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Abstract This work proposes the E-Top system for the
efficient processing of top-k queries in mobile ad hoc peer to
peer (M-P2P) networks using economic incentive schemes.
In E-Top, brokers facilitate top-k query processing in lieu
of a commission. E-Top issues economic rewards to the
mobile peers, which send relevant data items (i.e., those that
contribute to the top-k query result), and penalizes peers
otherwise, thereby optimizing the communication traffic.
Peers use the payoffs (rewards/penalties) as a means of feed-
back to re-evaluate the scores of their items for re-ranking
purposes. The main contributions of E-Top are three-fold.
First, it proposes two economic incentive schemes, namely
ETK and ETK+, in which peers act individually towards
top-k query processing. Second, it extends ETK and ETK+
to propose a peer group-based economic incentive scheme
ETG. Third, our performance evaluation shows that our
schemes are indeed effective in improving the performance
of top-k queries in terms of query response times and
accuracy at reasonable communication traffic cost.
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1 Introduction

In a Mobile ad hoc Peer-to-Peer (M-P2P) network, mobile
peers (MPs) interact with each other in a peer-to-peer
(P2P) fashion. Proliferation of mobile devices (e.g., laptops,
PDAs, mobile phones) coupled with the ever-increasing
popularity of the P2P paradigm (e.g., Kazaa) strongly moti-
vate M-P2P applications.

Suppose Alice wants to find the top-k restaurants with
“happy hours” (or “manager’s special hours”) within 1 km
of her current location. Top-k is determined based on the
parameters (e.g., star rating, price and distance from the
point of query reference) selected by the user. A broker
can facilitate such range-constrained top-k queries by solic-
iting information from the MPs in its vicinity, and it can
then compare this information with its current top-k list of
restaurants to generate the top-k result to be provided to the
query-issuing MP. The broker compiles its current top-k list
by periodically collecting information from various sources
such as the Web and social networking sites.

In a similar vein, another application could involve a
parking lot, where MPs can collect information about avail-
able parking slots and charges, and then they can inform
the brokers. The parking slot availability information has
to be current and therefore, the broker can compare such
current information with its current list of parking slots.
The broker can then provide the top-k available slots to the
query-issuing MP in terms of price or distance (from the
MP’s current location). Similarly, an MP may want to find
the top-k stores selling Levis jeans in a shopping mall with
criteria such as (low) price during a specific time duration.
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We assume that all the mobile peers are autonomous and
heterogeneous, but they work for the given application. The
system is decentralized with the exception that the multiple
brokers could be there and they are pre-selected i.e., there
are certain peers that are pre-defined as brokers during the
network configuration phase in the beginning. In general,
we assume that brokers are trusted entities with relatively
more resources. Moreover, brokers are those nodes that do
not make wide-area movements. For example, a parking lot
manager with a PDA/laptop/smartphone may act as a broker
for the parking application. Similarly, the managers of some
of the restaurants in a given neighbourhood can serve as bro-
kers using their PDAs/laptops/smartphones. Thus, brokers
manage the mobile peers in their vicinity and provide value-
added services. As we shall see later, brokers facilitate top-k
query processing in lieu of a commission.

Incidentally, ad hoc queries in our system are of spatio-
temporal nature (e.g., parking slot availability information),
thereby implying that the query results can change dynami-
cally. Hence, they cannot be answered by the broker without
obtaining information from other MPs. For example, such
spatio-temporal aspects may concern the ambience of a
restaurant or how crowded a shopping mall is during a given
point in time. Observe that this would change temporally
based on time and days.

Notably, this research will also contribute towards
CrowdDB [13], which uses human input via crowdsourc-
ing to process queries that cannot be answered by database
systems or search engines. Additionally, such M-P2P inter-
actions among peers are generally not freely supported by
existing wireless communication infrastructures. The inher-
ently ephemeral nature of M-P2P environments suggests
that timeliness of data delivery is of paramount importance
in these applications, thereby necessitating query deadlines.
For example, an MP looking for top-k restaurants with
“happy hours” would generally prefer to receive the answer
within a specified deadline.

Incidentally, Amazon.com has developed Mechanical
Turk [1], which is an online marketplace for match-making
between the requirements of businesses and the skill sets of
developers. Developers can select from a large pool of tasks
based on their skill sets. Similar to our work, the Mechani-
cal Turk system also provides economic incentives. Observe
that technologies, such as WiFi and Bluetooth networks, are
nowadays adequately capable of providing a platform for
incentive-based mobile P2P collaborations.

Existing economic schemes for distributed systems [15,
27] and static P2P networks [14, 24, 30] do not address
top-k queries and M-P2P issues such as frequent network
partitioning and mobile resource constraints. Economic
incentive schemes for mobile ad-hoc networks (MANETs)
[5] and M-P2P networks [40, 42] do not address top-k
query processing. Furthermore, the top-k query processing

approaches [18, 22, 23, 28, 32, 38, 41] do not consider
economic incentive schemes and M-P2P architecture.

Incidentally, data availability in M-P2P networks is typi-
cally lower than in fixed networks due to frequent network
partitioning [21] arising from peer movement and/or peers
autonomously switching ‘off’ their mobile devices. Data
availability is further exacerbated due to rampant free-riding
[14, 24, 30], which is characteristic of P2P environments.
Furthermore, MPs generally have limited resources (e.g.,
bandwidth, energy, memory space). Since sending/receiving
messages expend the limited energy resources of MPs,
minimizing the communication traffic becomes a neces-
sity to address energy constraints. Thus, economic incentive
schemes become a necessity to entice resource-constrained
MPs with incentives to provide data for answering queries.

This work proposes the E-Top system for addressing
efficient top-k query processing in M-P2P networks. In E-
Top, we have considered that a given query-issuer sends
location-based range-constrained top-k queries to the M-
P2P network. Brokers facilitate top-k query processing in
lieu of a commission. E-Top requires a query-issuing MP
to pay a price (in virtual currency) for obtaining its queried
top-k result. This price is used for making payments for
incentivizing rankers (i.e., peers that send data items to
answer the query), brokers and relay peers. Thus, an MP has
to earn adequate currency by providing service (as a bro-
ker, ranker or relay peer) before it can issue its own top-k
queries, thereby discouraging free-riding.

E-Top issues economic rewards to the rankers, which
send relevant data items (i.e., those that contribute to the
top-k query result), and penalizes peers for sending irrele-
vant items. This incentivizes MPs to send only those data
items (to the broker), which have a higher probability of
being in the top-k results, thereby optimizing the communi-
cation traffic. MPs use the rewards/penalties as feedback to
re-evaluate their items’ scores. We shall henceforth use the
term payoffs to refer to rewards/penalties.

The main contributions of E-Top are three-fold:

1. It proposes two economic incentive schemes, namely
ETK and ETK+, in which MPs act individually towards
top-k query processing. These schemes assign payoffs
to MPs for incentivizing participation and for enabling
them to re-evaluate their data item scores.

2. It extends ETK and ETK+ to propose a peer group-
based economic incentive scheme ETG, which defines
three payoff allocation approaches.

3. It is indeed effective in improving the performance of
top-k queries in terms of query response times and
accuracy at reasonable communication traffic cost, as
demonstrated by our performance evaluation.

E-Top also discourages free-riding due to its economic
nature. ETK and ETK+ differ in that while ETK performs
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equal distribution of payoffs to the rankers, ETK+ uses a
weighted distribution. In ETG, ad hoc groups of MPs are
formed in the vicinity of the query location. Each group has
a leader for coordinating the top-k query processing. In con-
trast with ETK and ETK+, where individual MPs directly
send their top-k items to the broker, query processing in
ETG proceeds by means of group members sending their
individual top-k items to the group leader. The group leader
selects (i.e., ‘filters’) the top-k items to be sent to the broker
based on the relative frequencies of the items in the indi-
vidual top-k lists. In our application scenarios, some of the
restaurant managers in the vicinity of the query location can
be the group leaders.

In the three approaches deployed by ETG for payoff allo-
cation among group members for any given top-k query,
group penalties are equally distributed; thus the schemes
differ in their allocation of group rewards. Group rewards
are allocated in the following three ways i.e., equally,
based on the number of relevant items sent and based on
the revenue earned from those items. The group leader
receives a percentage of the group rewards as a commis-
sion, thereby incentivizing it to participate. Group-based
collaboration provides better incentivization since it is likely
to lead to higher rewards and lower penalties due to the
following reasons. First, MPs risk a lower amount of indi-
vidual penalties due to the sharing of penalties among
group members. Second, MPs have a higher probability
of obtaining rewards because the ‘filtering’ performed by
the group leader ensures that collective top-k answers from
group members are likely to be of higher quality (i.e., more
relevant and accurate) than individual answers.

To the best of our knowledge, none of the existing top-
k query processing schemes in M-P2P environment uses
incentives. Hence, as reference, we adapt an existing non-
incentive-based top-k processing scheme for MANETs. We
designate this scheme as NETK (Non-Economic Top-K),
proposed in [20]. Although NETK does not provide incen-
tives to the MPs. it is closest to our top-k query processing
scheme. Notably, NETK does not incorporate the notion of
item re-ranking as no feedback has been sent back to the
MPs, who participated in the top-k query processing.

The results of our performance evaluation indicate that
ETG outperforms both ETK and ETK+ due to its group-
based scheme, which better incentivizes MP collaboration
in top-k query processing due to effective sharing of rewards
and penalties among group members. Moreover, ETK+ out-
performs ETK due to its weighted distribution (of rewards
and penalties to ranker MPs), which provides better incen-
tives to ranker MPs than ETK’s equal distribution. ETK,
ETK+ and ETG outperform NETK essentially due to the
effectiveness of economic payoffs and item re-ranking.

The results also indicate that at higher values of k, query
response times increase for all the schemes due to longer

query paths. This is because fewer nearby rankers are able
to provide enough relevant data items pertaining to the top-k
query. Our schemes exhibit good scalability with increasing
number of MPs because larger network implies the pres-
ence of more rankers. Our schemes exhibit improvement in
performance as the communication range of MPs increases.
This is because increase in communication range has the
effect of bringing the MPs ‘nearer’ to each other, thereby
improving data accessibility.

As the percentage of MP failures increases, our schemes
degrade in performance partly due to decreased overall MP
participation and partly because of failure of MPs that host
data relevant to the top-k queries. ETG performs best when
the group sizes are neither too small nor too large. This is
because medium-sized groups are better able to leverage the
benefits of group-based collaboration.

The remainder of this paper is organized as follows.
Section 2 reviews existing works, while Section 3 details
the architecture of E-Top. Section 4 discusses the ETK
and ETK+ economic incentive schemes in E-Top. Section
5 presents the peer group-based ETG economic incen-
tive scheme of E-Top. Section 6 reports our performance
study. We conclude in Section 7 with directions for
future work.

2 Related work

This section provides an overview of existing works.

2.1 Top-k query processing approaches

The proposals in [32, 41] discuss top-k query processing
in wireless sensor networks. For conserving the energy of
the sensor nodes, the work in [32] minimizes redundant
data transmissions by means of both a cluster-tree rout-
ing structure for locally aggregating objects as well as a
cross-pruning technique for filtering purposes. The work
in [41] exploits semantics and facilitates energy-efficiency
by installing a filter at each sensor node to avoid unneces-
sary updates. The work in [28] uses a probabilistic approach
towards cost-effectively selecting sensor nodes for pro-
cessing continuous probabilistic queries in wireless sensor
networks by reducing sensor data aggregation. The tutorial
in [45] provides a comprehensive overview of top-k query
processing in wireless sensor networks.

The proposal in [18] discusses a message processing
method for top-k queries in MANETs for reducing the
communication traffic. The work in [23] discusses location-
based top-k query processing for wireless broadcast envi-
ronments using two R-tree variants, namely the broadcast
aggregate R-tree and the bit-vector R-tree. The work in
[29] presents a search engine geared towards providing
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mobile users with top-k web search results. The proposal
in [38] addresses top-k queries and aggregate queries for
probabilistic databases with focus on data uncertainty and
semantics. The work in [22] examines the optimization
of top-k queries in middleware by means of a cost-based
optimization approach.

Notably, these existing top-k query processing
approaches in MANETs do not use incentives, thereby
potentially resulting in low peer participation and conse-
quently, causing low data availability. Furthermore, they do
not incorporate M-P2P architecture.

2.2 Economic incentive schemes

Economic schemes for resource allocation in distributed
systems [11, 12, 27] do not address M-P2P issues such
as node mobility, free-riding, frequent network partition-
ing and mobile resource constraints. Economic models for
resource allocation in P2P networks [15] do not address
top-k queries. Economic schemes for resource allocation in
wireless ad hoc networks [31, 43, 44] consider a network-
centric focus (unlike our data-centric focus) and they do not
address top-k queries.

Incentive-based schemes for encouraging peer participa-
tion in static P2P networks involve formal game-theoretic
model for incentive-based P2P file-sharing systems [14],
utility functions to capture peer contributions [19, 34],
EigenTrust scores to capture participation criteria [24]
and asymmetric incentives based on disparities between
upload and download bandwidths [30]. However, these
approaches are too static to be deployed in M-P2P net-
works because they assume peers’ availability and fixed
topology. Furthermore, they do not address mobile resource
constraints (e.g., energy) and top-k query processing
issues.

The proposals in [4, 5, 7, 8, 39] address free-riding
in MANETs. The work in [4] introduces a virtual cur-
rency to stimulate node cooperation. The works in [5,
46] use virtual currency to stimulate the cooperation of
mobile nodes in forwarding messages. The auction-based
iPass [7] incentive scheme and the works in [8, 39]
also provide incentives for relaying messages. In partic-
ular, the proposals in [8, 39] concentrate on compensat-
ing forwarding cost in terms of battery power, memory
and CPU cycles. However, these works do not consider
top-k query processing, payoffs to rankers and M-P2P
architecture.

The work in [42] discusses an incentive scheme for the
dissemination of information concerning spatio-temporal
resources in M-P2P networks. The work in [40] con-
siders opportunistic resource information dissemination in
M-P2P transportation application scenarios. The works in
[40, 42] primarily address data dissemination with the aim

of reaching as many peers as possible, while we empha-
size on-demand data dissemination (i.e., a query-based
approach). Furthermore, top-k queries are not addressed in
[40, 42].

2.3 Mobile system applications and payment schemes

MoB [6] is an open market collaborative wide-area wire-
less data services architecture, which can be used by
mobile users for opportunistically trading services with
each other. MoB also handles incentive management, user
reputation management and accounting services. Inciden-
tally, P2P replication suitable for mobile environments
has been incorporated in systems such as ROAM [35],
Clique [36] and Rumor [17]. However, these systems do
not incorporate economic incentive schemes and top-k
queries.

The proposal in [26] discusses the placement of road-
side units (RSUs) in participatory sensing using vehicular
networks. In particular, it proposes a multi-objective opti-
mization evolutionary algorithm with heuristics to minimize
the number of RSUs, while performing such placement.
Furthermore, the work in [33] discusses effective data
downloading for real-time applications, where user queries
are prioritized by the delivery deadline. In particular, it
proposes a cooperative downloading algorithm for maxi-
mizing the amount of data packets downloaded from the
RSU, while minimizing an average delivery delay of each
user query. The work in [10] discusses issues regarding the
Quality-of-Experience (QoE) of users in mobile social net-
works, and proposes future research directions for mobile
social networks from the perspective of QoE.

Several non-repudiation [25, 37] systems, which can be
incorporated to control the deceiving behaviour of peers,
have been developed. A bootstrap kind of mechanism can
also be used in many applications [9]. Symella is a Gnutella
file-sharing client for Symbian smartphones. It expects that
illegal acts occur, such as the manipulation of the distribu-
tion history to get incentives. Hence, the distribution history
attached to the e-coupon [7] is enciphered with a public-
key cryptographic system so that users cannot peruse the
distribution history. Notably, these secure payment schemes
are complementary to our proposal, but they can be used in
conjunction with our proposal.

3 Architecture of E-Top

The architecture of E-Top consists of MPs that can assume
one of the four following roles: query-issuer, broker, ranker
and relay. Notably, these roles are interchangeable e.g., a
given MP can be a broker for a top-k query Q1, but a ranker
for another top-k query Q2.
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We assume that an MP is an autonomous entity, which
may join or leave the M-P2P network at any point of
time. Moreover, we also assume that the MPs are interested
in maximizing their revenues by earning more currency
(incentives) by providing valuable services as a relay peer
or a ranker in the M-P2P network. Furthermore, we assume
that the underlying network takes care of the delivery of
messages.

Query-issuer QI issues queries of the form
(k, L, τQ, ρ), where k is the number of data items that are
requested in the location-based range-constrained top-k
query. L represents the query location, and is of the form of
{(x, y), rad}. Here, (x, y) represents the spatial coordi-
nates associated with a given query Q, while rad represents
the radius. For example, QI may want to find restaurants
within 1 km of its current location L. τQ is the deadline
time of Q. ρ is the query price that QI will pay to obtain the
top-k query result 1. An MP decides the query price based
on his/her information. Moreover, brokers periodically
broadcast price ranges for data from different domains such
as restaurants, travel and so on. MPs can also subscribe for
such information, and brokers can inform them from time to
time. Broker B acts as a mediator, which facilitates efficient
top-k query processing in lieu of a commission. As we shall
see in Section 4, B also performs economic incentive func-
tions i.e., distribution of payoffs. Notably, the payoffs are
distributed to the individual rankers only for the completed
queries. A given query is deemed to be completed if the
broker receives at least k items from the individual rankers
(or group leaders in case of ETG) within x % of τQ in
the system. Observe that the broker must receive the items
from the individual rankers within x % of the deadline time
τQ so that it can use the remaining time to the deadline for
performing the computations associated with collating the
items from the rankers and determining the top-k result.
Based on the results of our preliminary experiments, we
found x ≈ 70 to be a suitable value for our experiments.

Rankers are MPs, which provide data items for answer-
ing the top-k query. Rankers are rewarded if their items
contribute to the top-k result, otherwise they are penalized.
Relay MPs forward messages in multi-hop M-P2P networks
in lieu of a small constant commission. Notably, payments
to rankers are typically higher than that of broker commis-
sions in order to better incentivize MPs to provide data. This
is because MPs providing data generally contribute signifi-
cantly more to data availability than brokers. Furthermore,
relay commission is lower than that of broker commission to
better incentivize brokerage functions as compared to relay
functions.

During the network configuration phase in the begining,
the broker will be pre-defined, but can also be elected based

1Query results received by QI after the deadline entail no payments.

on the resources. We assume that an MP with relatively
more resources may want to become a broker for a given
query Q, as it can provide better services, while in case
of low resources, an MP should play a role of relay peer,
as it requires very few resources for relay service. More-
over, an MP, which has an answer to a given query Q, may
be more interested to be a ranker for that query to earn
rewards. Hence, our system does not assign specific roles
to the MPs, thereby providing them with the flexibility to
decide their respective roles for a given query. However, the
role assignment for a broker is done in a pre-defined manner.

Notably, we divide the region of interest into square cells
of equal area in a grid. Since MPs may not be uniformly
distributed across the cells, the density can vary across cells.
Observe that the density d of a broker’s cell is an important
consideration for E-Top because a broker connected with
more MPs (or groups in case of ETG) is preferable over one
connected with less MPs (or groups). In E-Top, a broker
estimates d for its cell by examining the average number
of unique MPs, which had connected to it, during the past
N time periods. Observe that this is a moving average. (We
divide time into equal intervals called periods, the size of
a period being application-dependent.) The results of our
preliminary experiments showed that N = 5 is a reasonable
value for our application scenarios. We have defined d as
follows:

d = 1

N

N∑

i=1

⎛

⎝npi/

R∑

j=1

tpij

⎞

⎠ (1)

where npi is the number of unique MPs, which had
connected to the broker during the ith time period, while
tpij is the total number of MPs in the j th region of interest
and R is the number of regions that broker passed through
during the ith time period. Whenever the brokers come
within communication range of each other, they exchange
information about tpij . Brokers periodically broadcast the
value of tpij in their respective region so that all the MPs are
aware of the value of tpij . Since npi <

∑R
j=1 tpij , therefore

0 � d � 1.

3.0.1 Query processing in E-Top

Figure 1 illustrates query processing in E-Top.
Query-issuer QI broadcasts a top-k query Q, and waits

for W time units to get replies from the potential brokers. W
is computed as below:

W = (1 − d) × τQ (2)

where d is the density of the query issuer’s region (i.e.,
square cell), and it is computed using Eq. 1. τQ is the query
deadline time of Q. Notably, QI estimates the value of
npi in Eq. 1 as the average number of unique MPs, which
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Fig. 1 Illustrative example of
query processing in E-Top

connected to it during recent time periods. As Eq. 2 indi-
cates, QI is willing to wait longer for replies from potential
brokers if the density of its region is low.

Each broker replies to QI with information about its
remaining energy En, bid price ρbid , current currency
Curr , distance Dist from QI and density d of its current
location. QI computes the average location density davg as
1
n

∑n
i=1 di , where di is the density for the ith broker, and n

is the total number of brokers that replied to QI . Now, as
candidates, QI will only consider brokers, whose value of d

exceeds davg because brokers in higher-density locations are
likely to provide better service due to their proximity to an
increased number of potential rankers. Thus, for each bro-
ker, whose density exceeds davg ,QI computes a score η and
selects the broker with the highest value of η for processing
Q. η is computed below:

η = (w1×En)+(w2/ρbid)+(w3/Curr)+(w4/Dist ) (3)

where w1 to w4 are weight coefficients such that 0 <

w1, w2, w3, w4 � 1 and
∑4

i=1 wi = 1. Thus, E-Top prefers
relatively high-energy brokers because they are less likely
to run out of energy, while processing the query. Lower val-
ues of bid prices are preferred by QI since it wants to obtain
the query result at lower cost. Brokers with less currency
are given higher preference to facilitate revenue-balancing
across brokers. This prevents low-currency brokers from
starvation, which may result in decreased number of bro-
kers in the network. QI prefers relatively nearby brokers to
obtain the query result in a timely manner.

Now the broker broadcasts Q with time-to-live (TTL)
of n hops. (Results of our preliminary experiments showed
that n = 6 is a reasonable value for our application sce-
narios.) The high value of TTL leads to the longer query
path, hence it increases both the query latency and the com-
munication overhead. But very low value of TTL also has
negative impacts such as decreasing in peer participation,
thereby reducing the data accuracy and the success rate.
Hence, considering the impacts of very high or very low

values of TTL, we considered to keep the value of TTL rea-
sonable, which is dependent on the application scenario and
the density of the region. Here, low-density region may need
high TTL and vice versa.

Each ranker R has an individual item ranking list Tf R ,
each data item of which is associated with an item rank r

and a selection probability μ. Notably, the value of r is sub-
jective because it is autonomously assigned to an item by
a given ranker. The implication is that the same item may
be ranked differently at different rankers. As we shall see
in Section 4, μ facilitates the adjustment of item selection
probability based on recent payoffs assigned to a given item.
Using the values of μ and r , each rankerR computes a score
γ and selects items with relatively higher values of γ to send
to the broker. γ is computed below:

∀i ∈ Tf R : γi = ( w1×(NTf R
−ri)/NTf R

)+(w2×μi ) (4)

where ri and μi are the rank and the selection probability
of item i respectively. NTf R

is the total number of items
in Tf R . Here, w1 and w2 are weight coefficients such that
0 < w1, w2 � 1 and w1 + w2 = 1. E-Top stipulates
that w2 > w1 to give higher weightage to the item selec-
tion probability than to the rank of the item. As we shall
see in Section 4, this is consistent with the overall objective
of E-Top i.e., linking item re-ranking with payoffs. More-
over, these weight coefficients are application-dependant
i.e., according to application’s requirement, weight coeffi-
cients are set to any values in-between 0 and 1. There is no
restriction on whether to choose w1 > w2 or w2 > w1, but
to prioritize the item’s selection probability, we have cho-
sen w2 > w1 for our proposed application scenarios. In this
work, based on our experimental results, we set w1 = 0.2
and w2 = 0.8 for all the MPs. Furthermore, each ranker is
associated with a risk profile δ, where 0 < δ � 1. Only
items, whose respective values of γ exceed δ, are consoli-
dated by the ranker in a list TR and sent to the broker. Thus,
TR is a sorted item ranking list, which is sent by an individ-
ual MP in response to a query. Hence, TR ⊆ Tf R . Observe
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that as the value of δ increases, the risk of the ranker in
incurring a penalty decreases.

E-Top considers that each broker has a global ranking
list, which we shall henceforth designate as TG. Here, TG is
a global standard (e.g., Michelin guide to restaurants) across
the system for considering guideline for the items’ ranks.
This approach is adopted to incorporate the global rank
views (such as Internet or feedback-based) about the items
along with the local rankings. TG is periodically exchanged
among nearby brokers. Upon receiving the individual TR

lists from possibly multiple rankers, the broker B collates
and compares them with TG. B parses TG in a top-down
fashion as follows. If an item i in TG occurs in at least one
of the individual TR lists, it is added to the top-k result set
TA along with the unique identifiers of the rankers that sent
i. (In case i does not occur in any of the individual TR lists,
B simply traverses downwards to the next item in TG.) B

continues parsing TG in the above manner until the result
set TA contains k items. Then B sends TA to QI . Notably,
if TA contains less than k items, the result set is deemed to
be incomplete, and it is not sent to QI .

Upon receiving TA, QI pays B, which deducts its own
commission before distributing the payoffs to rankers and
commissions to relay MPs. (We shall discuss ranker pay-
offs, and broker and relay commissions in Section 4.)
Then each ranker R re-evaluates the selection probabil-
ity μ of each item in its own TR based on received
payoffs, and then re-computes the values of γ for these
items.

In this work, we do not address the formation of the
global list TG because this is application-dependent. More-
over, we do not consider updates to TG because it may exist
for a long time. Furthermore, any update to TG must be
propagated to all the relevant brokers, which also increases
the communication overhead.

4 Economic incentive schemes in E-Top: ETK
and ETK+

This section discusses the ETK and ETK+ economic incen-
tive schemes used by E-Top. We define an item i to be
relevant to a top-k query Q if it occurs in the top-k query
result set TA. We define a successful ranker w.r.t. its (sent)
data item i if i is relevant to Q, otherwise the ranker is
deemed to be unsuccessful. Thus, a ranker may be suc-
cessful w.r.t. item i, but unsuccessful w.r.t. another item j .
Notably, in ETK and ETK+, a ranker can only participate
for query Q if it hosts at least k relevant items to Q.

Incidentally, a given ranker R has no way of knowing if
its sent-result would finally occur in TA. R may maintain
historical data concerning items that have occurred previ-
ously in TA in response to similar queries. However, if a new

query comes to R, no such historical data would be avail-
able at R. In such cases, R would send its individual top-k
ranking list without considering the historical data.

In both ETK and ETK+, the total payment ρR to be
distributed to the successful rankers is computed as follows:

ρR = ρ − ρB − ρRL (5)

where ρ is the query price paid by QI to the broker, ρB

is the broker commission and ρRL is the total amount of
relay commission that the broker will pay to the relay MPs
in the respective successful query paths. Notably, the value
of ρB is application-dependent. For both ETK and ETK+,
we defined ρB as 10 % of the query price ρ. Although
our schemes can be intuitively generalized to work with
other values of ρB , results of our preliminary experiments
showed that our schemes perform best when ρB is in the
range of 5 % to 15 % of ρ. This is also consistent with our
overall objective of providing better incentives to rankers
than to brokers. For both ETK and ETK+, we define the
relay commission ρRL as 1 % of the query price ρ, thereby
incentivizing brokers more than relay peers.

As we shall see shortly, the rewards to be assigned to the
successful rankers are computed based on the value of ρR .
Similarly, the penalties to be assigned to the unsuccessful
rankers are also computed based on the value of ρR . The
broker receives the penalty payments from the unsuccess-
ful rankers, and sends the total amount of penalty payments
back to QI . Thus, it is possible for the effective payment
made by QI to the broker to be less than ρ.

Notably, as is common with currency-based approaches,
there is a bootstrapping problem. That is, an MP must first
earn currency by providing services, but at the beginning,
no MP can request for those services because no MP has
any currency yet. To address the bootstrapping problem, the
system will provide some initial currency to every MP at the
beginning.

4.1 ETK

In ETK, ρR is equally divided among all the relevant items.
Then each ranker, which successfully sent item i, receives a
reward Pi that is equal to the total reward for item i divided
by the total number fi of successful rankers w.r.t. item i.
Given that the top-k result set is TA, Pi is computed as
follows:

∀i ∈ TA : Pi = 1

fi

( ρR

k

)
(6)

The reward REWRj assigned to a given ranker Rj is the
total amount that it obtains for each of its relevant items
i.e., those that occur in the TA ∩ TRj , where TRj is the
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individual rank list of Rj . Given the set SRanker of rankers,
the computation of REWRj follows:

∀j ∈ SRanker : REWRj =
∑

i∈(TA∩TRj )

Pi (7)

ETK defines penalties based on the notion of opportunity
cost. This is because for all successful items, which were
not sent by ranker Rj , Rj would have earned currency if it
had sent those items. Hence, the penalty PENRj assigned
to Rj equals

∑
Pi , where i represents items that occur in

TA − TRj . The computation of PENRj follows:

∀j ∈ SRanker : PENRj = ψ ×
⎡

⎣
∑

i∈(TA−TRj )

Pi

⎤

⎦ (8)

where ψ is the factor that represents the trade-off between
communication overhead and peer participation. If the
value of ψ is high, communication overhead would reduce
because peers would be wary of sending data to the broker
due to the higher penalties assigned to unsuccessful rankers.
However, this would also reduce peer participation. On the
other hand, if the value of ψ is low, peer participation would
increase albeit at the cost of increased communication over-
head due to lower disincentives for sending items that do not
contribute to the top-k result. In this work, we set the value
of ψ to 1.3, which implies that the penalties for sending
unsuccessful items is 30 %more than the reward for sending
successful items. This creates disincentives for sending out
unsuccessful items, while keeping the peer participation at a
reasonable level. We leave the determination of an optimal
value for ψ to future work.

The net payment NETRj received by Rj is the differ-
ence between its total reward and its total penalty. NETRj

is computed as follows:

∀j ∈ SRanker : NETRj = REWRj − PENRj (9)

Now, based on the payoffs received, Rj will re-evaluate
the selection probability of all the items in its individual
TRj . ETK performs rank-weighted increase/decrease in μ

for each item, depending on whether the item is rewarded or
penalized. For each item i in TRj , the value of μij is com-
puted as follows:
∀j ∈ SRanker , ∀i ∈ TRj :

μij =
⎧
⎨

⎩
min( μij + αup

( |TRj |−rij|TRj |
)

, 1 ), if i is rewarded

max( μij − αdown

( |TRj |−rij|TRj |
)

, 0 ), if i is penalized
(10)

where rij is the rank of item i in TRj . Observe that,
μij increases slightly for higher-rank items that received
rewards but decreases significantly in case of a penalty. Sim-
ilarly, μij increases significantly for lower-rank items that
received rewards but decreases relatively slightly in case of

a penalty. Here, αup and αdown represent the weight coeffi-
cients for assigning rewards and penalties respectively. ETK
stipulates that 0 < αup, αdown � 1 and αup < αdown to
ensure that penalties exceed rewards, thereby creating dis-
incentives for rankers in terms of sending out items that are
not relevant. In this work, we set the values of αup and αdown

to 0.1 and 0.3 respectively. We leave the determination of
optimal values of αup and αdown to future work.

4.2 ETK+

In ETK+, ρR is divided among all the items in the top-k
result TA based on their respective rank-weights i.e., each
item i with its associated rank ri has weight wi = (k − ri),
where highest to lowest rank counts are from 0 to (k − 1).
Furthermore, total number W of weights of all items in TA

is computed as W = ∑k
i=1 wi = k (k + 1)/2. Similar to

ETK, each ranker, which successfully sent item i, receives a
reward Pi that is equal to the total reward for item i divided
by the total number fi of successful rankers w.r.t. item i.
Thus, in ETK+, Pi is computed as follows:

∀i ∈ TA : Pi = 1

fi

( wi

W
× ρR

)
(11)

Consequently, rewards and penalties assigned to each ranker
Rj are computed as in Eqs. 7 and 8 respectively, using the
value of Pi from Eq. 11. Hence, the net payment received
by Rj is computed by Eq. 9.

Now, each ranker Rj will re-evaluate the score (effec-
tively the selection probability μ) of each item i in its top-k
rank list TRj on the basis of its received payoffs. The effec-
tive change in the selection probability of an item depends
upon two factors: (a) the notion of item selection poten-
tial w.r.t. the risk profile (δ) (b) earning potential of the
ranker Rj . Item selection potential increases as the differ-
ence between μ and δ increases. Average selection potential
for rewarded and penalized items for each ranker Rj are
computed as sj and s′

j respectively. The computations of sj

and s′
j are shown below:

∀j ∈ SRanker :

sj = 1∣∣TRj ∩ TA

∣∣

⎡

⎣
∑

i∈(TRj ∩TA)

(μij − δj )

⎤

⎦ (12)

s′
j = 1∣∣TRj − TA

∣∣

⎡

⎣
∑

i∈(TRj −TA)

(μij − δj )

⎤

⎦ (13)

where TRj is the top-k rank list of Rj , TA is the top-k result
of a query Q, μij is the selection probability of item i in
TRj and δj is the risk profile of Rj .
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Earning potential ej of each ranker Rj is a mea-
sure of its item selection efficiency. ej = | (REWRj

−PENRj )/(REWRj + PENRj ) |. Based on the payoff of
each item i in TRj , the new (re-evaluated) value of μij is
computed as follows:
∀j ∈ SRanker , ∀i ∈ TRj :

μij =

⎧
⎪⎨

⎪⎩

min( μij + αup

(
sj +ej

2

)
, 1 ), if i is rewarded

max( μij − αdown

(
s′
j +ej

2

)
, 0 ), if i is penalized

(14)

where αup and αdown are the weight coefficients discussed
in Eq. 10.

4.3 Illustrative example for ETK and ETK+

Figure 2 illustrates the computations in ETK and ETK+.
In Figure 2a, observe how each ranker R computes the
value of γ using Eq. 4 with w1 = 0.2 and w2 = 0.8.
For ranker R1, the elements of TR1 are shaded in grey i.e.,
TR1 = {60, 51, 77} because their respective values of γ

exceed 0.8 (δ1 = 0.8). Figure 2b depicts the payoff com-
putations with ψ = 1.3. Observe that ETK+ assigns higher
penalties (than ETK) to rankers for sending irrelevant items
e.g., ETK+ assigned 97.50 to R3 as compared to 78.00 in

Fig. 2 Illustrative example for
ETK and ETK+
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ETK. Figure 2c depicts the re-evaluation of the selection
probabilityμ using Eq. 14 with αup = 0.1 and αdown = 0.3.

5 ETG: A peer group-based economic incentive
scheme in E-Top

This section discusses the group-based ETG scheme.

5.1 Peer groups in ETG

We define a peer group as a set of MPs, which collaborate
in answering a given top-k query. Recall that in our applica-
tion scenarios, a query-issuing MP QI may try to find top-k
restaurants with “happy hours” nearby itself. MPs that are
moving nearby QI form ad hoc groups for answering this
query. Thus, groups are formed based on region. The uni-
verse is initially divided into rectangular cells of equal area,
and all the MPs moving within a particular cell constitute a
group. In case there are not sufficient members in a region
at a given point of time, the region can be enlarged based on
some minimum spatial density threshold. Conversely, group
region can be shrunk based on a maximum density thresh-
old. This work does not specifically focus on how groups
are formed, but existing works [16] can be used in conjunc-
tion with our work for group formation purposes. Notably,
ETG stipulates that each MP can belong to any one group at
a given point of time, thereby ensuring that any MP obtains
its payoff from not more than one group leader for a given
top-k query.

In ETG, each group has a group leader, which facilitates
top-k query processing within the group. A group leader
should be an MP with relatively high energy, bandwidth and
processing capacity. Its mobility is typically limited and it
stays within the region. In our application scenarios, some
of the restaurant managers in the vicinity of the query loca-
tion can be the group leaders. The group leader receives a
percentage of the group rewards as a commission, thereby
incentivizing it to participate.In this work, we set the group
leader’s commission to 5 % of the group reward.

Query processing in ETG proceeds via group members
sending their individual list of top-k items to the group
leader. The group leader selects the top-k items to be sent
to the broker based on relative frequencies of items in these
individual top-k lists by sorting the items in descending
order of frequency. Then the group leader sends the k items
with the highest frequencies to the broker. Ties in item
frequencies are resolved arbitrarily by the group leader.

ETG uses either ETK or ETK+ for performing the
following two economic functions in the top-k query pro-
cessing. First, brokers assign payoffs to the groups based
on either ETK or ETK+. (These payoffs are allocated by
the group leader among the group members, as we shall

describe shortly.) Second, upon receiving the payoffs, group
members modify their item selection probabilities as in
either ETK or ETK+. Thus, ETG works in conjunction
with either of these schemes. In our performance study,
we have first shown the performance of ETG in conjunc-
tion with both ETK and ETK+, and then presented the
remaining results corresponding to ETG in conjunction with
ETK+.

Recall that in ETK and ETK+, any given ranker can
only participate for a top-k query Q if it hosts at least k

items related to Q. In case of ETG, this criterion is relaxed
because even if a ranker does not host k items related to
Q, it can still participate in the top-k query processing as
long as the group hosts at least k items related to Q. Thus,
ETG increases the opportunities for rankers to contribute
to the top-k query processing, thereby providing increased
opportunities for rankers to earn currency and also providing
additional incentives towards ranker collaboration.

Group-based collaboration provides better incentives for
MPs to answer top-k queries. When an MP M acts indi-
vidually in answering top-k queries, it can incur significant
penalties due to sending irrelevant items to the broker. This
may discourage M from answering queries. As we shall see
shortly, when an MP participates in a group, both rewards as
well as penalties are distributed among the group members.
In effect, this encourages MPs to provide answers to top-k
queries because in case its answer turns out to be irrelevant,
it risks a lower amount of individual penalties due to sharing
of penalties among group members. Group-based collabo-
ration also increases the probability of obtaining rewards
because collective top-k answers from the members of the
group are likely to be of higher quality (i.e., more rele-
vant and accurate) than individual answers. As we shall see
shortly, this is made possible by the ‘filtering’ performed
by the group leader on the individual top-k lists sent by the
group members. In essence, group-based collaboration leads
to better economy of scale and better results thanMPs acting
individually.

5.2 Illustrative example of peer groups in ETG

Figure 3 depicts an illustrative example of an instance of
network topology in ETG. Now we shall use Fig. 3 to illus-
trate the concept of groups as well as the steps involved in
top-k query processing under the ETG scheme. In Fig. 3,
P12 and P15 are the query-issuers, P1 to P23 (except P12
and P15) represent the rankers, and B1 to B3 indicate the
brokers. The groups corresponding to the queries of P12
and P15 are {G1, G2, G3} and {G4, G5} respectively. The
group leaders of G1 to G5 are P 3, P5, P16, P21 and P22
respectively.

In Fig. 3, observe that multiple brokers exist. However,
given a query Q, only one of them act as the broker for Q.
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Fig. 3 Illustrative example of peer groups in ETG

Broker selection for Q is based on the value of η that is
computed from Eq. 3, as discussed earlier in Section 3. For
example, in case of P12’s query, the candidate brokers are
B1 andB2. For simplicity, suppose the energy, bid price and
currency of B1 and B2 are equal. In this case, B1 will be
selected as the broker because it is nearer to the query-issuer
P12. Similarly, in case of P15’s query, holding all other
factors constant, B3 will be selected as the broker because
it is nearer (than B2) to P15.

Now let us examine the processing of P12’s query. P12
first sends out a broadcast query to list candidate brokers
in its vicinity. Based on the respective values of the bro-
ker scores η, suppose P12 selects broker B1 as the broker
for processing its query. Then B1 sends out the query to
groups G1 to G3, which are nearby the query location. The
group leaders (i.e., P3, P5, P16) in these groups consoli-
date the top-k results from their respective groups and send
the results back to the broker. Upon receiving the results
from the group leaders, B1 compares with its global top-
k list to generate the final top-k list, which it sends to the
query-issuer P12. At this stage, B1 also assigns payoffs to
the groups. Notably, the broker’s assignment of payoffs to
the groups is done based on either ETK or ETK+. Then B1
sends the top-k results to P12 and obtains payment from
P12. Finally, B1 sends the respective payments to the group
leaders according to its assigned payoffs.

5.3 Allocation of payoffs among group members in ETG

Given a top-k query Q, the resulting payoff for the group
has to be allocated among the group members such that they
are incentivized towards group-based collaboration.

We define a group member as a participant in query Q

if at least one of the top-k items that it sent to the group
leader is selected by the group leader in the top-k list that
the group leader propagates to the broker. On the other hand,
we define a group member as a contributor to Q if at least
one of the top-k items that it sent to the group leader occurs

in the final top-k list that is selected by the broker. Thus, the
set of contributors is a subset of the set of participants for a
given top-k query. Based on the notions of contributors and
participants, we propose three schemes for payoff alloca-
tion among group members. In all these proposed schemes,
penalties are divided among all the participants for a query
Q, while rewards are distributed only among the contribu-
tors. Thus, the three approaches differ in the way in which
group rewards are allocated.

Let nP be the number of participants for Q. Let PENG

represent the penalty for the group corresponding to Q. The
penalty PENj for participant j is computed as follows:

PENj = PENG

nP

(15)

Notably, all our three proposed approaches for payoff
allocation compute the penalty PENj incurred by partici-
pant j by means of Eq. 15 above.

Observe how ETG incentivizes MP participation in
groups (as opposed to MPs acting individually) by reducing
potential penalties for group members in two ways. First,
the ‘filtering’ of top-k items performed by the group leader
implies that even if a group member P had sent one or more
items (to the group leader), which do not occur in the final
top-k result selected by the broker, P incurs no penalty for
such irrelevant items as long as the group leader does not
send them to the broker. In effect, being part of a group
shields the MP from incurring penalties to a certain extent.
Moreover, since the group leader receives top-k items from
multiple group members, it has a broader (and more collec-
tive) view of the likely top-k results than individual group
members. This increases the likelihood of the group leader’s
‘filtering’ process being more effective in predicting the
final top-k results than if the top-k predictions were done by
individual MPs.

Second, the sharing of penalties across participants
reduces the penalties incurred by those members, which sent
out irrelevant items, which were selected by the group leader
and which did not occur in the final top-k results. This does
not incentivize group members to frivolously send out irrel-
evant items to the group leader because the items should
have at least some chance of occurring in the final top-k
result for the group leader to have selected them.

Incidentally, the equal sharing of penalties across all par-
ticipants may result in increased penalties for some of the
participants, especially for the contributors. For example,
even if a contributor had not sent out any irrelevant items,
it still has to pay the penalty due to irrelevant items being
sent by some of the other participants. However, the cost
of such possible additional penalties is offset by the benefit
obtained by the contributor(s) in terms of avoiding potential
penalties due to the group leader’s filtering process. This
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explains the rationale for dividing penalties equally among
all the participants for a given query Q.

The rationale for distributing rewards only among the
contributors is two-fold. First, it discourages free-riding
within the group since a peer has to contribute to the final
top-k query result in order to qualify for obtaining a share
of the group reward. Observe that if the group reward were
to be distributed across all the participants, it would act as
a disincentive for the contributors since they would earn
lower amounts of currency. Second, it recognizes the con-
tribution of the contributors to the group revenue, thereby
incentivizing peer contributions to the group.

Now we shall discuss the three approaches that ETG
deploys for allocation of group rewards among contributors
for a given top-k query Q.

5.3.1 Equal allocation of payoff (EQ)

In EQ, each contributor obtains an equal share of the group
reward REWG for Q. Given that nC is the number of
contributors for Q, the reward REWj for contributor j is
computed as follows:

REWj = REWG

nC

(16)

Notably, a major drawback of the EQ approach is that
the allocation of group reward is not based on the contribu-
tion of individual contributors since it does not consider the
number of items contributed by each of them.

5.3.2 Item contribution-based allocation of payoff (ICON)

To address the drawback of EQ, we propose ICON. In
ICON, each contributor obtains a share of the group reward
REWG based on the number of items that it contributed

to the final top-k query result. ICON computes the reward
REWj for contributor j as follows:

REWj = |Cj |∑nC

g=1 |Cg| × REWG (17)

where Cj is the set of items that MP j has contributed to
the final top-k result, and nC represents the total number of
contributors corresponding to Q.

ICON suffers from the drawback that the allocation of
group rewards is not based on the actual revenue earned
from the item (i.e., the reward that is assigned to the item).
For example, suppose contributor P1 has contributed three
items, while contributor P2 has contributed only one item.
However, the revenue earned by the group from the one item
sent by P2 could be higher than that of the total revenue
earned from the three items contributed by P1.

5.3.3 Revenue contribution-based allocation of payoff
(RCON)

To address ICON’s drawback, we propose RCON. In
RCON, each contributor obtains a share of the group reward
REWG based on the revenue earned from the items that
it contributed to the final top-k result. RCON computes
reward REWj for contributor j as follows:

REWj =
∑

i∈Cj
λi

∑nC

g=1 (
∑

i∈Cg
λi )

× REWG (18)

where Cj is the set of items that MP j has contributed
to the final top-k result, λi represents the revenue earned
for a given item i, and nC represents the total number of
contributors for Q.

5.3.4 Illustrative example of group reward allocation
among contributors

Table 1 depicts an illustrative example of allocation of
rewards among contributors.

Table 1 Illustrative example of group reward allocation among contributors in ETG

Item ID Item Reward Contributor Relevant Item Set Contributor j ’s Reward

(i) (λi ) (j ) (Cj ) (REWj )

EQ ICON RCON

1 60 P 1 {1, 3} 90/3 (2/5) × 90 60 + 10 (70/160) × 90

= 30 = 36 = 70 = 39.375

2 20 P 2 {2, 3} 90/3 (2/5) × 90 20 + 10 (30/160) × 90

= 30 = 36 = 30 = 16.875

3 10 P 3 {1} 90/3 (1/5) × 90 60 (60/160) × 90

= 30 = 18 = 33.750
∑

λi = ∑ |Cj | = 5 Nett = 160

REWj = 90
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Consider a top-3 query, for which the result set comprises
items {1, 2, 3}. Suppose the relevant items sent by contrib-
utors P1, P2 and P3 are {1, 3}, {2, 3} and {1} respectively.
As Table 1 indicates, the rewards for items {1, 2, 3} are
{60, 20, 10} currency units respectively. Hence, the total
group reward REWG is the sum of these individual item
rewards i.e., 90 currency units. (For simplicity, we ignore
the group leader’s commission for this example.)

For EQ, the reward is distributed equally among the con-
tributors, hence P1, P2 and P3 would each obtain a reward
of 30 currency units. For ICON, the number of relevant
items sent by {P 1, P 2, P 3} are {2, 2, 1} respectively,
Hence, the reward for P1 is (2/(2 + 2 + 1)) ∗ 90 i.e.,
36 currency units. In case of RCON, the rewards for P1’s
relevant (sent) items {1, 3} are {60, 10} currency units
respectively, thereby resulting in a total of 70. Similarly, the
corresponding totals for P2 and P3 are 30 and 60 respec-
tively. Thus, RCON computes the reward of P1 based on
the weighted average of item revenues earned. Hence, P1
obtains (70/(70 + 30 + 60)) ∗ 90 i.e., a reward of 39.375
currency units.

Observe the difference in rewards obtained by P2 and
P3 under ICON and RCON. In case of ICON, P2 obtains
double the reward of P3, even though P3 contributed
more revenue to the group. This highlights the drawback
of ICON. Observe how RCON alleviates this drawback by
assigning P3 a higher amount of reward than P2.

6 Performance evaluation

This section reports our performance evaluation by means
of simulation in OMNeT++ [2]. To the best of our knowl-
edge, there is no publicly available real dataset for our
application scenarios. Furthermore, observe that it is not
practically feasible to study the performance of our pro-
posed approaches in a real-world setting using real mobile
devices at any reasonably large scale. Additionally, the
challenges to doing such a real-world performance evalua-
tion are exacerbated by the fact that peers are autonomous
and their behaviours are generally unpredictable. Hence,
we have simulated the whole scenario by generating
the queries with M-P2P architecture on OMNET++
platform.

In our OMNET++ simulations, we have considered rea-
sonable assumptions about peers’ behaviors such as peers’
movement, energy, bandwidth, memory etc. We have looked
into the literature [20, 21] to understand the different param-
eters. Based on our understanding of our application envi-
ronment, we have selected these parameters. In essence,
we believe that we have made our best efforts to cap-
ture/simulate the peers’ behavior and the environment as
closely as possible w.r.t. real-world scenarios. Moreover, we

have indicated how our proposed approaches perform under
those simulated settings.

OMNET++ platform provides the crucial functional-
ity such as creation of heterogeneous devices/nodes (i.e.,
mobile peers) such as PDA/laptop/smart-phones etc., their
range of communication, wireless message exchanges,
multicast/broadcast messaging, nodes’ location, nodes’
database, etc. Hence, the simulation has locations of MPs at
any point of time, which are available during the course of
our experiments.

In our simulations, MPs move according to the Random
Waypoint Model [3] within a region of area 1000 metres
× 1000 metres. The Random Waypoint Model is appropri-
ate for our application scenarios, which generally involve
random movement of peers. For example, people looking
for top-k restaurants generally move randomly i.e., they do
not follow any specific mobility pattern. Our experiments
use a total of 100 MPs. In our experiments, we consider
the following type of example scenario. Each data item per-
tains to information about a given restaurant i.e., the unique
identifier of the restaurant and some text content (e.g., tele-
phone number, address etc.) about the restaurant. The MPs
store such data items i.e., information about restaurants. Our
simulations consider a total of 100 restaurants. Thus, each
data item pertains to information about one of these 100
restaurants. Here, each MP contains 20 to 25 data items i.e.,
information about any 20 to 25 randomly selected restau-
rants from the total set of 100 restaurants. Each top-k query
aims at retrieving the top-k list of restaurants from among
these 100 restaurants. The default communication range of
all MPs is a circle of 120 metre radius.

Table 2 summarizes the parameters used in our per-
formance evaluation. Query-issuers are selected randomly
from among all the MPs in the network. The OMNET++
simulation provides the location data of the query-issuing
peer, which is available during the course of our exper-
iments. The number of such top-k queries issued in the
network per time unit is 10, the query deadline τQ being
varied randomly between 3 to 5 time units. Query price ρ

is chosen randomly in the range of 100 to 500 currency
units. Broker commission ρB and relay commission ρRL

are respectively set to 10 % and 1 % of ρ. For ETG, group
leader’s commission is set to 5 % of the group reward for
a given query. Initial energy of an MP is selected to be
randomly in the range of 90000 to 100000 energy units.
Sending and receiving a message require 1.5 and 1 energy
units respectively.

Recall that each ranker is associated with a risk profile
δ. The number of MPs with the values of δ as 0.3 (high-
risk), 0.5 (medium-risk) and 0.8 (low-risk) are 27, 43 and 30
respectively. For all our experiments, the economic param-
eters are set as follows: (a) the values of weight coefficients
w1 to w4 for computing the broker score η in Eq. 3 are each
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Table 2 Parameters of our performance study

Parameter Default Value Variations

k 8 4, 12, 16, 20, 24

Number of MPs (NMP ) 100 20, 40, 60, 80

Percentage of brokers ( PB ) 20 % 10 %, 30 %, 40 %, 50 %

Queries/time unit 10

Communication Range ( CR ) 120m 40m, 80m, 160m, 200m

Percentage of MP failures ( PF ) 20 % 10 %, 30 %, 40 %,50 %

Group size ( quantified by SG ) 30 % 10 %, 20 %, 40 %, 50 %

Bandwidth between MPs 28 Kbps to 100 Kbps

Initial energy of an MP 90000 to 100000 energy units

Memory space of each MP 8 MB to 10 MB

Speed of an MP 1 meter/s to 10 meters/s

Size of a data item 50 Kb to 350Kb

set to 0.25 (b) the values of weight coefficients w1 and w2

for computing the item score γ in Eq. 4 are set to 0.2 and
0.8 respectively (c) the penalty factor ψ (see Eq. 8) is set to
1.3 (d) the values of αup and αdown for item selection prob-
ability re-evaluation (see Eqs. 10 and 14) are set to 0.1 and
0.3 respectively.

In our simulation, we consider a pre-defined global top-
k rank list TG (of all data items), which is same across
all the broker MPs. TG was created based on a random
ranking of these 100 restaurants. Notably, the ranking of
restaurants in TG is static, and it does not change over
the course of our experiments. This is consistent with
practice e.g., TG could be determined using a standard
ranking list for restaurants such as Michelin’s guide to
restaurants. Such guides are published only periodically
(quarterly, semi-annually, annually etc.). Notably, such peri-
ods far exceed the period over which our simulations were
conducted.

In our simulation, suppose a given peer has x data items
i.e., information about 20 different restaurants. The data
items assigned to a given peer are determined randomly
from the data items corresponding to the 100 restaurants.
The selection probability value for each data item at a given
peer is initially set randomly on a scale of 0 to 1. These
selection probabilities determine the ranking of the data
items at a given peer. Notably, the ranking of the data items
in TA will change (due to temporal dynamism) based on
item re-ranking as discussed previously for our proposed
schemes. This explains how the numbers are generated for
TA in our simulations.

Query database is created initially in the simulation.
This database is used as synthetic query dataset for all our
experiments. Query database has a table, which stores top-
k query’s information such as unique ID, k value, price,
start-time, mobile peer’s ID and deadline. Similarly, we

have also created a database of all MPs, which consists of
the information such as MP’s unique ID, type (i.e., bro-
ker/relay/ranker) number of send/receive messages by MP,
MP’s top-k data item list (i.e., TR) with its relevant informa-
tion (e.g., item id, rank, selection probability etc.), energy.
In our simulation, we kept broker MPs as pre-defined, while
other MPs may change role to relay/ranker depending upon
the query.

Finally, the result set for all the queries were stored as
result database in the simulation. A table related to top-k
queries’ result consists of information such as query ID,
answer list TA (i.e., top-k data item list as query result),
response time (i.e., query’s end-time – query’s start-time),
precision, completed/failed and list of MPs who participated
in that query. We compute precision by comparing query
result’s top-k list with TG’s top-k list.

Performance metrics are average response time (ART),
precision rate (PREC), query completeness rate (QCR)
and communication traffic (MSG). We define a query as
completed if the broker receives at least k items from indi-
vidual rankers (or group leaders in case of ETG) within
70 % of the query deadline time τQ. Notably, a bro-
ker may fail to receive at least k items due to reasons
such as ranker unavailability and network partitioning.
(Queries that are not completed are deemed to be query
failures.) We compute ART only for the completed queries.
ART = 1

NC

∑NC

q=1(tf − t0), where t0 is the query-issuing
time, tf is the time of the query result reaching the query-
issuer, and NC is the total number of completed queries. We
compute ART in simulation time units (t.u.).

PREC is the average precision rate over all the queries.
Suppose TAq is the top-k query result and TGq is the
global top-k rank list of the respective broker for a
query q. To obtain PREC for q, we measure the num-
ber of items in TAq which also occur in TGq ; then
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we divide by the number of items in TGq . Notably,
PREC is computed only for completed queries. Thus,

PREC = 1
NC

∑NC

q=1

( ∣∣∣TGq −TAq

∣∣∣
∣∣∣TGq

∣∣∣

)
× 100.

QCR is the ratio of total numberNC of completed queries
to the total number NQ of queries. QCR = ( NC/NQ ) ×
100. We define MSG as the total number of mes-
sages incurred for query processing during the course of

the experiment. Thus, MSG = ∑NQ

q=1 Mq , where Mq is the

number of messages incurred for the qth query.
To the best of our knowledge, none of the existing top-

k query processing schemes in M-P2P environment uses
incentives. Hence, for purposes of meaningful comparison,
we adapt an existing non-incentive-based top-k processing
scheme for MANETs. We designate this scheme as NETK
(Non-Economic Top-K), proposed in [20]. Although NETK
does not provide incentives to the MPs. it is closest to our
top-k query processing scheme.

In NETK, each MP that receives a query message sends
back a fixed number, R, of its holding data items with the R

highest scores. If eachMP finds that the total number of data
items received from all its successor MPs and its own data
items with the R highest scores becomes larger than k (i.e.,
top-k data items), it only sends k data items with the highest
scores among those data items to its predecessor. Notably,
NETK suffers from the serious drawback of not being able
to encourage peer participation in top-k query processing
since it does not provide incentives. To strengthen NETK,
we adapted NETK to our scenario with R = 	k/50

(i.e., 50 % of top-k values are allowed to send towards
contributing into top-k query) because at this value of
R, NETK has above-average peer participation (based on
the results of our preliminary experimental observations),
thereby making NETK a fairly efficient approach in itself.
Furthermore, NETK does not incorporate the notion of item
re-ranking as no feedback has been sent back to the MPs,
who participated into top-k query processing.

6.1 Effect of peer groups with ETK and ETK+

Recall that ETG uses either ETK or ETK+ for performing
some of the economic functions (e.g., assignment of payoffs
from broker to group leader) during top-k query process-
ing. We designate these variations as ETG(K) and ETG(K+)
corresponding to ETK and ETK+ respectively.

Figure 4 depicts the results. ETG(K+) outperforms
ETG(K) due to two reasons. First, ETK+’s rank-weighted
payoff strategy provides better incentivization than the
uniform incentivization provided by ETK. Second, ETK+
provides more effective re-evaluation of the item selec-
tion probability μ by tying μ to payoffs associated with
rankers’ items. In contrast, ETK does not directly link μ

to payoffs. However, ETG(K+) incurs more MSG due to
group communication overhead. For the remainder of this
section, we show the performance of ETG in conjunction
with ETK+.

6.2 Effect of variations in the percentage of brokers

We performed an experiment to determine the percentage
PB of brokers in the network. Figure 5 depicts the results.

As PB is increased from 10 % to 20 %, ART decreases
and QCR increases for all the schemes. This is because
the involvement of more brokers increases the probabil-
ity that a given query is processed by at least one of the
brokers. Notably, the sum total of the number of brokers
and the number of rankers is fixed. Hence, when PB is
increased beyond 30 %, the number of rankers reduces,
thereby reducing QCR and increasing ART (due to more
hop-counts required to reach the rankers). Interestingly,
beyond PB = 40 %, ETG performs slightly worse QCR
than both ETK and ETK+ due to a significantly decreased
number of rankers, which make group formation difficult.

As PB increases, PREC increases due to the involve-
ment of more brokers for all the schemes. However, PREC
exhibits a saturation effect beyond PB = 30 % due to

Fig. 4 Effect of peer groups with ETK and ETK+
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Fig. 5 Effect of variations in the percentage of brokers

reduced number of rankers. As PB is increased till 30 %,
MSG increases for all the schemes due to the involvement
of more brokers. However, beyond PB = 30 %, MSG
decreases due to reduced number of rankers. Based on the
results, we set the percentage of brokers to 20 % so that
we can obtain good performance of E-Top with reasonable
communication traffic.

6.3 Performance of ETK and ETK+

We conducted an experiment using the default values of the
parameters in Table 2.

Figure 6 depicts the results. As more queries are pro-
cessed, performance improves for ETK, ETK+ and ETG
due to incentives and effective item re-ranking. However,
the performance eventually plateaus due to network parti-
tioning and unavailability of some of the rankers. ETK+
outperforms ETK because it provides better incentiviza-
tion and more effective re-evaluation of the item selection
probability, as explained for the results in Fig. 4. ETG
outperforms both ETK and ETK+ due to better incentives
for group-based collaboration and effective payoff sharing
among group members.

NETK performs worse than that of ETK in terms of ART,
QCR and PREC due to less ranker participation (owing to
the lack of incentives), which may cause inadequate items

to generate the final top-k result. Since the broker does not
always receive at least k items from rankers, NETK results
in a significant number of incomplete query results.

MSG increases over time for all the schemes as more
queries are being processed since MSG is a cumulative
metric. Interestingly, NETK incurs lower MSG than the
other schemes due to lower levels of ranker participation in
the absence of item re-ranking. ETK+ incurs lower MSG
than ETK because ETK+ assigns higher amount of penal-
ties (as compared to ETK) to rankers that send irrelevant
items, hence fewer rankers reply to the broker in case of
ETK+. ETG incurs higher MSG than both ETK and ETK+
due to periodic communication between group members for
exchanging their own individual top-k lists and for sharing
payoffs.

6.4 Effect of variations in k

Figure 7 depicts the effect of variations in k.
As k increases, QCR decreases for all the schemes

because relatively fewer rankers would be capable of par-
ticipating in the top-k query processing. This is because a
ranker is allowed to send its top-k result only if it hosts
at least k items pertaining to the query. ART increases
due to longer query paths as nearby rankers are unable to
provide enough relevant items. The performance gap (in

Fig. 6 Performance of ETK & ETK+
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Fig. 7 Effect of variations in k

terms of ART and QCR) between ETK, ETK+ and ETG
keeps decreasing with increase in k due to decreased ranker
participation.

As k increases, PREC increases for all the schemes due to
increase in the probability of the items (sent by the rankers)
being relevant to the top-k result. For example, if k = 4,
an item will contribute to the top-k if it matches one of the
four items in the broker’s global top-k list TG. However, if
k = 24, TG has 24 items, hence the ranker-sent item has a
better chance of a ‘match’ with any one of the items in TG.
ETG and ETK+ exhibit comparable PREC beyond k = 12
because their incentives result in the same rankers sending
the top-k results at these higher values of k. PREC also even-
tually plateaus for all the schemes after k = 12 due to peer
mobility, frequent network partitioning and unavailability of
some of the rankers.

As k increases, MSG increases for all the schemes due
to longer query paths arising from less ranker participa-
tion. However, MSG eventually plateaus at k = 12 because
the increased number of hops required to reach the rele-
vant rankers is offset by the decreased number of relevant
rankers.

6.5 Effect of variations in the number of MPs

We conducted an experiment to examine the scalability of
our proposed schemes. Figure 8 depicts the results. As the

number NMP of MPs increases, ART increases for all the
schemes due to larger network size. As NMP increases,
QCR and PREC increase because larger network implies
more rankers. Observe that the performance of NETK is
worse than that of ETK, ETK+ and ETG due to lower levels
of ranker participation in the absence of item re-ranking, as
explained for the results in Fig. 6.

ETG outperforms ETK and ETK+ due to more pro-
nounced effect of peer group collaboration when NMP

exceeds 40. However, below NMP = 40, ETG performs
slightly worse than ETK+ due to limited effect of group col-
laboration. MSG increases for all the schemes due to larger
network size.

6.6 Effect of variations in the communication range

The results in Fig. 9 depict the effect of variations in
the communication range CR of the MPs. Increase in
CR has the effect of bringing the MPs ‘nearer’ to each
other. Hence, performance improves for all the schemes
due to data items becoming ‘nearer’ and more accessible
to query-issuers. Thus, relatively fewer queries fail due to
the maximum TTL criteria of 6 hops as more MPs come
within range to answer queries. Observe that the rate of
decrease in ART is not necessarily uniform because of devi-
ations arising from bandwidth differences at MPs. QCR
and PREC exhibit a saturation effect for all the schemes

Fig. 8 Effect of variations in the number of MPs
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Fig. 9 Effect of variations in the communication range

beyond CR = 160 metres due to unavailability of some of the
rankers.

As CR increases, MSG increases for all the schemes
because the increased reachability of the MPs increases
communication among them. With increase in CR, a lower
number of messages are required to reach a given MP,
thereby decreasing MSG. However, more MPs become
involved in the processing of a given query, thereby increas-
ing MSG. These two opposing effects somewhat offset each
other at higher values of CR, thereby explaining the reason
why MSG eventually plateaus. Interestingly, ETG incurs
lower MSG than ETK at CR = 40 metres. This occurs
because at such low values of CR, the MPs are in effect ‘far’
from each other, thereby reducing the effectiveness of group
collaboration. Consequently, a lower number of messages
are required for group interactions.

6.7 Effect of MP failures

MPs can fail due to reasons such as depletion of their limited
energy resources. Figure 10 depicts the results of the effect
of MP failures.

As the percentage PF of MP failures increases, MP
participation decreases, query paths become longer and
fewer potential rankers remain available, thereby degrading

the performance of all the schemes. Interestingly, at
PF = 50 %, ETK, ETK+ and ETG exhibit comparable
performance due to limited MP participation making the
effect of groups and item re-ranking less pronounced. As the
results in Fig. 10d indicate, MSG decreases with increase in
PF for all the schemes due to reduced communication over-
head among a lower number of available MPs. Interestingly,
detailed examination of the experimental logs indicated that
beyond PF = 35 %, ETG incurs lower MSG than ETK due
to difficulties in group formation when relatively fewer MPs
are available.

6.8 Effect of different payoff allocation approaches
in ETG

We conducted an experiment to investigate the relative
performance of ETG with the different payoff allocation
approaches, namely EQ, ICON and RCON. Figure 11
depicts the results.

As the number of queries increases, performance
improves for all the approaches partly due to better fil-
tering by the group leader and partly because participants
lower the item selection probability for penalized items.
(Recall that in this work, participants in ETG decrease
the item selection probability in the same manner as in

Fig. 10 Effect of MP failures
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Fig. 11 Effect of different payoff allocation approaches in ETG

the ETK+ scheme.) In effect, the filtering occurs iter-
atively to refine the top-k results across an increased
number of queries, thereby improving both QCR and
PREC.

ICON outperforms EQ because it provides better incen-
tives to contributors. Unlike EQ, it takes into account the
number of relevant items sent by contributors for distribut-
ing rewards. Moreover, RCON outperforms ICON since it
better incentivizes contributors by tying rewards to the rev-
enue earned by the items. QCR and PREC saturate for all
the approaches after 8000 queries have been processed due
to network partitioning and unavailability of some of the
rankers. RCON incurs more MSG than ICON, and ICON
incurs more MSG than EQ because better incentives entail
more participation towards top-k query processing.

6.9 Effect of variations in the group size

We define the size of a group as the number of MPs in it. We
conducted an experiment to investigate the effect of varia-
tions in the group size. For simplicity, we divide the region
of interest into square cells of equal area in a grid. MPs
moving within any given cell constitute a group, hence each
cell corresponds to a group. Thus, we vary the group size
by adjusting the area of the cells. Hence, if we increase the
area of each cell, the group size increases and vice versa.

Notably, although the cells are of equal area, group size may
vary across cells because MPs are not uniformly distributed
across the region.

We define a parameter SG to quantify the side-length of
an individual cell as a percentage of the total side-length of
the region. Recall that our region is 1000 metres × 1000
metres. Hence, when SG = 10 %, each cell has an area
of 100 metres × 100 metres, hence there will be 100 cells
i.e., groups. Similarly, when SG = 30 %, each cell has
an area of 300 metres × 300 metres, hence there will be
11.11 � 12 cells. (Notably, the group corresponding to the
last cell is likely to have fewer MPs than the first eleven
cells.) Observe how the number of cells (and consequently,
groups) decreases drastically with increase in SG.

Figure 12 depicts the effect of variations in SG. At low
values of SG, the number of groups is high, but each group
is relatively small in size due to fragmentation. Hence, it
becomes more difficult for the group leaders to obtain k rel-
evant items for sending to the broker. Thus, group members
behave more like individual rankers, thereby not fully real-
izing the benefits of group-based collaboration. Hence, ETG
exhibits improved performance as SG is increased from
10 % to 30 % due to increase in group size.

On the other hand, at high values of SG, group size
becomes large, hence relatively fewer groups exist. How-
ever, when the group size is too large, performance

Fig. 12 Effect of variations in the group size
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degrades. In the extreme case when the group encompasses
the whole region, the performance essentially reduces to that
of ETK and ETK+ because all the MPs act as part of one
group. This explains why the performance of ETG degrades
and becomes comparable to that of ETK and ETK+, at
SG = 40 % and beyond. Observe that ETG performs best
at SG = 30 % when the group sizes are neither too small
nor too large. Interestingly, MSG is highest for ETG at
SG = 30 % due to more group interactions in processing a
larger number of successful queries.

7 Conclusion

We have proposed the E-Top system for efficiently pro-
cessing top-k queries in M-P2P networks. E-Top issues
economic rewards to the MPs, which send relevant data
items, and penalizes peers otherwise, thereby optimizing the
communication traffic. Peers use the payoffs as a means
of feedback to re-evaluate the scores of their items for
re-ranking purposes.

E-Top uses three economic incentive schemes, namely
ETK, ETK+ and ETG. In ETK and ETK+, MPs act individ-
ually, the difference being that ETK performs equal distribu-
tion of payoffs to the rankers, while ETK+ uses a weighted
distribution. ETG extends ETK and ETK+ by considering
MP collaboration in groups. Our performance evaluation
demonstrates that E-Top is indeed effective in improving
the performance of top-k queries in terms of query response
times and accuracy at reasonable communication traffic
cost.

Recall that in this work, we have considered only one
broker towards serving a given top-k query in a given query
path. In the near future, we plan to further enhance system
scalability by requiring multiple brokers per query for pro-
viding better services to the mobile peers, albeit at the cost
of increased communication overhead in terms of energy
and bandwidth. There is no restriction over considering
multiple brokers, but in that case the inter-broker commu-
nication further increases communication traffic, thereby
degrading the overall performance of the system. This is
due to the fact that the nearby brokers periodically exchange
the information (such as global ranking list (TG), num-
ber of unique MPs that interacted with brokers, etc.) with
each other, to maintain consistency in such a dynamic envi-
ronment. Additionally, we will create a small prototype to
provide a proof of concept.
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