mobile node and
the base station i at a discrete time k. The process vk =
[vk,1, ..., vk,MBS

] is the shadowing component.
The state estimation equations for the EKF are sum-

marized in [6, 12, 24, 26]. The EKF requires a Jacobian,
or gradient matrix H for approximate linearization of our
non-linear RSSI measurement equation is given in Eq. 6.

H � ∂h[xk]
∂xk

∣∣∣∣
xk=x̂k|k−1

(6)

The Jacobian matrix derived for our model is given in [12].

3.4 Performance measures for the state estimator

The performance of the mobility estimator is evaluated
using the following performance indices.

– Zero-Mean Test on the Innovations: When the EKF is
tuned, it provides a mean squared error (MSE) estimate
of the state vector. When the EKF is properly tuned,
the innovations sequence is zero-mean and white [25].
We therefore use hypothesis testing to ascertain that the
innovations have zero mean within a 95 % confidence
interval, or “two-sigma bounds” [12, 24–26].

– Whiteness Test in the Innovations: We use another
hypothesis test to declare whether or not the innovations
are white. The test statistic is the normalized sample
auto-covariance function of an individual innovations
sequence. Ideally, if the innovations are white, then the
auto-covariance should be a Kronecker delta function.
A 95 % confidence interval on the covariance values is
computed. If fewer than 5 % of the N −1 samples in the
covariance sequence that follow the sample at zero lag
lie within the confidence interval, then the innovations
are declared to be white [12, 24–26].
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– Root Mean Square Error (RMSE): The error in the
states is given by x̃(t) = x(t)− x̂(t |t −1). We compute
and plot this error for each of the states as a measure of
performance. The mean is estimated by averaging over
100 realizations of the stochastic process.

– Weighted Sum Squared Residuals (WSSR): The WSSR
provides a method for whiteness testing over all of the
innovations by aggregating innovations vector infor-
mation into a single scalar test statistic. We use a
hypothesis test to ascertain that the WSSR lies below a
pre-determined threshold [12, 24–26].

– Posterior Cramer-Rao Lower Bound (PCRLB): The
PCRLB provides a lower bound on the state error
covariance matrix. This tells us the best possible theo-
retical covariance that is attainable under the assump-
tions used to derive the estimator [7, 12, 13, 25, 26].

4 AODV using location prediction
(AODV-LocPred) for UGV networks

We consider a UGV network as a mobile wireless network
that uses multihop routing. There are N nodes, each with
a transmission range R and L communication links in the
network. Link (i, j) is connected at time k when the dis-
tance between nodes i and j at time k is less than or equal
to the transmission range, R. In other words, the Euclidean
distance between two nodes must be less than the trans-
mission range. Otherwise, link (i, j) is broken/disconnected
because the two nodes are out of communication range with
each other. Packets from a given source, s, to a destination,
d, are delivered via multiple hops. There are H possible
routes at time k between s and d. To find and maintain
routes, each mobile UGV node employs the AODV-LocPred
routing algorithm.

4.1 AODV overview

The AODV routing algorithm consists of two operations
[29]: route discovery and route maintenance. Route discov-
ery is initiated by a source node that has data to transmit
but can not find an active route to a specific destination
in its routing table. The source node broadcasts a route
request (RREQ) message to neighboring nodes. Each RREQ
is associated with a Time to Live (TTL) that limits how
many times the requests can be retransmitted. The RREQ
is flooded through the entire network until the destination
is found or an intermediate node is found that has a valid
route to the destination. Note that every node that receives
an RREQ stores a reverse route to the source node.When the
RREQ is received by either the destination node or an inter-
mediate node with a valid path to the destination, the node

sends a route reply (RREP) message to the neighboring
node using the stored reverse route in a unicast manner. A
node that receives a RREP sends the message to the source
node via the stored reverse route and then updates or creates
a forward route to the destination in its routing table.

Traditionally, AODV does not choose paths based on any
metric. When RREQs are broadcast by the source node,
it is possible that the destination node receives more than
one RREQ from the same requestor. If this situation occurs,
the destination drops duplicate RREQs immediately. Thus,
the path that the destination chooses to unicast back to the
source via a RREP is based on the RREQ that was received
first.

Route maintenance is performed after route discovery.
Route maintenance is used as a mechanism to maintain local
connectivity and routes. Nodes initiate route maintenance
by sending Hello messages to their neighbors to check if
links are connected. If a node does not receive a Hello
message within a designated timeframe, the node assumes
that the link to the neighbor is currently disconnected. The
time frame within which Hello messages should be received
is application specific and can be tailored to be fixed or
flexible time intervals.

Due to space, we refer the reader to [29] for further
details on the operation of AODV.

4.2 AODV with location prediction (AODV-LocPred)

As discussed above, a link between two nodes can exist only
if the spatial Euclidean distance between the two nodes is
less than or equal to their transmission range. Nodes move
in and out of transmission range of each other over time. As
was discussed in Section 4.1, the traditional AODV algo-
rithm [29] chooses paths based on the first RREQ that is
received from the source. Thus, the traditional AODV algo-
rithm does not make routing decisions based on the logistics
or topology of the network. In addition, the mobility model
used when implementing the traditional AODV algorithm
is the Random Waypoint (RWP) model. The RWP model
produces randomly selected node trajectories and assumes
that the speed of the node is constant. The node positions
are randomly generated and uncorrelated, so the trajectory
cannot be reliably predicted. Our AODV-LocPred algorithm
improves upon this traditional approach by 1) choosing a
path based on contact time (defined in the following para-
graphs) to increase route reliability and 2) using the state
space model and EKF developed in Section 3.1 to model
and estimate the trajectories of the nodes so that the node
positions/trajectories are predictable.

To facilitate the discussion of our modified AODV algo-
rithm, we define the following quantities: Let si denote the
source node indexed by i and let dj denote the destination
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node indexed by j . We also refer to nodes by their indices.
We define the transmission range of a node i as Ri . For sim-
plicity, in this paper we assume that all nodes have the same
transmission range. In our future work we will relax this
constraint. We also define p

i
(k) = [xi(k)yi(k)]T to be the

vector position of node i at time k. We define the route/path
between si and dj at time k as hij (k).

The path hij (k) may contain multiple hops, depending
on the norm or Euclidean distance between i and j . In other
words, if ‖p

j
(k) − p

i
(k)‖ > Ri , a path will contain mul-

tiple hops. Each hop/link along a path is stable as long as
the two nodes are within range of each other. Otherwise, the
link is broken and cannot be used. The longer two nodes stay
within transmission range of each other, the more reliable
the link is. Thus, our approach to improving link reliabil-
ity is to allow the AODV-LocPred algorithm to choose the
next hop for a path based on how long a node pair has been
in contact. The node pair with the longest contact time at
time k is chosen as the next hop. To this end, we define a
new routing parameter cuv(k) which we call contact time,
where (uv) denotes the node pair. First, let cH (k) be a Hello
counter at a time instant k defined as follows:

cH (k) = {
1, if a Hello message is transmitted and received

0, otherwise

(7)

We define kin as the time at which the two nodes are first
within range and kout is defined as the time at which they go
out of range. At any given time k, we cannot know kout ; kout

is not predictable, as the node trajectories are dynamic and
it is not possible to predict very far into the future. Rather
than try to estimate kout , we assume that in general, a link
that has been in contact for a few time samples is more likely
to be stable than one that has not. To this end, we count
the number of Hello messages over the range kin to k by
computing the contact time between two nodes u and v at
time k, defined as follows:

cuv(k) � cuv(k − 1) + cH (k)

∣∣∣∣
k

k=kin

where cH (k) = cuv(k) = 0 for k � 0

(8)

At time k, the AODV-LocPred algorithm then chooses the
next hop to be the one with the largest contact time cuv(k).

Figure 2 illustrates an example of the contact time signal.
In this example, kin = 5 msec and kout = 10 msec. We see
that at kout and afterward, cuv(k) stays constant, implying
that new Hello messages are not being received. This, in
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Fig. 2 Example of the contact time signal where kin = 5msec and kout

= 10msec

turn, implies that the nodes have moved out of range and the
link has been broken.

4.2.1 AODV-LocPred algorithm description

When data packets arrive at a node, the source node attempts
to find an active route associated with the corresponding
destination in its routing table, as was discussed with AODV
in Section 4.1. If no active route exists, the source node ini-
tiates a route discovery process by broadcasting a RREQ
message. Once a route from si and dj is discovered, each
node along the path begins to broadcast Hello messages to
ensure local connectivity. In order to measure and retain the
contact time values, we modify the routing table of each
node to include a contact time entry. An example rout-
ing table and its corresponding network graph is shown
in Fig. 3. In this example, i has paths to two destination
nodes, j and z. The path from i to j is i − u − v − j and
the path from i to z is i − x − y − z. As shown in Fig. 3,
node i’s routing table will have an entry designated to des-
tination nodes j and z. It also contains the next hop node.
The next hop node is the node that i needs to forward data
to in order for the data to reach the appropriate destination.
In this case, the next hops for destinations j and z are nodes
u and x, respectively. The third entry of the routing table
is the contact time calculated by Eq. 8. If Hello messages
are not received after two time samples, node i removes the
entry pertaining to destination j from its routing table. More
specifically, a lack of Hello messages indicates that nodes i

and u are 1) no longer in transmission range of each other
or 2) the link is so weak that Hello messages are getting
dropped during transmission. In either case, the reliability of
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Fig. 3 Example network showing how node i’s routing table, includ-
ing the new contact time entry is constructed

link is poor. As a result, node i no longer has an active route
to j . The number of time samples that the node waits before
expunging the obsolete entry from its routing table is a user
specific/defined parameter. Due to the dynamic nature of the
UGV network, we wait only two samples.

In this case, rather than node i initiating a new route dis-
covery process, it will forward the packets to its neighbor
with which it has the greatest contact time as indicated in
the routing table. In our example in Fig. 3, if link (i, u) is
no longer available, node i’s only option is to forward to
node x. The next hop node that receives the data from i (in
this case node x) will then go through the same process of
looking at its routing table contact times to decide the next
forwarding node. By following this procedure, we achieve
two outcomes: 1) reduce the number of RREQs and RREPs
sent by avoiding a new route discovery process when a link
is broken and 2) increase route reliability by choosing links
that are more stable.

When more than one forwarding node exists for a partic-
ular destination, the node that has the longest contact time
will be chosen. For example, suppose in Fig. 3, node i had
two forwarding options to node j : node u or node x (sup-
pose a link exists between x and u). The forwarding node
that is ultimately chosen will be based on which contact time
is larger, ciu(k) or cix(k). A larger contact time is indicative
of a more stable link. If cix(k) > ciu(k), then x is recorded as
the next hop node in the routing table. Even though choos-
ing x results in a longer path from i to j (4 hops vs 3 hops),
the overall reliability will be increased. It must be noted
that all nodes follow the same process. For example, node
x will measure the contact time between itself, u and y and
maintain its routing table accordingly.

5 Performance evaluation

In this section, we present the simulation results conducted
in Matlab and OPNET to demonstrate and validate 1)
the EKF algorithm and 2) AODV with location prediction
(AODV-LocPred).

5.1 Evaluation of state estimator performance

To evaluate the effectiveness of the state estimator, we
simulate a single mobile node traveling along a trajectory
that includes abrupt maneuvers. We use a Gauss-Markov
state space model for the node dynamics. Process noise
is assumed to be zero. The measurements are constant
power RSSI signals transmitted from three fixed position
base stations. We use the EKF described in Section 3.1 for
state estimation, including node position coordinates in a
two-dimensional spatial grid environment.

The simulation parameters used in Matlab are as fol-
lows: The discretization time step (T ) is 0.5 secs, correlation
coefficient (α) is 0.6, path loss index (η) is 3, base sta-
tion transmission power (z0,i) is 90, covariance (σw

2) of
the noise wk is 0.52[m/s2]2, covariance (σv

2) of the noise
vi,k is 42[db]2, the maximum speed (Vmax) is 45 m/s, the
transition probabilities (pi,j ) are set to 0.8, and the initial
mode probabilities μi,0 are 1/M, i = 1, ....,M,M = 5,
where M is the number of base stations. The parameters are
chosen such that node behavior is realistic. In other words,
abrupt maneuvers are included to test the estimator’s ability
to adapt to rapid trajectory changes.

The EKF initial state estimate is set to:

x̂(0 | 0) = (
3400 5 0 8700 8 0

)T
(9)

The EKF initial covariance estimate is set to:

˜̃
P(0 | 0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

4002 0 0 0 0 0
0 152 0 0 0 0
0 0 52 0 0 0
0 0 0 4002 0 0
0 0 0 0 152 0
0 0 0 0 0 52

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)

The initial state estimate was chosen based on the
assumption that we have reasonable a priori knowledge of
the initial states of the UGV node because we deploy the
node ourselves. The initial covariance estimate is chosen
based on the estimate we make on the standard deviations of
the node states based on our knowledge of the operational
environment and node capabilities.



1042 Peer-to-Peer Netw. Appl. (2017) 10:1034–1050

Fig. 4 Estimated track,
simulated track, and locations of
base stations transmitting RSSI
signals used for triangulation of
the UGV node

5.1.1 State Estimation Performance

The discrete-time input command process ux,k and uy,k is
chosen to be a first order Markov chain that can take on dis-
crete values -3.5, 0 and 3.5 in units of m/s2. The command
input includes two turns, once at 150 secs and once at 200
secs. Please see [12] for further details.

A plot of the estimated track x̂k|k−1 from the EKF over-
layed on a plot of the actual trajectory to include base
stations used for triangulation is shown in Fig. 4. After

the initial track errors during the transient state, the esti-
mation settles into a trajectory that tracks closely to the
actual trajectory. A plot of the estimated root mean speed
ˆ̇xk =

√
x̂2
2,k + x̂2

5,k overlayed on a plot of the actual root

mean speed ẋk = √
x2

2,k + x2
5,k is illustrated in Fig. 5.

The initial velocity errors settle after about 40 seconds of
transient behavior and closely track the true velocity [12].

The error between the estimated and actual states x̃k =
xk − x̂k|k−1 over time is presented in Fig. 6. The errors x̃k

Fig. 5 Speed plots of the UGV
node. Top plot: estimated root

mean speed ˆ̇xk =
√

x̂2
2,k + x̂2

5,k

and actual root mean speed
ẋk = √

x2
2,k + x2

5,k . Bottom
plot: estimated x and y velocity,
x̂2,k and x̂5,k and actual x and y

velocity, x2,k and x5,k of the
node
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Fig. 6 Error between the
estimated states and the actual
states x̃k = x̂k − xk of the UGV
nodes and their respective two
sigma bounds plotted over time.
The top plot corresponds to
position, the middle plot
corresponds to velocity, and the
bottom plot corresponds to
acceleration of the UGV node

are shown to be acceptable in that they are zero-mean and
lie within the two sigma-bounds at three tenths of a percent
deviation each.

5.1.2 EKF Tuning

The performance indices described earlier were computed
for this simulation. The EKF performed well, and was
shown to be properly tuned [12]. Note that the convergence
speed of the EKF is highly sensitive to the choice of initial
conditions. The more prior knowledge one has of the oper-
ational environment and node behavior, the better choices
one can make for the initial conditions.

The innovations were tested and shown to satisfy the
zero-mean and whiteness tests. The position and velocity
RMSE criteria were computed and compared with the posi-
tion and velocity PCRLB curves. It was shown that the EKF
estimates converged nicely toward the bounds with accept-
able offsets from the bounds. The aggregate behavior of the
vector of innovations was examined using the hypothesis
test on the WSSR [12]. It was shown that the WSSR never
exceeded the WSSR threshold. Because the zero-mean test
on the innovations, the whiteness test on the innovations and
the WSSR test were all satisfied, we declared that the EKF
is tuned, and the overall performance is acceptable [12, 24,
25].

5.2 Performance Evaluation of AODV-LocPred

To evaluate the AODV-LocPred algorithm we use OPNET.
OPNET, a C++ based simulation platform, can be controlled
by Matlab [30]. Essentially, we integrate OPNET with
MATLAB by using the MX interface provided by MAT-
LAB which allows C programs to call functions developed
in MATLAB. Thus, we can use the location estimation algo-
rithm, developed inMatlab as input to the routing algorithm.

For further information on the integration of MATLAB and
OPNET, we refer the reader to [30].

Two performance metrics are used for evaluation:

– Packet delivery ratio (PDR): the ratio of the number of
packets received successfully to the number of packets

sent (
∑

packets received∑
packets sent ). The greater the PDR the better

the performance of the routing protocol. This is used as
a measure to analyze path reliability.

– End to end (E2E) delay: the average time taken by a data
packet to arrive at the destination. We do not include the
delay associated with the route discovery process (time
to send and receive RREQ and RREP packets) as part
of the delay calculation.

5.2.1 Experiment Design

In a general operational scenario, the mobile network would
involve multiple nodes, each moving about the spatial set-
ting on its own trajectory. Those trajectories could cross
and nodes could possibly collide. A full simulation of this
scenario would be a complex and large undertaking. The
purpose of this research paper is to propose and study algo-
rithms to measure network reliability at each time instant;
and then use that knowledge to adapt the network to ensure
that communication routes are maintained, even when nodes
move outside their transmission range. With this in mind,
we scale down and simplify the network topology in order
to focus on network adaptability. This simplification is
discussed in subsequent sections.

The traffic that is routed has a constant bit rate (CBR).
The transport protocol used is the User Datagram Proto-
col (UDP) with a transmission rate of 4 packets/sec, where
each packet is 512 bytes. We use the AODV-RWP and
AODV-LocPred algorithms to find routes between (source
node, destination node) pairs and calculate performance.
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The route can include the other nodes available in the net-
work, and in general, the number of nodes in the route can
become large. Every node in each network is numbered. The
size of the simulated spatial setting is 2km x 1.5km. Each
node is initialized to have a transmission range of 250m.
The speed of the nodes is kept constant at 45 m/s (this is the
same speed used in the EKF simulations). The Rician fad-
ing model is used to model the effects of signal propagation
for line of sight (LOS).

For computing the Average PDR and Average E2E delay,
we design Monte Carlo style experiments in which we cre-
ate ensembles of random variables over which to average.
We define the network size as the number of nodes in
the network, where Nnodes = 50, 75, 100, 125. For each
Nnodes , we use an ensemble of five randomly-selected spa-
tial node distributions, denoted Ndist = 5. For each Ndist ,
we also create an ensemble of (source node, destination
node) pairs denoted by (si , dj ). The number of (s, d) pairs
is denoted Npairs = 10. In all experiments, we compute
PDR and E2E delay for a single (s, d) pair at a time. The
way we choose the (s, d) pairs is different for the AODV-
RWP algorithm and the AODV-LocPred algorithm because
of the differences in their mobility models. We describe
these differences as follows:

Performance Calculations for the AODV-RWP Algo-
rithm: For (s, d) pairs indexed by m = 1, 2, . . . , Npairs ,
and for spatial distributions indexed by n = 1, 2, . . . , Ndist ,
we (1) Randomly select a (s, d) pair and the associated
node positions using the RWP model, and (2) Compute

PDR(m, n) and E2Edelay(m, n). We then compute Aver-
age PDR and Average E2E delay by ensemble averaging
PDR(m, n) and E2Edelay(m, n) over the indices m and n

for Nnodes = 50, 75, 100, 125.
Performance Calculations for the AODV-LocPred: In this

case, the ensemble averaging computations are the same as
they are for the AODV-RWP algorithm above, except that
the two steps (1) and (2) above are replaced with the follow-
ing three steps: (1) Choose the source node and its position
to be the one used by the EKF to model the node dynam-
ics and estimate the node trajectory. Note that we build only
one Gauss-Markov Model and one EKF for this single node
that has a single spatial trajectory and use it in all the experi-
ments. This greatly simplifies and scales down the problem;
(2) Randomly choose a destination node position from a
uniform distribution. We simplify and scale down the net-
work by fixing the position p

j
(k) of this destination node

dj so the node does not move over time, p
j
(k) = p

j
; (3)

Compute PDR(m, n) and E2Edelay(m, n) as above.
Note that even though the EKF simulates and predicts an

entire trajectory for the chosen source node, we do not use
the entire trajectory in our network performance analysis for
this scaled-down problem. Instead, we use the single esti-
mated node position corresponding to a manually-chosen
time sample kc at which the EKF has converged. The use
of a single source node-destination node pair as described
above greatly scales down and simplifies the simulation
problem. Nonetheless, it maintains the proper network char-
acteristics that allow us to compute the performance indices.

Fig. 7 Average PDR results for
networks with 50 nodes
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Fig. 8 Average PDR results for
networks with 75 nodes

5.2.2 Experimental Performance Analysis

In Figs. 7, 8, 9, and 10, we show the average PDR results for
each of 5 spatial distributions for the 4 network sizes. Note
that the average is over the 10 source destination pairs per
network size (Nnodes).

On average, the PDR increases by approximately 8 %
when using AODV-LocPred in comparison to AODV-RWP.
We can justify this increase in performance as follows: The

EKF used by the AODV-LocPred algorithmmodels a node’s
dynamics and provides an estimation of the node’s trajec-
tory/position. The location/position information provided
by the EKF assists the node in making path (route) choices
based on connectivity. The longer a node is connected to its
neighbor, the more reliable that link is, thereby increasing
packet delivery. We measure the link reliability using con-
tact time based on the location/position information derived
from the EKF. The routes chosen using AODV-LocPred use

Fig. 9 Average PDR results for
networks with 100 nodes
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Fig. 10 Average PDR results
for networks with 125 nodes

the contact time measurement. If reliable links are chosen
for path selection, the PDR (a measure of data transmis-
sion reliability) will increase, as it did in our case. Note that
the AODV-RWP algorithm chooses paths based on the first
arriving RREQ, so the algorithm has no inherent reliability

measure. This leads to poor PDR performance as compared
with that of the AODV-LocPred.

We provide a similar set of results for end to end delay
for the same source-destination pairs as in the PDR results.
The delay results are shown in Figs. 11, 12, 13, and 14. The

Fig. 11 Average end to end
delay results for networks with
50 nodes
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Fig. 12 Average end to end
delay results for networks with
75 nodes

delay is measured in milliseconds. We can infer that as net-
work size increases, the paths between a given source and
destination will be longer, particularly if they are signifi-
cantly spatially separated. Thus, if the paths, on average, are
longer, then the delay will also increase.

When comparing the AODV-LocPred with the AODV-
RWP algorithm, we see that the delay incurred with the

AODV-LocPred is slightly higher. On average, the AODV-
RWP has lower delay costs (approximately 5 % lower). As
discussed in Section 4.2.1, when using the AODV-LocPred
algorithm, it is possible that paths will be longer because
the contact time between specific nodes may be better but
result in a longer path (more hops). However, in the AODV-
RWP case, generally, the RREQ that reaches the destination

Fig. 13 Average end to end
delay results for networks with
100 nodes
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Fig. 14 Average end to end
delay results for networks with
125 nodes

node will most likely take the shortest path and thereby
the shortest path will be used for subsequent transmissions
between the source and destination. This results in a smaller
delay. Thus, there is a slight tradeoff between PDR and E2E
delay when using the AODV-LocPred algorithm. In an envi-
ronment that is highly dynamic, like the deployment of a
UGV network, the reliability of transmission is more likely
a stronger QoS requirement than delay.

6 Conclusion

In this paper we have developed a location estimation algo-
rithm based on an EKF that has been coupled with a mod-
ified AODV algorithm, AODV-LocPred, to provide a basis
for real time path planning in UGV networks. The EKF
algorithm filters recursively, estimating the current state of
the UGV node. The storage of additional past information is
not required, so storage resource utilization for an individ-
ual UGV node is minimized. The AODV-LocPred algorithm
is shown to implement efficient position tracking of UGV
nodes in a wireless network while providing reliable data
forwarding. We have shown that the AODV-LocPred algo-
rithm outperforms the standard AODV algorithm that uses
the random waypoint mobility model in terms of PDR but
that there is a tradeoff in the end to end delay incurred. In
our future work, we plan to study the problem of node colli-
sion avoidance when running the EKF and its impact on the

AODV-LocPred algorithm. We plan to relax the fixed posi-
tion base station constraint and allow the base stations to be
mobile. We also plan to study the use of PF and UFs as alter-
native state estimators and compare their performance with
that of the EKF.
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