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Abstract Given a target region � and a set of n homoge-
neous sensors, we study the problem of finding a minimum
subset of sensors such that they induce a connected graph
and cover �. We present a new method to replace the tar-
get region � by a set of target points, P . In addition, we
will give a new analysis for some existing approximation
algorithms of the above minimum connected sensor cover
problem. The new analysis will give better approximation
performance ratios.
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1 Introduction

Sensors have been extensively used in many areas, such
as battlefield monitoring, traffic control, manufacture pro-
cess management, and disaster detection. In the study
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of these applications, coverage and connectivity are two
fundamental issues affecting sensors’ performances. Each
sensor has a coverage area and a communication area. Those
two areas are often disks. The radius of the coverage disk is
called the coverage radius while the radius of the commu-
nication disk is called the communication radius. A sensor
s is connected to another sensor s′ if s′ lies in the coverage
area of s, i.e., the distance between s and s′ is smaller than
or equal to the communication radius of s. A set of sensors
is said to be connected if they induce a (strongly) connected
(directed) graph.

Given a region � and a set of homogenous sensors, S,
find a minimum connected subset of sensors to cover region
�. This problem is called the minimum connected sensor
cover (MCSC) problem. In this paper, we study the MCSC
problem.

Initially, the MCSC problem was studied by Gupta et
al. [10]. They showed that this problem is NP-hard and
proposed a greedy algorithm with approximation perfor-
mance ratio O(r ln n) where n is the number of sensors
and r is the link radius of the sensor network, i.e., the
least upper bound for the hop-distance, in communication
network, between two sensors with overlapping coverage
disks. Zhang and Hou [16] gave a better algorithm in a spe-
cial case that the communication radius is at least twice
of the coverage. In this special case, the sensor coverage
of a connected region induces the connectivity of sen-
sors. This property is generalized by Zhou et al. [17] to
the m-coverage and the m-connectivity that if every point
of a connected region is covered by at least m sensors,
then those sensors would induce an m-connected network.
More relationships between the sensor coverage and the
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sensor connectivity can be found in [15]. Alam and Haas
[1] studied the MCSC problem in three-dimensional sensor
networks.

Funke et al. [7] modified the MCSC problem by allow-
ing sensors to vary their coverage radius. With variable
coverage radius and communication radius, Zhou et al.
[18] designed a polynomial-time approximation with per-
formance ratio O(log n). Ghosh and Das [9] designed a
greedy algorithm without analysis on approximation perfor-
mance ratio. The improvement of the bound O(r log n) of
Gupta et al. [10] was obtained by Wu et al. [14] in 2013.
They designed two algorithms. The first one has approx-
imation performance ratio O(log3 n log log n) independent
from r , and the second one has approximation performance
ratio O(r), independent from n. The existence of these
two approximations suggests a conjecture that there exists
a polynomial-time constant-approximation for the MCSC
problem.

In both algorithms of Wu et al. [14], the first stage is to
replace a given target area by a set of target points. Clearly,
it is better to use less number of target points in this replace-
ment. Indeed, reducing this number would have impact in
efficiency of those approximation algorithm. In this paper,
we make the following contributions.

– First, we propose a new method to replace a target
region by target points. The new method is able to
reduce the number of target points significantly.

– Second, we will give a new analysis for algorithms
given in [14]. The new analysis will use some new
results appearing in the literature and hence give
improved approximation performance ratios.

Fig. 1 Choose one target point from each small area

2 Replace target region by target points

For a target region �, how do we find a set of target points,
P such that a subset of sensors, S ′ covers � if and only if
S ′ covers all target points in P?

Wu et al. [14] described two methods for selecting such
a set of target points; both have size O(n2) where n sensors
are given for our consideration. One of them is to arbitrar-
ily select one point from each small area obtained from
partitioning the target area by sensing disks of all given n

sensors (see Fig. 1). This method was also mentioned by
earlier publications [2–5].

In this section, we would like to propose a new idea based
on this method.

For a sensor, its coverage area is a disk. Therefore, our
problem can be formulated as follows: Given a set D of n

disks with possibly different radius, and a target region �,
find a setP of target points such that a subsetD′ ofD covers
target region� if and only ifD′ covers all target points inP .
(For possible application in heterogeneous sensor systems,
we allow disks to have different radius.)

Suppose all disks in D partition � into m small areas. In
each small area, we choose a target point; hence, denote as
a1, a2, ..., am respectively. Two target points ai and aj are
said to be adjacent if two small areas represented by ai and
aj have a boundary in common. This boundary must be a
piece of the boundary of a disk D ∈ D, denoted by ∂D. If ai

lies outside of D and aj lies inside of D, then we add an arc
from ai to aj . The directed graph constructed in this way is
denoted by G (Fig. 2).

Fig. 2 Graph G
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Lemma 1 G is acyclic.

Proof In fact, consider an arc (ai, aj ). By the construction
of arc (ai, aj ), there exists a disk D ∈ D such that ai lies
outside of D and aj lies inside of D. Note that every arc
crossing ∂D has a direction from outside to inside of D.
Therefore, no path exists from aj to ai . Thus, no cycle exists
in G.

A point ai is called a source node if every arc incident to
ai is going out from ai . Let S be the set of all source nodes
in G as shown as circled nodes in Fig. 2. It is easy to know
that S �= ∅ since clearly, m ≥ 1 and if a1 is not a source
node, then there exists an arc (ai2 , a1). If ai2 is not a source
node, then there exists an edge (ai3 , ai2). This process ends
if either a source node or a cycle contradicting to acyclic
property of G is found.

The following important fact has been established about
the set S of all source nodes.

Theorem 1 A disk subset D′ of D covers target area � if
and only if D′ covers all points in S.

Proof The proof of “only if” part is trivial. We can also
show the proof of “if” part within a few lines as follows: By
contradiction, suppose D′ does not cover �. We take disks
inD−D′ one by one and add toD′ untilD′ becomes a max-
imal subset not covering �, that is, D′ does not cover � and
however, for any D ∈ D − D′, D′ ∪ {D} covers �. In this
case, the uncovered area of � cannot be partitioned by any
disk in D and hence contains only one ai which must be a
source node outside of all disks in D′, contradicting to the
assumption that D′ covers all points in S.

It is clear that |S| is much smaller than m. However, we
do not have a good analysis for |S| instead of the following
conjecture.

Conjecture 1 If ∂�, the boundary of given target area has
o(n2) intersection points with n disks, then the expected
number of source nodes is o(n2).

3 Approximations for MCSC

Based on the results in last section, we will consider to cover
target points in P instead of target region �. In other words,
the MCSC problem is a special case of the minimum hit-
ting set problem defined as follows: Given a collection P

of subsets of a finite set S and a graph G with vertex set
S, find a subset S ′ of S such that S ′ induces a connected
subgraph of G and hits all subsets in P , that is, for any
a ∈ P, a ∩ S ′ �= ∅. Here, each target point a ∈ P rep-
resents the set of sensors each with coverage area covering
a.

The minimum connected hitting set problem can be eas-
ily reduced to the group Steiner tree problem defined as
follows: Consider a graph G = (V , E) with positive edge
length w : E → R+. Given k subsets of vertices, g1, ..., gk ,
find the shortest tree on a vertex subset which hits every gi ,
i = 1, ..., k.

To see the reduction, set V = S, w(s, s′) = 1 for every
edge (s, s′) of G and {g1, ..., gk} = P . Since every edge has
length one, the total edge-length of a tree on a vertex subset
S ′ is equal to |S ′|−1, the objective function value of the mi-
nimum connected hitting set problem minus one. Note that
for positive numbers a > b > 1, we have inequality
a/b ≤ (a − 1)/(b − 1). It follows that the following lemma
holds.

Lemma 2 If the group Steiner tree problem has a
polynomial-time ρ-approximation, then so does the mini-
mum connected hitting set problem.

Garg et al. [8] showed that for any ε > 0, there
exists a polynomial-time algorithm that can produce an
approximation solution for the group Steiner tree prob-
lem such that with probability 1 − ε, the solution
is O(log2 n log log n log k)-approximation where n is the
number of vertices and k is the number of groups in input.
One of the computation steps in this algorithm has been
improved by Fakcharoenphol et al. [6] from running time
O(log n log log n) to O(log n). Therefore, we now have the
following.

Lemma 3 For any 0 < ε < 1, there exists a
polynomial-time approximation algorithm for the group
Steiner tree problem, which with probability 1− ε produces
a O(log2 n log k)-approximation.

Note that when we map the MCSC problem into the
group Steiner tree problem, each group corresponds to a
target point. Therefore, k = O(n2). Hence, O(log k) =
O(log n). By Lemmas 2 and 3, the following holds.

Theorem 2 For any 0 < ε < 1, there exists a polynomial-
time approximation for the MCSC problem such that with
probability 1 − ε, this algorithm produces a O(log3 n)-
approximation solution.
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Next, we present a O(r)-approximation for the MCSC
problem that is a little different from the one given by
Wu et al. [14]. First, we note that Min et al. [12] gave a
polynomial-time 3-approximation for the ST-MSN (Steiner
Tree with Minimum Number of Steiner Points) problem as
follows: Given a unit disk graph G and a subset P of nodes,
find a Steiner tree interconnecting nodes in P to minimize
the number of Steiner points.

Lemma 4 There exists a polynomial-time 3-approximation
for the ST-MSN problem.

In [13], we can found a PTAS for the minimum sensor
cover problem defined as follows: Given a set of sensors,
S and a set of target points, P , find a minimum subset of
sensors, S ′ to cover all target points.

Lemma 5 There exists a PTAS for the minimum sensor
cover problem.

Suppose S ′ is a (1 + ε)-approximation for the minimum
sensor cover problem. On communication network G which
is a unit disk graph with node set S, we compute a 3-
approximation D for the ST-MSN problem with input point
set P = S ′. Then, D ∪ S ′ is a connected sensor cover with
performance described as follows.

Theorem 3 D ∪ S ′ is a polynomial-time approximation for
the MCSC problem with performance ratio 3r + 1 + (3r −
2)ε.

Proof Suppose S∗ is an optimal solution for the MCSC
problem. For each sensor s′ in S ′, find a sensor in S∗ such
that s and s′ cover a target point in common. Then we can
add a path with length at most r to connect them. Those
|S ′| paths plus S∗ form a feasible solution for the ST-MSN
problem. Therefore,

|D| ≤ 3(|S∗| + (r − 1)|S ′|).
Note that |S ′| ≤ (1 + ε)|S∗|. Thus, we have
|D ∪ S ′| ≤ (3r + 1 + (3r − 2)ε)|S∗|.

When the communication radius is at least twice of the
coverage radius, we have r = 1 and hence the following
holds.

Corollary 1 When the communication radius is at least
twice of the coverage radius, there exists a polynomial-
time (4 + ε)-approximation for the MCSC problem for any
0 < ε < 1.

4 Discussion

Recently, Huang et al. [11] found a polynomial-time
O(C2)-approximation for the MCSC problem where C is
the ratio of the coverage radius over the communication
radius. This result gives a new evidence that there exists
a polynomial-time constant-approximation fo the MCSC
problem, which is a conjecture of Wu et al. [14].
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