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Abstract Taking advantage of the huge potential of con-
sumers’ untapped computing power, self-organizing cloud
is a novel computing paradigm where the consumers are
able to contribute/sell their computing resources. Mean-
while, host machines held by the consumers are connected
by a peer-to-peer (P2P) overlay network on the Internet. In
this new architecture, due to large and varying multitudes
of resources and prices, it is inefficient and tedious for con-
sumers to select the proper resource manually. Thus, there
is a high demand for a scalable and automatic mechanism
to accomplish resource allocation. In view of this challenge,
this paper proposes two novel economic strategies based
on mechanism design. Concretely, we apply the Modified
Vickrey Auction (MVA) mechanism to the case where the
resource is sufficient; and the Continuous Double Auction
(CDA)mechanism is employed when the resource is insuffi-
cient. We also prove that aforementioned mechanisms have
dominant strategy incentive compatibility. Finally, extensive
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experiment results are conducted to verify the performance
of the proposed strategies in terms of procurement cost and
execution efficiency.
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1 Introduction

Cloud computing is an emerging paradigm, which enables
on-demand provisioning of computational and storage
resources [1, 2]. Existing business cloud platforms, such
as Amazon EC2 [3], Microsoft Azure [4], GoogleFS [5],
offer an effective way to reduce both capital and opera-
tional expenditure of consumers. However, in these cloud
platforms, the huge potential of consumers’ untapped com-
puting power has been ignored, especially with the fast
growth of their computing capacities. To overcome this
disadvantage, self-organizing cloud (or called customer-
provided cloud) has been proposed [6, 7]. Meanwhile, this
newborn paradigm has attracted an increasing number of
practitioners from industry [8]. While this paradigm makes
cloud computing better, it also brings new and challenging
problems. One important problem in self-organizing cloud
is the resource allocation problem. The focus of the resource
allocation problem is on how to select the proper instances
for consumers. Actually, resource allocation is an important
but not yet well unexplored area in self-organizing cloud.

In recent years, various techniques have been proposed
to address the aforementioned problem. In self-organizing
cloud, every joined host, either a public server or a desk-
top computer, serves as an individual node on a structured
P2P overlay network [9]. It brings the resource query and
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allocation problems. Faced with these problems, Di et al.
[9] designed a resource discovery protocol, Proactive Index
Diffusion CAN (PID-CAN), which can proactively diffuse
resource indexes over the nodes and randomly route query
messages among them. Furthermore, Di et al. [7] proposed
a fully distributed, VM-multiplexing resource allocation
scheme to manage decentralized resources. On the other
hand, Wang et al. [6] investigated SpotCloud, the first busi-
ness self-organizing cloud, and found that it is very friendly
to individual customers when they seek to run short-term
tasks at minimum costs. They also proposed a mecha-
nism for cloud service providers to recommend short-listed
instances to customers. In addition, some similar works
have been proposed in [10, 11]. These advanced techniques
enable computing resources to be allocated to meet the
elastic needs of cloud consumers.

However, much less attention in previous works is paid
to the following characteristics and limitations of partic-
ipants in self-organizing cloud. First of all, there is a
huge difference among resources provided by participants
in self-organizing cloud in terms of quality and volume,
where providers have different expected prices about their
resources. As a result, it is not appropriate to use a unified
unit price for all resources. In addition, when a consumer
submits a task, there are lots of providers who offer various
versions of resources at different prices and with varying
quality-of-service parameters. It is quite complex and chal-
lenging for consumers to obtain the optimal resource with
a desired quality within the budget. More specifically, the
number of providers and their offerings in self-organizing
cloud changes continually. Given the large and varying mul-
titudes of providers, it is inefficient and tedious to select
the most appropriate one manually. Therefore, there is a
high demand for a scalable and automatic mechanism to
accomplish resource allocation in self-organizing cloud.

We consider that dynamic pricing turns out to be a good
choice for these problems. Dynamic pricing is a pricing
strategy where buyers and sellers actively engage in the
price discovery process. Besides, dynamic pricing increases
the welfare of the user, where it facilitates healthy compe-
tition among vendors and increases the efficiency of cloud
resource usage [12]. One way to implement dynamic pricing
is the auction [13]. In this paper, the proposed mechanisms
based on the Vickrey auction (also called the second-price
sealed-bid auction). Under the Vickrey auction, bidders sub-
mit sealed bids after they have been told that the highest
bidder wins the item and pays a price equal to the second-
highest bid [14]. Moreover, the mechanisms proposed in
this paper utilize reverse auction and double auction. In a
reverse auction, when sellers compete to obtain business
from the buyers, they undercut with each other and prices
will typically decrease. Double auction is a multilateral pro-
cess in which buyers and sellers submit bid and ask prices to

an auctioneer simultaneously, which determines a clearing
price for the sale.

Besides, we introduce mechanism design for accom-
plishing the resource allocation. Mechanism design is the
sub-field of microeconomics and game theory. It considers
how to implement good system-wide solutions to problems
that involve multiple self-interested agents, one of which has
private information about preferences [15]. The main focus
of mechanism design is on the design of institutions that sat-
isfy certain objectives, assuming that individuals interacting
through the institution will act strategically and may hold
private information that is relevant to the decision at hand
[16]. Actually, mechanism design has been widely applied
to cloud computing [17–19].

To address the resource allocation problem in self-
organizing cloud, our work utilizes the aforementioned
techniques. To the best of our knowledge, the work pre-
sented in this paper is the first to propose a scalable and
automatic mechanism to perform resource allocation in
self-organizing cloud. To this end, the contributions of the
proposed work can be summarized as follows:

– We propose two novel mechanisms to accomplish
resource allocation in self-organizing cloud. They are
MVA and CDA mechanisms, respectively. They offer
incentive for the providers to truthfully report the price
according to their individual conditions. A consumer
gets an appropriate resource with the minimized cost.

– Our mechanisms enable an automatic resource alloca-
tion mechanism from cloud planner. It helps consumers
to select an appropriate resource within the budget and
of the desired quality.

– We prove that the above mechanisms have dominant
strategy incentive compatibility. Experiment results
demonstrate that CDA mechanism is suitable when the
resource is insufficient, while MVA mechanism is fit
when the resource is sufficient.

The remainder of the paper is organized as follows. The
system description is presented in Section 2. We formu-
late the problem in Section 3. We propose our MVA and
CDA mechanisms in Section 4. The cloud planner module
is specified in Section 5. Experiments’ results are shown in
Section 6. We discuss related work in Section 7. Finally, we
conclude this paper with future work in Section 8.

2 System description

For simplicity, we consider a self-organizing cloud as a
model involving three different entities as illustrated in
Fig. 1. The resource consumer is a player using resources;
the resource provider offers resources for usage on pay-
ment; the cloud planner is a middleware that interacts with
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Fig. 1 The model of self-organizing cloud

the resource consumer and the resource provider, respec-
tively, and responsible for choosing a proper resource from
providers for consumers. We note that in this paper the
resource refers to an instance comprising the combination of
CPU, memory, storage, and networking capacity and so on.

When a consumer wants to execute a task, a resource
request is submitted by the consumer to the cloud planner.
Then the cloud planner sends the request to all resource
providers. The winner and the transaction price of this
resource request are determined by the cloud planner based
on bids from resource providers. The result is informed to
the resource consumer, and resource allocation between this
consumer and the selected provider is executed.

We suppose that the participants in self-organizing cloud,
providers and consumers, have the following characteristics.

– Interactions among the participants is in a strategic way.
The participants are rational in the sense of having the
explicit objective of maximizing their own individual
payoffs.

– Each provider is independent and autonomy. Certain
information held by each provider, such as the price
interval, cost and resource quality, is private, and only
the provider would know about this; wher-eas other par-
ticipants do not know this information. Moreover, the
provider has the ability to determine whether to sell the
resources or not.

– Each participant has a set of choice strategies that are
available to her/him.We assume that the participants are
intelligent where they can determine their best response
strategy.

In a word, resource providers have respective resources
and corresponding unit prices, and are able to determine
whether to sell the resources or not. Resource consumers
give the request and gain the most appropriate instance
within the budget. The cloud planner is responsible for
choosing the proper resource from providers for consumers.

3 Problem formulation

Before formulating our problem, we briefly introduce basic
concepts of mechanism design. Afterwards, we formulate
the problem based on mechanism design.

3.1 Basic Concepts of Mechanism Design

In this paper, a general mechanism design setting is shown
as follows [15, 16]:

– A finite group of players interact with each other. This
set is denoted by P = {1, 2, ..., p}. The individuals are
rational and intelligent.

– X is denoted as a set of alternatives or outcomes from
which the players are required to make a collective
choice.

– Prior to making the collective choice, each player pri-
vately observes his/her preferences over the alternatives
in X. This is modeled by supposing that player i, i =
1, 2, ..., p, privately observes a parameter or signal bi

that determines his/her preferences.
– �i is denoted the set of private types of player i. Then,

the set of all type profiles is given by � = �1 ×
�2 × ... × �p. A type profile is represented as b =
(b1, ..., bp), b1 ∈ �1, ..., bp ∈ �p.

– It is assumed that there is a common prior distribution
� ∈ �(�). To maintain consistency of beliefs, individ-
ual belief functions describe the beliefs that the player
has regarding the type profiles of the rest of the players.
Meanwhile, all of these functions can all be derived.

– Individual players have preferences over outcomes that
are represented by a utility function ui : X × �i → R.

In addition, we assume that P , X, �i , � ∈ �(�), ui , are
all common knowledge. In other words, each player knows
them and each player knows that every player knows them,
etc. The value of bi is known to player i but is not known to
the other players.

Since the player’s preferences depend on the realization
of their types, it is natural to make the collective decision
depending on b [15]. So, we induce the notion of the social
choice function from the literature [15].

Definition Social Choice Function Given a set of players
P = {1, 2, ..., p}, their type sets �1, ..., �p, and a set of
outcomes X, a social choice function is a mapping

f : �1 × ... × �p → X

that assigns to each possible type profile (b1, ..., bp) a
collective choice from the set of alternatives.

The design of the social choice function (SCF) depends
on the goal of the whole system. Therefore, we focus mainly
on the design of the SCF in this paper.
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We summarize the key notations in Table 1. In the fol-
lowing paper, we might omit the symbols for simplicity if
thus would not lead to the ambiguity.

3.2 Mechanism design formulation

Suppose that there are n resource providers, each is
denoted as spi , where 1 ≤ i ≤ n. Each provider
owns an instance which comprises a combination of R

different resources managed by a Virtual Machine Mon-
itor (VMM). sum(spi) = (sum1(spi), ..., sumR(spi))

T

is denoted as spi’s capacity vector, while cur(spi) =
(cur1(spi), ..., curR(spi))

T denotes the spi’s current capac-
ity vector. For example, if a provider offers an instance,
which owns a 2.0 Gflops single-core CPU, 2 GB mem-
ory, 500 GB storage, and a 8 Mbps network bandwidth, his
capacity vector is (2.0, 2, 500, 8)T .

Similarly, there are m resource consumers, each is
denoted by scj , where 1 ≤ j ≤ m. Consumer scj submits a
task tj requesting an instance as t (tj ) = (t1(tj ), ..

., tR(tj ))
T .

In this paper, we utilize reverse auction, where the con-
sumers are auctioneers and the providers are bidders. That
is, given a task tj , provider spi competes the task via the
auction. At the same time, spi must satisfy

cur(spi) � t (tj ), 1 ≤ i ≤ n, 1 ≤ j ≤ m, (1)

which implies that ∀k curk(spi) ≥ tk(tj ), k = 1, 2, ..., R.
By using the virtualization technique, a provider could real-
locate and gain an instance equal to t (scj ). In this way,

Table 1 Table of Key Notations

Notation Description

n The number of resource providers

m The number of resource consumers

spi A resource provider, where i = 1, 2, ..., n

scj A resource consumer, where j = 1, 2, ..., m

sum(spi) Total capacity vector of provider spi

cur(spi) Current capacity vector of provider spi

tj A task submitted by consumer scj

t (tj ) Resource vector required by task tj

X A set of alternatives or outcomes

�i A set of types of provider spi

vij The real valuation of spi for tj

bij The price reported by spi for tj

f (b) Social Choice Function

[vij , vij ] The price interval estimated by spi for tj

[cj , cj ] The budget interval accepted by scj for tj

all providers which satisfy cur(spi) � t (tj ) are able to
compete for the task tj according to their bids.

For the task tj , both providers and the consumer should
have an approximate estimation of the instance. However,
it is difficult for them because they have little information
of the price. In essence, the resource providers in self-
organizing cloud are not the professional service providers
(e.g. Amazon EC2 [3], Microsoft Azure [4]), which can set
their own prices. They are even not aware of proper prices
about their resources. So, it requires a mechanism to solve
this problem, and we thus recommend a price-setting mech-
anism to gain the current price for the resource based on
market conditions. SpotCloud [8] employs this mechanism.
An example in SpotCloud is shown in Table 2.

In Table 2, SpotCloud lists VMs’ sell prices, including
fixed cost of one physical server per month, the sell price
about RAM per GB, etc. Moreover, the providers have the
basic understanding of prices about respective instances.
Similarly, the consumers have the rough estimation about
the budget of instances that they need. According to this
table, the resource provider could change the bold item to
set their own sell prices. Even so, some key factors are still
ignored. The quality and cost of respective resources should
be taken into consideration by providers. Meanwhile, it
doesn’t consider the competition among providers via their
sell prices. Thus, it requires a method to guide them to set a
reasonable price.

For a desired instance of task tj , provider spi has a known
valuation vij via the above mechanism as well as his own
condition. This valuation does not depend on the choice of
the provider from whom the instance is purchased. Assum-
ing �i is the numerical interval [vij , vij ] and denoted as the
set of private types of provi-
der spi . Please note that the types of providers are randomly
distributed from the interval [vij , vij ], which is common
knowledge among all participants. This type is also viewed

Table 2 An Example of the price-setting mechanism in SpotCloud

Item Price

Fixed Cost / Physical Server / Month $219

Average Hours / Month 730

RAM (GB) / Server 8

Hourly Cost / Server $0.30

Hourly Cost / GB of RAM $0.04

Markup 80 %

Marked-up Hourly Sell Price / Server 0.54

Sell Price / GB /hour 0.07

Utilization Rate (on SpotCloud) 50 %

Gross Revenue Per Server /Month $137.97

Cluster Size (Physical Servers) 200

Gross Revenue / Month $27594.00
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as the willingness to sell (minimum price below which the
seller is not interested in selling the instance). bij ∈ �i

is denoted as the provider spi’s reported bid for the task
tj . Similarly, the consumers also have a budget interval of
individual tasks as [cj , cj ].

We formulate the model as follows. For the task tj
submitted by consumer scj and provider sp1, ..., spn, an
outcome is defined as

x = (y0j , y1j , ..., ynj , t0j , t1j , ..., tnj ) (2)

where y0j is denoted as whether consumer scj buys the
resource or not, t0j is denoted as monetary transfer received
by consumer scj , yij , i = 1, 2, ..., n is denoted as whether
the resource is supplied by provider spi and tij , i =
1, 2, ..., n is denoted as monetary transfer received by
provider spi .

Associated with this model, we have

y0j =
{
0 if scj buys an instance
1 otherwise

t0j = monetary transfer received by scj

(3)

For spi, i = 1, 2, ..., n, we have

yij =
{
1 if spi supplies an instance to scj

0 otherwise
tij = monetary transfer received by spi

(4)

The set X of all feasible outcomes is given by

X =
{
(y0j , y1j , ..., ynj , t0j , t1j , ..., tnj ) |∑n

i=0 yij = 1,
∑n

i=0 tij ≤ 0
} (5)

s.t.

yij ∈ {0, 1} ∀i = 0, 1, ..., n (6)

t0j ≤ 0, 1 ≤ j ≤ m (7)

tij ≥ 0 ∀i = 1, ..., n (8)

The constraint
∑n

i=0 tij ≤ 0 in equation (5) refers that
the total money received by all participants is less than or
equal to zero. That is, total money paid by all providers is
greater than or equal to zero (that is, the consumer pays at
least as much as the providers receive. The excess between
the payment and receipts is the surplus).

4 Mechanisms for resource allocation

In this section, we specify two mechanisms based on mech-
anism design, Modified Vickrey Auction mechanism and
Continuous Double Auction mechanism, respectively. The
former one is applied to the case where the resource is suffi-

cient, while the latter one is employed in the case of resource
insufficiency.

4.1 Modified Vickrey auction mechanism

In order to elicit the truthful information from the pro-
viders, incentive compatibility is used. In this case, truth
revelation is the best response for each provider irrespec-
tive of what is reported by the others. This is called
dominant strategy incentive compatibility. However, the
Gibbard-Satterthwaite impossibility theorem points out that
the social choice function is a dominant strategy incentive
compatible if and only if it is dictatorial [20, 21]. One of
the solutions is that SCFs are nondictatorial in a quasilinear
environment. In order to achieve this goal, we assume that
resource providers aim is to maximize their profit. Thus, the
providers are risk neutral, and this can refer to quasilinear-
ity. A bidder is said to be risk neutral if his utility is a linear
function of his wealth. The similar assumption is also made
by others in case of Grid [15] and cloud computing [17].

For simplicity, we assume that bid bij of provider
spi for the task tj is less than cj , i.e., bij ≤ cj .
This guarantees that the consumer will eventually buy the
instance due to the price within the budget. Meanwhile,
we also suppose that all the providers satisfy cur(spi) �
t (tj ), i = 1, 2, ..., n. So, the social choice function f (b) =
(y0j (b), y1j (b), ..., ynj (b), t0j (b), t1j (b), ..., tnj (b)) is writ-
ten as follows:

y0j (b) = 0, ∀b. (9)

For spi, i = 1, 2, ..., n, we have

yij =
{
1 bij = min{b1j , ..., bnj }
0 otherwise

(10)

where b = (b1j , ..., bnj ). More specifically, bidder i will
receive payment only when the resource is procured from
him.

Next, we should confirm the utility function based on the
MVA. The MVA has a condition where the bidders must
be symmetric. That is, the bidders are symmetric if �1 =
· · · = �n = � and �1(·) = · · · = �n(·) = �(·). This
assumption implies that all the bidders have the same set
of possible valuations and further they draw their valuations
using the same probability density [15]. Obviously, as all
bidders’ resources meet the basic requirement of the buyer,
it is reasonable to assume that it satisfies the condition.

The utility function is given as follows:

uij

(
x, bij

) = uij

((
y0j , y1j , ..., ynj , t0j , t1j , ..., tnj

)
, bij

)
= −yij bij + tij i = 1, 2, ..., n

(11)
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where bij ∈ R can be viewed as provider spi’s valuation
of the resource. Given x ∈ X and bij ∈ �ij , the value
uij (x, bij ) denotes the payoff of player i. Concretely, uij

depends not only on the outcome and the type of player i,
but also on the types of the other players. Assume the bid-
der k is the winner. Then, the payments of all bidders are
defined as:

tij (b) ={
min(b1j , ..., b(k−1)j , b(k+1)j , ..., bnj )yij (b) i = 1, ..., n
− ∑n

z=1 tzj (b) i = 0

(12)

Therefore, the eventual transaction price is

pricetrans = min(b1j , ..., b(k−1)j , b(k+1)j , ..., bnj ) (13)

Obviously, pricetrans ≤ cj , due to bij ≤ cj , i =
1, 2, ..., n. The whole MVA mechanism is presented in
Algorithm 1.

In Algorithm 1, the function get second min(argu-
ments) is to find the second minimum value among the
arguments. The time complexity of this algorithm is O(n).
Besides, for MVA mechanism, we obtain Theorem 1.

Theorem 1 MVA mechanism has dominant strategy incen-
tive compatibility.

Proof See Appendix A.

Based on Theorem 1, truth telling is the best response
for each provider irrespective of what is reported by the

others. That is, providers report their real evaluations about
the instance. However, someone may think that this method
looks counter intuitive. It may seem from the consumer
point of view that receiving the lowest bid (The first-price
reverse auction usually adopts this.) is better than receiving
the second lowest bid. On the contrary, it is noted that bid-
ders act differently in different auction situations. The truth
is that the bidders will bid more aggressively in the MVA
mechanism than in the first-price reverse auction. The lit-
erature [22] has researched this and proved the MVA is the
optimal auction.

For consumers, the strategy adopted in this paper is
based on the “First-Come, First-Served (FCFS)”rule. FCFS
is a service policy whereby the requests of consumers are
attended to in the order that they arrived, without other
biases or preferences. By using this way, the order of tasks
scheduled by the cloud planner is corresponding to their
arrival sequence.

In addition, there may be a situation where two or more
providers win the auction, due to their same lowest bid.
Then, who is the final winner between/among these can-
didates? Our recommendation is that the candidate list is
submitted to the consumer, and the consumer determines the
final provider.

Here, we discuss the advantages and disadvantages of
MVA mechanism. It is obvious that the mechanism has
the ability to offer incentive for providers to report their
real evaluations. The consumers thus gain the appropri-
ate instance with lower reported price. Unfortunately, this
strategy ignores the case where the resource is insufficient.
When the resource is sufficient, every consumer finally gets
resources irrespective of the service order. However, when
resource is insufficiency, the strategy seems to be unreason-
able. It is possible that many urgent tasks can’t be executed
in time, especially when some tasks are not in hurry to
be performed. Considering these situations, we propose the
following mechanism.

4.2 Continuous double auction mechanism

When the system is faced with resource insufficiency,
not only the providers but also the consumers need to
compete with each other. Here, we introduce the Dou-
ble Auction (DA) concept. The DA is a multilateral pro-
cess in which buyers as well as sellers can freely limit
orders (bids or asks) and accept asks or bids entered by
others. Daniel Freidman [23] reports on his experiments
where traders, even with imperfect information, consis-
tently achieve highly efficiently allocations and prices. The
Continuous Double Auction (CDA) is a continuous-time
variant of a DA, where the market clears continuously
[24]. The prominent of the CDA is its highly allocative
efficiency [25].
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For task tj , the budget interval is defined as [cj , cj ],
where cj is the valuation of the resource and cj is the high-
est price that consumer scj can accept. However, in case of
resource insufficiency, the eventual transaction price is not
necessarily less than or equal to cj . In order to choose the
winner among consumers, the price c∗

j reported by buyer scj

shows the urgency of his current task. That is, the higher of
price, the more urgent of the task. In some cases, the price
is even greater than the highest price that the consumer can
accept, i.e., c∗

j > cj . The winner need to satisfy:

c∗
j − cj

cj

= max

{
c∗
1 − c1

c1
, ...,

c∗
m − cm

cm

}
. (14)

After the winner is selected. He/She gets the chance to
execute his/her task. Meanwhile, the advantage of providers,
if c∗

j > cj , is that more providers are able to join this
competition.

For providers, we invoke the aforementioned MVA
mechanism. However, different from our MVA mechanism,
it has a limitation that the price has the highest price c∗

j

known to all the providers. Even so, the CDA mechanism
also obtains Theorem 1.

Selecting the winner from the consumers is denoted
as Algorithm 2. Obviously, the time complexity of this
algorithm is O(m).

Different from MVA mechanism, in CDA mechanism,
the consumers need to compete with each other to get the
resource. With the existence of monetary transfer, the con-
sumers can’t unrestrainedly improve their reported prices.
Someone may think that since the price reported by the con-
sumer is not the final transaction price, the consumer can
report an untruthful price. However, they ignore the environ-
ment where the resource of the system is insufficient. The
reason why these idle resources are left is due to their high
price. So the transaction price is a little less than the reported
price.

Naturally, there is a problem, i.e., whether is the CDA
mechanism suitable for the case of resource sufficiency or
not? In Section 6, our experiments show that the answer
is no. The reason is that when resources are sufficient,
though the consumer reports a high price, the final transac-
tion price may be lower. This causes that the consumer gets
the resource by cheat. Therefore, it is not appropriate to use
the CDA mechanism when resources are sufficient.

5 Cloud planner module

As the aforementioned, the cloud planner is a middle-
ware that interacts with consumers and providers, respec-
tively, and responsible for choosing a proper resource from
providers for consumers. In this section, we specify the
workflow of the cloud planner.

Considering a scenario where there are lots of consumers
who want to use the resources in self-organizing cloud,
while the specifications and prices of resources are not
uniform, it is challenging for consumers to select an appro-
priate resource from providers. Therefore, the selection of
providers should be automatic and in our mechanisms, the
cloud planner is responsible for this.

When the resources in self-organizing cloud are suffi-
cient, the cloud planner invokes the FCFS rule to arrange
the order of consumers’ tasks. On the other hand, when the
resources are insufficient, the workflow of the cloud plan-
ner for the winner among consumers is shown in Fig. 2.
The consumers send required resource specifications to
the cloud planner, as well as the highest prices that they
could afford. Then, the cloud planner choose the winner
among the consumers according to the CDA mechanism.
Finally, the result will be sent to the consumers by the cloud
planner.

Once the winner among the consumers is chosen, the
next step of the cloud planner is shown in Fig. 3. The selec-
tion of the mechanisms is determined by the case whether
the resources are sufficient or not. The request of the win-
ner is sent to all the providers by the cloud planner. Then,
the providers return their bids to the cloud planner. Accord-
ing to our mechanism, the winner among the providers will
be chosen by cloud planner. And the result will be sent to
the consumer and the responding payment is transferred to
the providers. At last, the resource is scheduled from the
provider to the consumer.

It is worth emphasizing that the whole process is trans-
parent for both consumers and providers. More specifically,
consumers don’t need to worry about the selection of
resources and only need to report their specifications and
prices of required resources. As a result, the advantage is
that it significantly reduces the burden of the consumers.
Meanwhile, this mechanism adopted by the cloud planner
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Fig. 2 The winner among consumers chosen by cloud planner

ensures that the consumers gain the appropriate resource
with the minimal cost. In addition, when the number of
resources or providers changes, our mechanisms is still
effective because it has nothing to do with the number. On
the other hand, essentially, our mechanism is a sealed-bid
auctionwhere all bidders simultaneously submit sealed bids

to the auctioneer, so that no bidder know how much the
other auction participants have bid [26]. The existence of
the cloud planner guarantees the impartiality of auctions.
In summary, with the above work, a scalable and automatic
mechanism for resource allocation in self-organizing cloud
is completed.

Fig. 3 The resource allocation by cloud planner
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6 Numerical result

Mas-Colell et al. [27] point out that if vendors follow
different price distributions, the winner determination and
procurement cost computation is not optimal by using
either first price auction or Vickrey auction. Here, we
consider this theory is not suitable for self-organizing
cloud, since price of vendors follows the same price dis-
tributions with a price-setting mechanism. What’s more,
one goal of the mechanisms proposed by this paper
is to make providers tell the truth about the price of
resources.

Similar to [17], we cannot enforce truthfulness simply by
using auctions. Therefore, truthfulness cannot be measured.
Hence, there is no other baseline to compare our models.

The main challenge of experiments in this paper is the
simulation of price of providers and consumers, where
information about their prices is limited. Thereby, in this
paper, the price is simulated by the data generator. The sim-
ulated data is from generatedata [28]. Two scenarios are
involved in our evaluation. Scenario 1 is the case where the
resource is sufficient, while in Scenario 2 the resource is
insufficient.

For a given task in Scenario 1, we simulate that there
are 100 providers. Their valuations of the task are nor-
mally distributed with mean (μ = 100.00) and variance
(σ 2 = 15.00). To avoid error and occasionality, this process
is repeated 10 times. Its result is shown in Fig. 4.

In Fig. 4, the x-axis scale with one unit length represent-
ing 10 providers; the y-axis scale is the procurement cost.
It is intuitive that the cost made by the consumer decreases
with the increase of the number of the providers. The rea-
son is that the competition increases as the increment of
providers.

Next, we consider Scenario 2. To simulate the case where
the resource is insufficient, for simplicity, we still assume
the tasks submitted by consumers have the same type as
Scenario 1. We set that there are 100 providers and 100 con-
sumers. Their valuations of the task are normally distributed
with mean (μ = 100.00) and variance (σ 2 = 15.00).
The urgency urgj of the task tj is uniformly distributed in
the interval [0, 1]. The execution sequence seqj is valued
by a set 0.01, 0.02, ..., 1. Then, urgj ∗ seqj is denoted as
execution-efficiency. The higher the value of execution effi-
ciency, the worse the execution effect of the task. The high
value of execution efficiency implies that either the execu-
tion sequence is later, or the task is urgent. simulation result
of MVA mechanism and CDA Mechanism based on this
case are shown in Figs. 5 and 6.

The main observations in Figs. 5 and 6 are listed as
follows. In Fig. 5, execution efficiency of the majority of
tasks is in the interval [0,0.5] and there are a small num-
ber of tasks whose execution efficiency is in the interval
[0.5,1]. It shows that many urgent tasks may be not exe-
cuted early due to their poor efficiency. Since many urgent
tasks are not performed in time, it is possible that con-
sumers will drop out the platform. Compared to Fig. 5,
the points in Fig. 6 are converged on the interval [0,0.3].
This means that all tasks have high efficiency. This implies
the tradeoff between the urgency of the task and execution
sequence. Some points have a lower procurement cost and a
higher execution efficiency, which shows that many urgent
tasks pay the low cost. This phenomenon indirectly demon-
strates that it is not appropriate for CDA mechanism to be
adopted in the environment where the resource is sufficient.
That is, if CDA mechanism is executed when resources
are sufficient, though the consumer reports a high price,
the final transaction price may be lower. This causes that

Fig. 4 Procurement cost of
MVA in Scenario 1
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Fig. 5 Procurement cost and
execution efficiency of MVA in
Scenario 2

the consumer gets the resource by cheat. As a result, CDA
mechanism is fit for the environment where the resource is
insufficient.

7 Related work

Unlike the traditional business cloud computing plat-
forms [3–5], there are only a few business self-organizing
cloud platforms. Enomaly’s SpotCloud [8] is the leading
customer-provided platform. Wang et al. [6] are the first
to investigate SpotCloud, through extensive measurements.
They found that SpotCloud is not yet ready to serve long-
term applications or some CPU sensitive tasks. Instead,
it provides very flexible choices and is very friendly to

individual customers when they seek to run short-term tasks
at minimum costs. In addition, an instance recommenda-
tion model, which facilitates cloud providers to recommend
a set of short-listed instances to the customers was pro-
posed in [6]. Furthermore, to mitigate the severe bottleneck
to provide reliable cloud service to support long-term tasks,
Wang et al. [10] presented an optimal resource provisioning
algorithm that ensures service availability with minimized
lease costs. Di et al. [9] studied the resource query and
allocation problems in a Self-Organizing Cloud, where host
machines are connected by a peer-to-peer overlay network
on the Internet. Besides, a resource discovery protocol,
namely Proactive Index-Diffusion CAN (PID-CAN), was
proposed to diffuse resource indexes over the nodes and
randomly route query messages among them. Di and Wang

Fig. 6 Procurement cost and
execution efficiency of CDA in
Scenario 2
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[7] envisioned a gigantic self-organizing cloud, which is
formed to reap the huge potential of untapped commodity
computing power over the Internet. In [7], they proposed
a fully distributed, VM-multiplexing resource allocation
scheme to manage decentralized resources. Compared with
these existing works, we proposed a scalable and automatic
mechanism for resource allocation in self-organizing cloud.

Self-organizing cloud is different from the traditional
cloud model [29, 30] in the consumers’ resource utilization
manner. However, there is a paradigm, the federated cloud
[31, 32], which is similar to self-organizing cloud. More
specifically, both of them have multiple resource providers,
and consumers need to consider how to select the appropri-
ate provider. In order to increase scalability and reliability
[19], a federated cloud aims to integrate different types of
cloud resources from different providers. Early approaches
to modeling a cloud federation were in [33, 34]. Nancy
Samaan [35] modeled the interactions among the cloud
providers as a repeated game among selfish players that aim
at maximizing their profit by selling their unused capac-
ity in the spot market but are uncertain of future workload
fluctuations. A cloud resource procurement approach was
presented in [12, 17], which not only automates the selec-
tion of an appropriate cloud vendor but also implements
dynamic pricing. Toosi et al. [36] proposed policies (i.e.,
NFTI, FAOO, FAPO) that help in the decision-making
process to increase resources utilization and profit. The
mechanisms [37, 38] mostly promoted fairness and ensured
mutual benefits for parties involved in the federation. In
these works, the focus is mainly on dynamic pricing and
increasing the profit of the providers. However, Compared
to a federated cloud, self-organizing cloud is concerned with
not only dynamic pricing for providers but also resource
allocation for consumers.

Resource allocation is an important and challenging task
in today’s Internet, especially in large distributed systems
like Grid, cloud, and so on [17]. Economic models are
widespread for resource allocation in different systems.
Buyya et al. [39] presented a computational economy-
driven Grid system called Nimrod-G, providing an eco-
nomic incentive for resource owners to share their resources
and resource users to trade-off between their deadline and
budget. Xhafa and Kolodziej [40] not only presented a sur-
vey of the relevant research proposals to use game-based
models for the resource allocation problems but also pro-
posed their solution based on metaheuristic methods. Zaman
and Grosu [41] designed an auction-based mechanism for
dynamic VM provisioning and allocation that takes into
account the user demand. The high-performance resource
utilization strategies presented in [42] can be used by
market participants without requiring dramatic changes to
the allocation protocol. In mobile cloud computing sys-
tem, a game theoretic resource allocation for overall energy

minimization was proposed [43]. The above works make
use of existing economic models, such as Vickrey auction
and game theory. In this paper, we also utilized these models
to accomplish resource allocation.

8 Conclusion and future work

In self-organizing cloud, given the large and varying multi-
tude of providers, it is inefficient and tedious to select the
most appropriate one manually. Therefore, it is necessary to
propose a scalable and automatic mechanism to accomplish
resource allocation.

To address the problem, based on mechanism design
and auctions, we presented two mechanisms, MVA and
CDA, which implement dynamic pricing and resource allo-
cation. MVA mechanism is applied to the situation where
the resource is sufficient. On the other hand, CDA mech-
anism is fit for the environment where the resource is
insufficient. Consumers have to compete with each other to
obtain the chance to access the resource. Meanwhile, Both
of them offer incentive for the providers to tell the truth.
Moreover, the whole process is transparent to participants in
self-organizing cloud.

Finally, there are still many issues that should be further
explored. One critical challenge is how to offer incentive for
consumers to contribute their resources or to utilize others’
resources. Another challenge is how to guarantee the quality
of service proposed by resource providers. Unfortunately,
there are few studies about the above problems. Therefore,
the design of a mechanism with better incentive and high
availability is still an open issue for self-organizing cloud.

Acknowledgments This paper is partly supported by project Na-
tional Science Foundation of China under Grant 91318301.

Appendix A: Proof of Theorem 1

We introduce [15] and prove as follows.

Proof First of all, we consider bidder 1. His value is v1j
and bid is b1j . The other bidders have bids b2j , ..., bnj and
valuations v2j , ..., vnj . Due to the reverse auction, the utility
value of bidder 1 is b1j − v1j . We consider the following
cases.

Case 1: v1j ≤ min(b2j , ..., bnj ). There are two sub-cases
here: b1j ≤ min(b2j , ...bnj ) and b1j > min(b2j , ...bnj )).

Case 2: v1j > min(b2j , ..., bnj ). There are two sub-cases
here: b1j ≤ min(b2j , ...bnj ) and b1j > min(b2j , ...bnj )).

We analyze these cases separately below.
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Case 1: v1j ≤ min(b2j , ..., bnj ).

– Let b1j ≤ min(b2j , ...bnj ). This implies that bidder 1 is
the winner, which refers that u1j = min(b2j , ...bnj ) −
v1j ≥ 0.

– Let b1j > min(b2j , ...bnj ). This means that bidder 1 is
not the winner, which in turn means that u1j = 0.

– Let b1j = v1j , then since v1j ≤ min(b2j , ..., bnj ), we
have u1j = min(b2j , ...bnj ) − v1j .

Thus, if b1j = v1j , the utility u1j is greater than or equal
to the maximum utility obtainable. Thus, whatever the val-
ues of b2j , ...bnj , it is a best response for player 1 to bid v1j .
Thus, b1j = v1j is a weakly dominant strategy for bidder 1.

Case 2: v1j > min(b2j , ..., bnj ).

– Let b1j ≤ min(b2j , ...bnj ). This implies that bidder
1 is the winner, and the payoff is given by u1j =
min(b2j , ...bnj ) − v1j < 0.

– Let b1j > min(b2j , ...bnj ). This means that bidder 1 is
not the winner. Therefore u1j = 0.

– Let b1j = v1j , then bidder 1 is not the winner and thus
u1j = 0.

From the above analysis, it is clear that b1j = v1j
is a best response strategy for player 1 in Case 2 also.
Combining our analysis of Case 1 and Case 2, we have that

u1j (v1j , b2j , ..., bnj ) ≥ u1j (b̂1j , b2j , ..., bnj )

where b̂1j ∈ �1j , ∀b2j ∈ �2j , ..., bnj ∈ �nj .
Also, we can show that, for any b

′
1j 
= v1j , we can always

find that for ∀b2j ∈ �2j , ..., bnj ∈ �nj , such that

u1j (v1j , b2j , ..., bnj ) ≥ u1j (b
′
1j , b2j , ..., bnj )

Thus b1j = v1j is a weakly dominant strategy for bidder
1. Using almost similar arguments, we can show that bij =
vij is a weakly dominant strategy for bidder i where i =
2, ..., n. Therefor v1j , ..., vnj is a weakly dominant strategy
equilibrium.
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