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Abstract In this paper, to minimize the transmission power
of cognitive users in underlay cognitive radio networks, a
robust power control algorithm is proposed considering the
uncertain channel gains. To deal with the uncertainty, we
present an opportunistic power control strategy, i.e., the out-
age probability of all cognitive users and primary users
should be reduced below their predefined thresholds. The
strategy is the joint design of primary users’ communication
protection and cognitive users’ optimal power allocation. A
chance constraint robust optimization approach is applied,
which can transform the uncertain problem into a deter-
ministic problem. Then, a distributed probabilistic power
algorithm is introduced, which ensures the optimization
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of cognitive users’ power allocation based on the stan-
dard interference function and restricts the interference at
primary receivers by adjusting the maximum transmission
power of cognitive users. Moreover, the admission control
is introduced to exploit the network resources more effec-
tively. Numerical results show the convergence and effec-
tiveness of the proposed robust distributed power control
algorithm.

Keywords Cognitive radio networks · Channel gain
uncertainty · Chance constraint · Robust optimization ·
Distributed power allocation

1 Introduction

Cognitive radios (CRs) aim to mitigate the scarcity of spec-
tral resources by using the same frequency spectrum allo-
cated to primary users, as long as the CR users do not cause
harmful interference to primary users (PUs) in an underlay
scenario [1, 2]. In order to reduce interference in wireless
communications, one of the best methods is power control.
Much research effort has been devoted to distributed power
control problems in cognitive radio networks from different
aspects and different system models. For example, to satisfy
the interference temperature constraint at the PUs and maxi-
mize the CR users’ throughput, the authors propose a power
allocation strategy to dynamically allocate the transmitted
power to CR users in [3]. In [4] a transmitted power control
scheme for a CR user is proposed in fading environment,
which maximizes the capacity of the CR users subject to the
interference threshold constraint at the PUs . This constraint
can be in the form of either a hard or a soft threshold. At any
time, we should not violate the hard threshold [5], whereas
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for a soft threshold, it can be maintained in a probabilistic
manner [6–8].

All these works depend on the assumption that the con-
straints and objective function of the optimization problem
can be obtained precisely. However, in practical situa-
tions, the parameters are imperfectly known, and they are
uncertain or time varying. The solutions of the nominal
optimization may be infeasible when some parameters are
inaccurate. Hence, robust optimization has been utilized to
deal with the uncertainty parameters [9, 10]. Robust opti-
mization research is to seek a proper set to describe the
uncertainty parameters. Usually, it is transformed to be
convex optimization problem and preserves its tractabil-
ity. In [11], to apply the worst-case interference control in
CR networks, the uncertainty region is defined by utilizing
the probability distribution function. The worst case robust
optimization algorithm is proposed in [13] to minimize
the total transmitted power of all users, given signal-to-
interference-plus-noise ratio(SINR) constraints at each CR
user and PU with the uncertain channel gains. To tackle
uncertainty, the authors also use the Bayesian approach
in wireless networks [14]. The main idea of Bayesian
approach and the worst case robust optimization algorithm
is to convert the uncertain parameters and constraints into
the certain ones. In [15], the author applies the worst
case, D-norm and Bayesian robust algorithm in orthogo-
nal frequency-division multiplexing CRs network, however,
only the uncertainty channel gains from CR’s transmitter
to PU receiver are considered. The worst case and D-norm
algorithm are used to maximize the social utility of CR
users by Lagrange dual decomposition in [16]. However,
the high-loading networks or poor channel may be cause
the optimal power control infeasible. In [17], the robust
probabilistic distributed power control algorithm is pro-
posed to minimize the total transmitted power of users,
with SINR requirement at CR users and interference lim-
itation at base station respectively. However, in the CRs
network, the PUs’ interference should be taken into consid-
eration.

In this paper, we research the distributed robust power
control problem in cognitive radio networks when the inter-
ference channels, including that from cognitive transmitters
(CR-Txs) to primary receiver (PU-Rx) and from CR-Txs
to cognitive receivers (CR-Rxs), are uncertain. Our objec-
tive is to minimize the transmission powers of all the
cognitive users for energy-saving, subject to the outage
probability of all CR users and PU below their predefined
thresholds. We consider jointly the standard interference
function algorithm and adjustment of maximum transmis-
sion power, while keeping the outage probability constraints
of CR users and PU with uncertainty channel gains. In
order to improve resource utilization, admission control is
introduced.

The rest of the paper is organized as follows. Section 2
introduces the system model and robust problem formula-
tion. The chance constraint robust power control allocation
algorithm in a distributed way is also presented in Section
2. In Section 3, the simulations are provided to demonstrate
the performance of the proposed schemes. Finally, Section
4 makes the concluding remarks.

2 System model and problem formulation

2.1 A. Problem statement

Considering a CRs network as shown in Fig. 1, there is no
central control node and there areN cognitive user links and
one primary user link. We investigate the scenario where
all CR users share the same frequency resource with the
PU, but, the total interference generated by CR users does
not exceed the threshold that PU-Rx can tolerate. In par-
ticular, CRs can’t obtain system information from PU very
well, when PU are not obliged to provide any information to
CRs. That can cause undesired interference at PU-Rx. So,
to avoid such instances, we restrict the outage probability of
PU below a threshold.

Pr

{
N∑

i=1

hipi ≥ I

}
≤ ε, (1)

where pi ∈ [pmin
i , pmax

i ] denotes CR-Tx’s transmitted
power of link i (i = 1, 2, ..., N), pmin

i and pmax
i are the

minimum and the maximum transmitted power of CR-Tx
of link i, respectively. hi denotes the channel gain from the

Fig. 1 The model of cognitive radio networks
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CR-Tx to the PU-Rx. Let I be the interference threshold
at PU-Rx. ε ∈ (0, 1) denotes the desired upper-bound of
the probability that the total interference is beyond of given
threshold.

To guarantee the normal uplink communication and meet
the QoS requirements of all CR users, the SINR of each
cognitive user should be greater than or equal to the target
SINR. Similarly, when the uncertain channel gains from a
CR-TX to a CR-RX that does not match with the CR-TX
are considered, the uncertainty can cause the SINR below
the target SINR. Then, the outage probability constraint of
CR user in link i is given

Pr
{
ri ≤ r̂i

} ≤ ξi, ∀i. (2)

where the SINR of the ith CR user can be described as

ri = piGii

N∑
k �=i,k=1

pkGki + σ 2 + pogi

, (3)

where gi represents the channel gain between the PU-Tx
and the ith CR-Rx, and Gii , Gki are channel gains from the
ith CR-Tx to the ith CR-Rx and from the kth CR-Tx to the
ith CR-Tx, respectively. Besides, the transmitted power of
the PU-Tx is po. Assume that the background noise at the
CR-Rxs of all links are σ 2. For simplicity, we denote Ni as
the interference caused by the PU-Tx and the noise at the ith

CR-Rx, i.e., Ni = σ 2 + pogi . Thus, (3) can be rewritten as

ri = piGii

N∑
k �=i,k=1

pkGki + Ni

. (4)

2.2 B. Bernstein approximation

We apply a useful class of approximation techniques
for chance- constraint known as Bernstein approximation,
which can convert the uncertain problem to a determinis-
tic problem. Bernstein approximation is briefly reviewed in
[18, 19]. Consider a chance constraint

Pr

{
f0(p) +

N∑
i=1

ζnfn(p) < 0

}
≥ 1 − ε, (5)

where p is a deterministic parameter vector, and {ζn} are
random variables with marginal distributions denoted as
{πn}. Suppose that one desires to meet this constraint for
a given family of {ζn} distributions under the following
assumptions.

1) fn(p) are affine in p for n = 0, 1, ..., N .
2) {ζn} are independent of each other.

3) {πn} have a common bounded support of [-1,1], that is,
−1 ≤ ζn ≤ 1 for all n = 1, ..., N .

Under these assumptions, we can obtain a convex conserva-
tive surrogate for Eq. 5, which is proven in [18, 19].

f0(p) +
N∑

n=1

max{μ−
n fn(p), μ+

n fn(p)}

+
√
2 log

1

ε

(
N∑

n=1

σ 2
n fn(p)2

) 1
2

≥ 0, (6)

where −1 ≤ μ−
n ≤ μ+

n ≤ 1 and σn ≥ 0, n ∈
{0, 1, ..., N} are constants that depend on the given families
of probability distributions.

In the preceding discussion, we analyze the distributed
robust power control problem in cognitive radio networks
when the interference links’ channel gains are uncertain.
For CR users, the influence of the channel gains gi between
primary transmitter (PU-Tx) and cognitive receiver (CR-
Rxs) is small, so, the uncertainty of channel gains gi can be
neglected.

We denote that the uncertain channel gains form the CR-
Tx of link i to the PU-Rx as hi = h̄i + ĥi , where h̄i is the
nominal value, and ĥi is the perturbation part. We assume
ĥi belongs to a general class of probability distribution, and
is bounded in ĥi ∈ [−ϕi, ϕi]. For simplicity, ϕi = 	h̄i ,
	 has a bonded support of [-1,1], which is consistent with
assumption 3). So, hi can be rewritten as hi = h̄i ± 	h̄i .
hi is independent of each other and the probability distri-
bution for all channels are same. Under above assumptions,

we let f0(p) =
N∑

i=1
h̄ipi − I and fn(p) = 	h̄ipi for all

i ∈ N . Substituting the parameters into Eq. 6, the con-
straint (1) can be reformulated by the Bernstein approxi-
mations as

N∑
i=1

h̄ipi +
N∑

i=1

u+	h̄ipi +
√
2η ln ε−1

(
N∑

i=1

(	h̄ipi)
2

) 1
2

≤I. (7)

Similarly, for the uncertain channel gain Gki , we model
it as Gki = Ḡki + Ĝki , where Ḡki is the estimated chan-
nel gain, and Ĝki is uncertain part. Ĝki belongs to a general
class of probability distribution, and is bounded in Ĝki ∈
[−εki, εki], εki = δḠki with δ ∈ [−1, 1]. Gki is expressed
by Gki = Ḡki ± δḠki and independent of each other. Now,

let f0(p) = piGii

r̂i
− (Ni +

N∑
k �=i,k=1

pkḠki) and fn(p) =
δḠkipk for all i ∈ N . They meet the three conditions of the
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Bernstein approximation. Then, we rewrite the constraint
(2) by the Bernstein approximation as

piGii

r̂i
−

⎛
⎝Ni +

N∑
k �=i,k=1

pkḠki

⎞
⎠ −

N∑
k �=i

u+δḠkipk

−
√
2η ln ξ−1

i

⎛
⎝ N∑

k �=i,k=1

(pkδḠki)
2

⎞
⎠

1
2

≥ 0, (8)

where u+ and η depend on the probability distribu-
tion. In [17], three typical families of probability distri-
bution are given. In this paper, we adopt the Case II
in [17].

2.3 C. Standard interference function algorithm

With the outage probability constraint of cognitive users, we
can obtain the optimal power by a distributed algorithm. The
formula (8) is rewritten as

pi ≥ r̂i

Gii

⎡
⎣

⎛
⎝Ni + (1 + u+δ)

N∑
k �=i,k=1

pkḠki

⎞
⎠

+
√
2η ln ξ−1

i

⎛
⎝ N∑

k �=i,k=1

(pkδḠki)
2

⎞
⎠

1
2
⎤
⎥⎦ , (i = 1, 2, ..., N)

(9)

The matrix form of the formula (8) is

p ≥ I(p) (10)

Denote vector p and I(p) as p = [p1, p2, ..., pN ], I(p) =
[I1(p), I2(p), ..., IN(p)], where Ii(p) = r̂i

Gii
[(Ni +

(1 + u+δ)
N∑

k �=i,k=1
pkḠki) + βi(

N∑
k �=i,k=1

(pkḠki)
2)

1
2 ], (i =

1, 2, ..., N) and β = [β1, β2, ..., βN ], βi = δ

√
2η ln ξ−1

i .
I(p) is a standard interference function, if it meets three
conditions:

1) positivity I(p) > 0,
2) monotonicity p

′
> p ⇒ I(p

′
) > I(p),

3) scalability αI(p) > I(αp), which is investigated in
[20].

Proposition 1 I(p) is a standard interference function.

Proof 1) positivity: It clear that I(p) > 0, since Ii(p) is
nonnegative.

2) monotonicity: When p′ > p

I(p′) − I(p) = r̂i

Gii

⎡
⎣

⎛
⎝Ni + (1 + u+δ)

N∑
k �=i,k=1

p′
kḠki

⎞
⎠

+ βi

⎛
⎝ N∑

k �=i,k=1

(p′
kḠki )

2

⎞
⎠

1
2
⎤
⎥⎦

− r̂i

Gii

⎡
⎣

⎛
⎝Ni + (1 + u+δ)

N∑
k �=i,k=1

pkḠki

⎞
⎠

+ βi

⎛
⎝ N∑

k �=i,k=1

(pkḠki)
2

⎞
⎠

1
2
⎤
⎥⎦

= u+δ

N∑
k �=i,k=1

(
p′

k − pk

)
Ḡki

+ βi

⎡
⎢⎣

⎛
⎝ N∑

k �=i,k=1

(
p′

kḠki

)2⎞⎠
1
2

−
⎛
⎝ N∑

k �=i,k=1

(pkḠki)
2

⎞
⎠

1
2
⎤
⎥⎦ ≥ 0 (11)

then we have I(p′) > I(p).
3) scalability:

αI(p) − I(αp) = α
r̂i

Gii

⎡
⎣

⎛
⎝Ni + (1 + u+δ)

N∑
k �=i,k=1

pkḠki

⎞
⎠

+ βi(

N∑
k �=i,k=1

(pkḠki)
2)

1
2

⎤
⎦

− r̂i

Gii

⎡
⎣

⎛
⎝Ni + (1 + u+δ)

N∑
k �=i,k=1

αpkḠki

⎞
⎠

+ βi

⎛
⎝ N∑

k �=i,k=1

(pkḠki)
2

⎞
⎠

1
2
⎤
⎥⎦

= (α − 1)
r̂i

Gii

Ni (12)

Since α > 1, we have αI(p) > I(αp)

In conclusion, we know that I(p) is a standard interfer-
ence function. Hence, the iterative distributed algorithm is
presented to get optimal power allocation with the outage
probability constraint of CR users. The power control itera-
tive algorithm converges to the fixed point, which is unique.
The power-update rule is

p(t + 1) = I(p(t)), (13)
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where t is the iteration number. the power updates for the
ith CR user can be summarized as

pi(t + 1) = r̂i

Gii

⎡
⎣

⎛
⎝Ni + (1 + u+δ)

N∑
k �=i,k=1

pk(t)Ḡki

⎞
⎠

+
√
2η ln ξ−1

i

⎛
⎝ N∑

k �=i,k=1

(pk(t)δḠki)
2

⎞
⎠

1
2
⎤
⎥⎦ . (14)

By taking the minimum and maximum power constraints
into consideration, CR user i updates its power level by

pi(t + 1) = min

⎧⎨
⎩

⎡
⎣ r̂i

Gii

⎡
⎣

⎛
⎝Ni + (1 + u+δ)

N∑
k �=i,k=1

pkḠki

⎞
⎠

+
√
2η ln ξ−1

i (

N∑
k �=i,k=1

(pkδḠki)
2)

1
2

⎤
⎦

⎤
⎦

+
, pmax

i

⎫⎬
⎭

(15)

where [x]+=max(0, x).

2.4 D. Power iteration process and admission control

Now, we take the constraint (1) into consideration. the inter-
ference threshold that PU can tolerate is set to I . Based on
the inequality (1), the aggregate interference obtained by the
optimal power allocation from all CR users should be no
greater than ε. Mathematically, this can be written as

Pr

{
N∑

i=1

hip
∗
i ≥ I

}
≤ ε. (16)

It is transformed into a deterministic setting by Bernstein’s
approximation as

I ∗ ≤ I, (17)

where I ∗ =
N∑

i=1
(1+ u+)	h̄ip

∗
i + √

2η ln ε−1(
N∑

i=1
(	h̄ip

∗
i )

1
2 .

p∗
i is the optimal power obtained from the standard interfer-

ence function algorithm.
When we take into account the constraint (1), the interfer-

ence I ∗ caused by all CR users may be beyond the interfer-
ence threshold. In this case, the power of CR users should be
readjusted. The process is as follows: Firstly, the PU users
set the threshold I and the initial maximum power p(1)

max

for all CR users, where p(1)
max = {p(1)

1,max, p
(1)
2,max, ..., p

(1)
N,max}

and we assume p
(1)
1,max = p

(1)
2,max = ... = p

(1)
N,max. Secondly,

the optimal power vector p(n)∗ = {p(n)∗
1 , p

(n)∗
2 , ..., p

(n)∗
N }

is updated by the standard interference function algorithm.
With p

(n)∗
i , the value of I ∗ at the PU-Rx is calculated.

Finally, the PU-Rx judges whether I ∗ surpasses its thresh-
old I . If I ∗ is greater than I , the CR users maximum power
is adjusted to decrease the interference to PU users, i,e.,
p(n+1)
max = p(n)

max − �p with pre-specified �p and the sys-
tem goes to next adaption. Otherwise, the optimal power is
p

(n)∗
i .
Under the above analysis, we give the following algo-

rithm to achieve the optimal power of problem to satisfy the
outage probability constraint of all CR users and PU users.

Remark 1 The algorithm presented in our work only
requires limited amount of signal to be exchanged among
the CRs and the PUs. In Algorithm 1, the power updates
of the CRs can be executed in a distributed manner, based
on the information available at local links. On one hand,
each CR-Rx of link i can estimate Gii and hi , for instance,
exploiting the pilot channel. On the other hand, the CR-Rx
can also measure the total received power, and then subtract
its own received power to obtain the aggregated interference
Ii(p−i ), i.e., Ii(p−i ) = ∑

pjGij − piGii assuming that
noise can be ignored. When the optimal transmission power
is obtained, the CR-Rx transmits it to the PU-Rxs through
the backhaul channel. Then, the PU-Rxs calculate their total
interference based on the optimal power of all CR users,
and decide whether adapt the maximum power constraint or
not. The control information is transmitted to each CR-Tx
through the backhaul channel.

From the above scheme, the optimal SINR r∗
i =

p∗
i Gii

N∑
k �=i,k=1

(1+δ)Ḡkip
∗
k+Ni

can be obtained after determining the

optimal power p∗
i of cognitive user i.

It is natural to realize that the obtained r∗
i may be below

the minimum SINR r̂i for the outage probability constraint
with the uncertainty channel gains. So, we can remove the
CR uesrs whose optimal SINR is smaller than the target
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SINR. By the application of admission control, the inferior
CR users are removed to improve the admitted CR users
performance and also make full use of the limited network
resources.

The admission control is implement as follows:

(1) Based on CRs optimal SINRs r∗
i obtained from Algo-

rithm 1, each CR user compares its optimal SINR with
the target SINR r̂i .

(2) If r∗
i < r̂i , the CR-Tx sends a request for terminating

transmission to the CR-Rx of link i, otherwise, the
CR-Tx sends the request for transmission.

(3) The admitted CR users recalculate the optimal SINRs.

The following Algorithm is the admission control in
detail.

3 Simulation results and performance analysis

In this section, we provide simulation results to examine the
convergence and effectiveness of the proposed robust power
control algorithm. The PU-Rx is located at the center of
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the area of 1000m × 1000m rectangle, and both the CR-Txs
and CR-Rxs are randomly located in primary user’s cov-
erage area. It is assumed that channel gains follow a path
loss model, which is relevant with the distance. The channel
gain models are independent of each other. Set I = 10−6W,
r̂i = 9.5dB, pi,max = 0.5W and Ni = 10−8W for all CR
users.

First, we show the convergence of the proposed robust
power control algorithm. We consider the situation that
there are N(N = 25) cognitive links. The parameters of
uncertain channel gains are set as δ = 	 = 0.01, and the
bound of outage probability are ε = ξi = 0.01. Fig. 2
shows the power allocation convergence of CR users under
the proposed power update rule.

Next, the effectiveness of admission control is shown in
Figs. 3 and 4. From Fig. 3, we can clearly see that the CR
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user 6 and user 9 can not meet the target SINR. When we
introduce the admission control, all of the rest CR users
SINR can satisfy the target SINR and are greater than that
without admission control. Since, the interference I

i
(p−i )

from other CR users decreases if some CR users drop out.
This proves that the admission control is effective. When
the uncertainty sets of channel gains from CR-Txs to PU-
Rx and the outage probability of all CR users are fixed, i.e.,
for 	 = 0.01, ε = ξi = 0.01, we present CR users’ aver-
age SINR with and without admission control, respectively
in Fig. 4. It is clear that the average SINR is larger than the
target SINR with the admission control for small values of
δ. This strongly proves the admission control scheme can
improve the average SINR of the CR users.

Then, we investigate the average power of CR users for
different values of ξ and δ. In Fig. 5, with the increasing of
δ, the average transmitted power of CR users increases. The
reason is that for larger value of δ, it needs more power to
meet the the outage probability constraints of all CR users.
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With same δ, the average power decreases with increasing
of ξ , as we relax the SINR requirements of CR users.

Figure 6 shows the robust power control approach’s
impact on the maximum transmitted power of CR users. We
can find that, as the values of 	 increases, the maximum
transmitted power of CR users decreases. It is due to the
channel gains uncertain, the maximum transmitted power
should be decreased in order to reducing the primary users’
interference power caused by CR-Txs. Because the outage
probability constraint is strict, the maximum transmitted
power will be smaller for a smaller value ε.

Next we evaluate the performance of outage probability
with uncertain channel gains. The parameters are set as fol-
lows, N = 5, ρ = 0.4, ε and ξi are same. The outage
probability of PU and CR users are shown in Fig. 7. It can
be seen that all outage probabilities of users are below the
given threshold.

4 Conclusions

In this paper, we propose a robust power control algo-
rithm for CRs network by considering CR users’ energy
efficiency. In order to guarantee the QoS of the CR users,
the outage probability is introduced by considering uncer-
tain channel gains. Also, for interference suppression, we
maintain the outage probability of PU users below a pre-
defined threshold. The chance constraint robust approach
is formulated, and a distributed power control algorithm is
introduced to find CR users’ optimal power. The admis-
sion control algorithm is adopted to effectively improve
CR users’ performance. However, in reality, there are other
uncertain parameters such as the channel gains between PU-
Tx and CR-Rx, between PU-Tx and PU-Rx, which may
cause that the cognitive users’ target SINRs are violated and
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PUs fail to connect the network. So, the future work is to
solve the power control problem under such circumstances.
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