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Abstracts Information management is a key feature for the
successful deployment of service architectures that involve
highly distributed, dynamic, collaborative, and heterogeneous
networks. Current solutions fail to meet important require-
ments of those networks since they have limited support for
dynamicity of networks, nodes and information, or flexible
information retrieval mechanisms for satisfying user’s needs.
In this paper, we propose a Global Directory Service based on
Distributed Hash Tables (DHT) and Hilbert Space Filling
Curves (HSFC) that provides distribution and flexibility for
information retrieval. Performance analyses reveal that the
proposed mechanisms are scalable with the number of net-
works, nodes, and amount of information.

Keywords Informationmanagement . Directory service .

Information service infrastructure . Hilbert space filling
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1 Introduction

In the past decades the main communication infrastructure
evolved from homogeneous interconnection of networks of
stationary computers, running well-behaved applications, to a

highly complex and dynamic multitude of access networks
technologies. Such evolution was mainly due to the prolifer-
ation of wireless devices and new services on the top of them,
running a good deal of applications with strict Quality of
Service (QoS) requirements. Providing seamless mobility of
sessions and services to users requires a huge amount of effort
to coordinate information sharing between different types of
networks (heterogeneous network access technologies) and
operators. Such stringent requirements coming from different
players are the driving force behind the need of services that
can operate efficiently when dealing with network information
gathering, aggregation, distribution, and searching.

Cooperation between heterogeneous networks has a stim-
ulating attractiveness to the networking research community
at both industry and academia, since it can leverage new
business developments in the current highly competitive en-
vironments for fixed and wireless Internet Service Providers
(ISP). For successful deployment of management architec-
tures of future services that require network interoperability,
a mandatory element is an Information Service Infrastructure
(ISI) [15], which can provide ubiquitous and context-related
information access to other specific systemmanagement com-
ponents. With the emerging architecture for facilitating cross-
layer information sharing between heterogeneous networks,
namely the IEEE 802.21Media Independent Handover (MIH)
[6], we can envisage that evenmore information is expected to
be available, delivered, correlated, and integrated into network
interoperability management systems. Important performance
factors for an ISI are resilience and scalability. Existing ap-
proaches to information management of heterogeneous net-
works [23] are typically centralized. For typical mobility
management systems, a centralized network element periodi-
cally gathers available information, evaluates it by a given
criterion set, and makes decision for the whole network or for
a subset of users. It is clear that the most conspicuous disad-
vantage regards the central point of failure. Second, a

Peer-to-Peer Netw. Appl. (2015) 8:512–531
DOI 10.1007/s12083-014-0277-z

T. Silva : S. Fernandes :D. Sadok
Universidade Federal de Pernambuco, Recife, PE, Brazil

T. Silva
e-mail: tds@cin.ufpe.br

S. Fernandes
e-mail: sflf@cin.ufpe.br

D. Sadok
e-mail: jamel@cin.ufpe.br

C. Kamienski (*)
Universidade Federal do ABC, Santo André, SP, Brazil
e-mail: cak@ufabc.edu.br



centralized approach limits scalability and can induce bottle-
necks in highly dynamic environments where frequent ex-
change of information occurs. In the heterogeneous networks
scenarios, an ISI that can provide access to subscriber-related
data, network features (e.g., current capacity, available re-
sources, and QoS) and offered services has not been addressed
in a global or multi-domain context. In summary, in the
context of network interoperability, requirements of different
players, such as network operators, subscribers, applications,
and service providers, must be met through a comprehensive
use of a scalable network information infrastructure, through
which essential components can enable management func-
tions to higher-level decision-making elements.

This work provides a novel global distributed directory
service to heterogeneous networks, where major players can
register global information so that users can have access to
such directory service to retrieve information related to the
available resources through flexible and efficient queries. This
information will be represented by means of a global infor-
mation model, which can be easily extended as new global
resources emerge and need to be represented. In P2P archi-
tectures, Distributed Hash Table (DHT) solutions [22] can be
considered the most scalable one. However, flexible queries in
pure DHT are not allowed (e.g., queries with non-exact keys
or range query type). Therefore, in order to overcome this
limitation, we use a different mechanism to store and query
data, called Hilbert Space Filling Curves (HSFC), a mecha-
nism that is transparent to the end user and to the directory
service [12] [11]. We provide a complete description of the
indexing algorithm used to insert the elements in the DHT as
well as additional algorithms used to search for elements in the
DHT. Our work addresses several functional requirements that
a global directory service must fulfill, as follows: a) support
for frequent information updates; b) support for information
dynamics due to extensive collaboration among networks, in
order to avoid replication of information and inconsistency; c)
enabling flexible and efficient queries; d) providing scalabil-
ity, fault tolerance, and robustness in a distributed environ-
ment; e) providing a suitable way to make it possible for
multi-access networks to access and use the directory service.

The contributions of this paper are manifold. First, the design
rationale adopted for the global directory recognizes the tradeoff
between two opposite approaches: adapting an existing directo-
ry service or an existing highly distributed infrastructure. We
chose the latter, adding flexible query features to a DHT using
the HSFC concept. Second, we changed the key generation for
DHT, providing locality for range queries and preserving scal-
ability. Third, we built a new simulator on top of the OMNeT++
framework, implementing the main features of the directory
service. Last, we conducted a performance analysis that revealed
that the new mechanisms are scalable with the number of
networks, DHT nodes, and amount of information. Particularly,
results show that query time and number of messages are not

influenced by the number of indexes and participating networks.
Also, our approach is able to find all answersmatching a flexible
query in the DHT substrate.

The rest of the paper is structured as follows. Section 2
presents technical background and related work. Section 3
describes our novel global directory service for information
management in heterogeneous networks. Section 4 provides
details on the implementation of the architecture. Section 5
presents the evaluation methodology followed by perfor-
mance analysis results, presented in Section 6. Section 7 dis-
cusses the main findings and insights and section 8 draws
some conclusions and presents suggestions for future work.

2 Technical background and related work

Dynamic and heterogeneous networks environments require
interoperability, mobility, and collaboration as the main driv-
ing forces behind their development. Mobility requirements in
such environments imply that constant updating of informa-
tion as well as information dynamics must be supported.
Pentikousis e. al proposed an Information Service Infrastruc-
ture (ISI) capable of collecting, filtering and correlating
events, and provisioning context to applications [15]. Al-
though their proposal was in the context of mobility manage-
ment, their goal was to provide services to support network
information gathering and decision-making engines.

We argue that directory services such as X.500 [7], LDAP
[21] are not suitable for dynamic heterogeneous environments
for a number of reasons. First, they are not scalable with the
number of records due to their centralized architecture. Sec-
ond, they are highly optimized for reading operations, where-
as updating and inserting new information are common oper-
ations in dynamic environments. Third, their containers are
organized on a hierarchically static namespace, so that mobil-
ity and constant updates are not directly supported. Fourth,
standard replication mechanism, an essential requirement for
dealing with requirements of fault tolerant and robustness in
dynamic environments, is usually not available.

Another alternative for directory services is UDDI [13],
together with the Web Services technology [3]. UDDI was
designed to operate in centralized environments, thus
compromising the scalability, fault-tolerance and robustness
requirement. A potential scalable solution with an efficient
mechanism may be a Federated Web Services architecture
based on a P2P solution to manage scalability [5]. However,
since the original environment was designed to be centralized,
new challenges arise. Replication of registries weakens the
main benefits of a centralized Web services registry, since the
management of those replicated registries, at different loca-
tions, adds considerable administrative overhead.

On the other hand, Peer-to-Peer (P2P) technologies, partic-
ularly DHT [22], are proven to be (self) scalable and efficient.
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Lookups are performed in O (log N) hops, where N is the
number of nodes in the overlay network built by DHT tech-
nology. However, it is well known that the use of DHT brings
new challenges, such as the semantic organization of stored
data. The way traditional DHT algorithm works (for instance,
by the using of hash function) causes severe limitations in the
query structure since results are only successfully returned
when one has the exact key to be searched. Although some
services do perform adequately in non-dynamic and/or cen-
tralized environments performing various types of queries,
putting them under heavy load conditions still causes scalabil-
ity issues. Indeed, network services based on DHT work in a
massively distributed environment, yet they only take exact-
key queries. Therefore, an important challenge is to investigate
whether it is better to redesign a network directory service to
add support for massive distribution and dynamicity or to adapt
a highly distributed environment to support a query engine
layer without changing how the network information infrastruc-
ture works. In this work, the second approach was chosen and
the concept of HSFC was used to adapt this infrastructure.
HSFC are used for multi-dimensional indexing in many differ-
ent areas such as traditional databases, image compression,
geographic information systems and the like [12] [11]. Their
main feature is to perform a mapping from an n-dimensional
space to a one-dimensional, while preserving locality (Fig. 1).
Therefore, when one-dimensional indexes are close to each
other, so they are in a multi-dimensional space. But the opposite
is not true and this is called digital-causality property.

Two concepts have a major importance related to Hilbert
Curve, which are derived-keys and n-points. A derived key is
the one-dimensional result obtained from a set of dimensions.
For instance, if there is a third order two-dimensional Hilbert
space, point D in Fig. 1 represents the derived-key whose two
corresponding dimensions are (000, 011). This pair (000,011)
is called the n-point of the aforementioned derived-key and we
call third order because there are three bits to represent each
coordinate of each dimension. As long as we have more bits

representing the dimensions, i.e., the higher the order is, the
more precise will be the representation of a point in the space.
The Hilbert curve is formed in a recursive way and the number
of derived-keys contained in each curve depends on its order.
For instance, Fig. 2a shows a first order Hilbert Curve in a
two-dimensional space with only four derived-keys (00, 01,
10, 11), whereas Fig. 2b is a Hilbert curve in the second order
with sixteen derived-keys (0000 to 1111). Fig. 2c is a third-
order curve containing 64 derived-keys (000000 to 111111).

A Hilbert curve in a specific order is the concatenation of its
curves in the immediately previous order (or its rotation – this
will depend on the state machine of the curve). This step can be
observed in Fig. 2, representing the evolution from a first order
curve, Fig. 2a, to a second order one, Fig. 2b, and further to a
third order one in Fig. 2c. We used HSFC to add features to a
DHT infrastructure in order to be make it fit to a global
distributed directory for network information management.

Although there are many proposals for providing improved
and flexible search techniques for P2P systems, in general
they are not directly comparable to our work, since they are
either based on different approaches or assume different pre-
mises. A 2011 survey [28] on P2P-based multidimensional
indexing (MI) methods classify the solutions into two main
broad categories: i) those that come from the MI area for
centralized applications and add distribution features; and ii)
those that come from the P2P area and therefore must add MI
features for allowing flexible queries for similarity search. As
mentioned before, our directory service for information man-
agement fits into the second category, because we first choose
DHT due to its inherent distribution and scalability and then
added features for flexible queries.

Ratti et al. [17] proposed a non-uniform Hilbert curve
specially designed for mapping of object locations in Mas-
sively Multi-user Virtual Environments that are non-
uniformly distributed. The resulting curve is non-
symmetrical, whereas our directory service requires a uniform
and symmetrical Hilbert curve. SiMPSON [26] is a P2P
system that supports similarity search using a 3-phase process
where each peer publishes a summary of its content into the
network. Peers first apply a clustering algorithm to summarize
their data and then they map data clusters to one-dimensional
values using a modified version of a well-known indexing
method. Finally, these one-dimensional values are indexed
into a non-DHT structured P2P network. Unlike our proposal,
SiMPSON neither supports DHT nor allows range queries.
DHR-Trees [27] is a solution that comes from centralized MI
for providing flexible queries in P2P systems based on Hilbert
curves. However, it inherits concepts from the old B*-trees
adapted to a distributed P2P network and therefore does not
support DHT. Andreolini and Lancellotti proposed Fuzzy-
DHT [1], which supports multiple keyword searches on a
DHT substrate, but it does not support range or wildcard
queries. Although queries based on multiple keywords

Fig. 1 Mapping between a two-dimensional space into an one-dimen-
sional space (or derived-key)
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provide an additional level of flexibility compared to exact
queries, they are clearly less flexible than range and wildcard
based queries. This is because Fuzzy-DHT is aimed at pro-
viding some level of flexibility with minimum interference in
the underlying DHT mechanism.

Schmidt and Parashar proposed Squid [20] that shares some
similarities with our proposal, which is an evolution of an
earlier work targeted for Web Services discovery [19], based
on Chord [22] and strongly influenced by the mechanisms
introduced by Lawder and King [11]. However, they do not
present a detailed view of how indexes are generated and how
data is retrieved. It is not clear, by their mapping indices
mechanisms, how indexes (in the HSFC curve) are generated
from the set of keywords that identifies a resource. Their
scheme of publishing data is briefly described, without any
further details. In this paper we focus on dynamic networks and
provide further optimizations to the indexing and query mech-
anisms, which are particularly well described. There are vari-
ous approaches for semantic searches in DHT, such as the one
proposed by Zhua and Hug [29], which provides only approx-
imated answers to queries. On the other hand, our approach is
able to find all answers matching a query in a DHT.

There are some recent proposals for enabling flexible
queries in peer-to-peer systems, yet they present significant
differences to our proposal. Villaca et al. [25] introduced a
new technique called Hamming DHT where Hilbert Filling
Curves are not used. Instead it uses Gray codes and Hamming
distance as a metric for similarity search. It is still based on
hash functions and changes the Chord finger tables to new
contents using its approach. It is highly based on Chord while
our approach is independent of a particular DHT. Joung and
Yang propose a complex scheme for flexible queries in a
hypercube-based DHT network, based on n-gram search [8].
Their mechanism, although powerful, requires n-grams to be
spread over the network and the percentage of nodes to be
visited can be extremely high when n is small. Semantic
Overlay Networks (SON) can also be used to retrieve infor-
mation in peer-to-peer networks, but they are based on glob-
ally known structures rather than on DHT [10]. Pitoura et al.

proposed Saturn [16], a multi-ring DHTaimed at concurrently
dealing with efficient range query processing, load balancing
and fault tolerance. Obviously, Saturn incurs in tradeoffs and
additional costs to fulfill those goals. For example, there is
overhead for the maintenance of multiple rings, although the
paper claims Saturn incurs in no extra costs, in addition to the
DHT cost, for building and maintaining routing information.
Performance evaluation results do not show evidence of scal-
ability related to the number of peers and information size.
Rather, the number of messages grows linearly according to
query range size. Also, the paper claims Saturn is independent
of DHT mechanism, but there is no evidence of that feature.

3 A global distributed directory for network information
management

Our architecture, called Global Distributed Directory (GDD),
is described in this section.

3.1 Scenarios and requirements

Requirements for a GDD service have been identified through
scenarios, where heterogeneous networks need to collaborate
through composition before users can themselves collaborate
with each other. Here we present the game service scenario as
an example (Fig. 3), inspired in dynamic networks collaborat-
ing on the fly. In this scenario, Tom (connected to Net1) has
already gained access to a game service hosted by Net3 (Net1
and Net3 has started a collaboration) and he wants to play with
Mary. Since our focus is the directory service, we highlight
here that three queries are sent to the directory. The first query
is to findMary and the answer is that she is connected to Net2.
The second query aims at learning whether Net2 provides the
game service, which is not true. So, a third query is needed, for
finding out whether is there around any available network
which provides the game service and finally Net3 is found
out. Once the agreements are made between Net2 and Net3,
Tom and Mary can interact and play the game.

Fig. 2 Two-dimensional Hilbert curves with different orders
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Based on this game service and other two scenarios not
shown here due to space limitations, we derived some func-
tional and mandatory requirements that a global directory
service must fulfill, as follows:

1) Support for frequent information update;
2) Support for the dynamism of information due to extensive

collaboration among networks, avoiding replication of
information and inconsistency;

3) Enabling flexible and efficient queries;
4) Providing scalability, fault tolerance and robustness in a

distributed environment;
5) Providing a suitable way to make it possible for networks,

with different access technologies, to access and use the
directory service.

3.2 Information model

Figure 4 presents the information model we use for current
version of GDD, which is simple enough for being easily
understood and just fits our needs with no added complexity.
The information model contains four entities, service, user,

network and node. It is worth stressing that a service can
contain a set of other services (e.g., the self-relationship pre-
sented in Fig. 4). A service entity can represent a voice
application, a security service, and so on. A User is the entity
using the service provided by Network through a Node.
Network, in turn is a collection of Nodes, which represent
machines, for instance a smart phone or a tablet.

There is no standardization for a global information model
to represent heterogeneous networks and this model is con-
sidered a case study. Therefore, it might be extended or
customized as long as new network information or resources
have been being discovered. Optionally, this model might be
also described in DMTF CIM [4] if a formal and standard
format is needed for other purposes. We assume that each
service is identified through a well-known service definition,
recognizable by all existing networks. Although there are
many efforts to standardize services [9], further analysis of
such research topic is out of scope of this work.

3.3 Architecture

GDDwas designed in such a way to have a distributed structure,
composed of nodes from each network, which can have more

Net 1 - Tom´s 

current network

Mary
Tom

Global directory
1. Mary?

3. Game 

in Net2?

4. Game?

5. Game 

in Net#3

Net 3 - Game Service

Net 2 - Mary´s 

current network

Fig. 3 Game service scenario

Fig. 4 Information model

Net1
Net2

Net5

Net4

Net3

Global 
Distributed 
Directory

Fig. 5 GDD general architecture
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than one node participating in the global directory. These nodes
form an overlay structure as shown in Fig. 5. Each networkmust
publish its global information according to the information
model. Also, a network can access GDD through another par-
ticipating network, which may be necessary due its own re-
source limitation. However, this may be accomplished by a
previous collaboration agreement between these networks.

3.4 Insertion structures (indexes)

We derived indexes to represent the information model, and in
particular, the entities and relationships between them, as
shown in Fig. 6. NetID represents the network identifier,
whereas the USER index is to be used for storing the network
a user is currently connected to. All information stored in the
directory that follows an index structure presented in Fig. 6 is
called an index instance. For example, Mary and her network
is an index instance of index USER.

The SERVICE_USER index stores information derived
from the relationship between the entities Service and User.
This index is useful, for example, in order to find out whether
a user called Anne is using a TV display service in her
network. The PROTOCOLS index aims at storing the current
protocols available in a specific network. This index is derived
from the relationship between the network and node entities,
where node entity in this particular case is represented by the
protocol the node uses. This index can be used when a
requester wants to find out which networks support TORA
[14] or OSPF protocols. Finally the SERVICE index accepts
queries about which networks provide a specific service of a
specific subtype and the FULL_MODEL index stores all
available information associated with the network identifier.

GDD indexes are classified according to their number of
dimensions or metadata (underlined and bold in Fig. 6). These
dimensions are associated with a value, which is, except for
the FULL_MODEL index, the network identifier (represented
by the field NetID). When multiple networks present index
instances in common, the field NetID consists of a set of
network identifiers. As an example, lets us consider two
networks, identified by NetID 54 and 76, and a user service
called “fifa”, whose subtype is entertainment. If this service is
only provided by these networks, the content of the NetID
field may be “54, 76”.

3.5 Query examples

Figure 7 depicts some examples of queries related to the
SERVICE index. GDD accepts a variety of requests that
sometimes do not contain all metadata filled in, because
requesters do not know or need all the keywords associated
to the involved indexes, but only part of them. For example, a
network can be dependent on the service name to collaborate
through composition with another network, with other parts of
the information (e.g. the subtype for this service) being un-
necessary. Hence, we can have partial queries, involving only
a subset of metadata that make up the index.

In the first query, the directory user sends a request for finding
out networks (any network, since the NetID field content is
“???”) with the exact information specified in the fields service
and subtype. In other words, this query is for a network that
offers a service called “fifa game”, in which subtype is enter-
tainment. In the second query, the user requests a service which
begins with “fifa”, and whose subtype begins with “enter”. The
third query specifies any service whose subtype is “entertain-
ment”. In this case, only one dimension was specified in a two-
dimensional index.We can also specify ranges for dimensions in
an index directory, as shown by the fourth query, where the
request is for a network which owns a user service whose name
begins with a word between “fifa” and “fife” and whose subtype
is entertainment.

4 Implementation of the GDD architecture

This section describes the implementation of GDD using a
DHT infrastructure. Since queries may not have exact keys,
the first step to enable such global directory in a DHT infra-
structure is to enhance the DHT mechanism to work with
flexible queries. We consider a query to be flexible when
one can discover a network with specific services without
the exact values that were used to register it in the directory.
In order to enable flexible queries, the GDD architecture
implementation is based on HSFC and uses its own mecha-
nism to prepare the data to be inserted, through an indexing
algorithm. Data is retrieved from the DHT by a search algo-
rithm also presented in this section.

Fig. 6 Examples of indexes in
GDD
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4.1 Indexing algorithm

In GDD one can think of each directory index as a multi-
dimensional space as depicted by Fig. 8. Our indexing algo-
rithm translates these dimensions into a Hilbert curve derived-
key, which will be in turn used in DHT structure. Except for
the FULL MODEL index, where the NetID field is itself the
key of this index, the NetID field in the other indexes (see
Fig. 6) represents the value associated to each key inside the
DHT, and this value is (are) the network (s) owning the
specific resources or relationships specified by the instance.

Before running the Indexing Algorithm we first transform
the dimension values represented by names into dimension
values represented by bits. By doing this we have the n-points,
which are the input for this indexing algorithm (Fig. 9). We
work with a 32nd order Hilbert curve for a two-dimensional
space, which justifies the use of the state machine represented
on Fig. 10. There is a specific state machine for each dimen-
sional space. We also limited each dimension to a 32 bit
number and hence we have 64-bit derived-keys. Index fields
are limited to accommodate at most six characters (letters)
where each character will be represented by five bits, sum-
ming up 30 bits. The remaining two bits are left for future use.
Letter ‘a’ represents 00001 (1), letter ‘b’ 00010 (2) and so
forth until letter ‘z’, corresponding to 11010 (26). The corre-
spondence between the letters and the bits is done from the

third most significant bit as shown in Fig. 8. It is important to
emphasize that the indexing algorithm can be straightforward-
ly extended to larger Hilbert curve orders with any arbitrary
dimension values.

After having the dimension values represented by bits, the
indexing algorithm from an n-point to a derived-key is per-
formed step by step as the bits in each n-point dimension (in this
case, only x and y) are read. As an example, let us consider the n-
point <110,100>. The initial state is always the state 0, corre-
sponding to the root of Hilbert tree as shown by Fig. 10. The
current bits read from the n-point are one for the x dimension and
one for the y dimension [<110, 100>]. Then, according to state 0
of the state machine represented by Fig. 10, this current n-point
corresponds to the derived-key 10,which is in turn left-shifted by
two positions (line 6 in Fig. 9) and the next bits are read: one for
the x dimension and 0 for the y dimension [<110, 100>].

According to the state machine for a two-dimensional
space (Fig. 10), the next state from the n-point 11 (this is the
first n-point read) of the state 0 is the state 0 itself. In the state
0, we may observe that the derived-key corresponding to n-
point 10 is 11. Hence, the current derived-key is 1011. As we
proceed, the next state for n-point 10 (this is the second n-
point read) in the state 0 is state 2. The next n-point 00 from
[<110, 100>] corresponds to the derived-key 10 in the state 2.

Fig. 7 Examples of queries

Fig. 8 Insertion of an index instance in GDD

Fig. 9 Indexing algorithm

Fig. 10 State machine of a Hilbert curve in a two-dimensional space
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Therefore, the final derived-key corresponding to the n-point
[<110, 100>] is 101110.

The indexing algorithm just described is used to calculate
the keys of all indexes except the one-dimensional ones like
FULL MODEL and USER as described in the beginning of
this section, since in these cases the ‘key’ to be inserted in the
DHT is, respectively, the network identifier itself and the login
of the user. Figure 11 shows an example of the contents of
FULLMODEL index, where NetID (key54) is associated to a
value that corresponds to the concatenation of each index
instance corresponding to PROTOCOLS, USER, SERVICE,
SERVICE_USER indexes. Each of these index instances
values (the numbers in binary) corresponds to the derived
key calculated from the dimensions of these indexes, as de-
scribed at section 4.1, Fig. 8. In this way, FULL MODEL
index, or the network identifier corresponding to its key, could
be used to retrieve the complete set of network information.

Thus, with regard to the information insertion in the overlay,
our DHT mechanism is basically the same as traditional one
with the difference that keys are not generated by a hash
function anymore but by the indexing algorithm (explained in
section 4.1). The exception is for unidimensional indexes as
already explained. The reason is that, using the hash function,
information is consistently spread over the existing nodes and
we want to preserve locality. Similarly, in our search process
mechanism, instead of simply applying a hash function in the
name that identifies a resource in order to get the key and search
it in the overlay, as is done by the traditional DHT mechanism,
we apply the search algorithm (explained in further sections) in
the index dimensions (given as entry) to find all possible
derived-keys in the Hilbert space that are also stored in the
DHT. Thus, there is an interaction between our search algorithm
and the search algorithm of a traditional DHT mechanism,
where this last one is used only to verify if a specific derived-
key exists in the overlay. As further explained in section 4.3, our
search algorithm may request the traditional one many times.

4.2 Search algorithm

The main problem we have to deal with here is implementing
flexible queries. In a traditional DHT, information that satisfy
a query such as “fif*” may, in the worst-case scenario, be
spread over the entire network, due to the hash function used
in DHT. In addition, there will not be semantic relationship
between information registered in the DHT, making flexible

queries unfeasible due to the lack of efficiency in the search
mechanism. Therefore, our search algorithm supports flexible
queries, while keeping the scalability of a DHT.

Figure 12 shows a macro view of the search algorithm.
Suppose a range query, shown in Fig. 12, composed of dimen-
sions ‘fif*’ and ‘gam*’. We can deduce its bounds as ‘fifaaa…
fifzzz’ and ‘gamaaa…gamzzz’ respectively, where fifaaa and
gamaaa are the lower query bounds whereas fifzzz and gamzzz
are the upper. Afterwards, the query bounds specified with
names are passed into query bounds specified with bits. In this
way, once we have the complete bit values corresponding to
each query bounds, we can delimit the space in the Hilbert
space that satisfies our query. For instance, Fig. 14a shows the
gray space delimited by the bounds {(000,100), (111,100)}.1

In this case, all the points in the Hilbert curve inside the gray
region might be candidates to the result of the query specified
by the bounds. But it is necessary to check if any of these points
are also stored by the nodes in the overlay. This is what is done
by our search mechanism. Firstly, the next-match algorithm
(section 4.3) is applied. This one is used to discover the first
point in the Hilbert curve belonging to the query region.
Whenever a point in the Hilbert curve belonging to the query
region is found by the algorithm, we will call this point as the
current match. The next step is to query the overlay to discover
which DHT node is responsible for the newly found match.

Once the node responsible for the point is found, the next
step is to query the data of this node in order to check if this
match is a real valid data (exists) or a key (data element) that
belong to the query region. The first point found can help on
this. Therefore, one can say that the search algorithm mainly
involves two procedures, as mentioned earlier in this section:
the searching of a DHT node responsible for a point in the
Hilbert curve that is inside a specific query region, and once
this node is found, the finding of all matches satisfying the
query (described in Fig. 13) and stored by the overlay.

Data-elements (keys) are stored in ascending order inside
the node data structure (that we will call the node data storage)
in the overlay and they may or may not belong to the given
query. The current match is then compared to the key stored in
DHT node storage – as shown at lines 3, 6 and 19 in Fig. 13. If
it is identical, we find an element that belongs to the query
region and it is stored in the DHT. Otherwise, if the current

1 A similar space is delimited by the bounds formed by the range query
shown in Fig. 12 but this one is more difficult to see as it is necessary a
32nd order Hilbert curve for a two-dimensional space.

Fig. 11 Example of a
FULL_MODEL index with its
key and value
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match is less than the element stored, we have to calculate
another match, passing the element stored as the current match
(parameter) to the next-match discovery algorithm (cf. lines 7
and 8, Fig. 13). In the case that next-match calculated is zero
(cf. line 10, Fig. 13), this means that the node and the network
do not have any data element that satisfies the query, and the
possible elements satisfying the query would be between the
previous found match and the element stored in the node data
storage indicated by i index. Otherwise, if the new match
found is not zero (cf. line 13 of Fig. 13), this means that this
match is minimally greater than the previous match and is also

in the query region. Then we compare this new current match
with the same element in the data storage (line 14, Fig. 13). If
it is identical, this element is in the query region. Otherwise we
continue and repeat the same procedure with the next element
in the node data storage.

If the key in the DHT node is smaller than the current
match (cf. line 19, Fig. 13), we compare whether the current
match is greater than the last element stored (line 20), for
processing time optimization purposes. If so, the search in this
node is ended and we have to find the next node in DHT that
could have more matches satisfying the query. If not, we can
apply an optimization mechanism to find the most immedi-
ately key smaller than the current match (cf. line 25). This is
necessary since performing a linear search in the node data
storage for finding a key element that satisfies the current
match is costly in terms of processing time.

Depending on how many data elements a node stores, the
comparison process between the current match and each ele-
ment stored in node data storage could be also too costly. In
order to minimize the time of the queries, not querying the
data storage of the node linearly, and to decrease the process-
ing time, we introduce some optimizations. The first optimi-
zation is to determine where to begin the search (or the best
point to begin when we have a current match) in the data node
storage. This can be very useful in the case that the current
match is greater than the first element in the data storage and
there are too many data elements between them. We can
optimize by dividing the length of the node data storage into
two equal size parts and comparing the derived-key in the
middle (of the data storage) with the current match. If they are
equal, this means that we find the first element in the query
region that also exists in the network. On the other hand, if the
key of the element is still less than the current match, we
continue the same process, now dividing into two the second
half part. If, during the process, the key of the element be-
comes greater than the current match, we stop at the point
immediately before, where the key of the element was smaller.
In both cases, we do the process until smaller element imme-
diately before the current match is found. This is the appro-
priate point to start applying the next-match discovery algo-
rithm (see section 4.3) in order to verify if a specific stored
element is or is not in the query region. After finding the
element where to begin the search, comparison between the
key of this element in the node data storage and the current
match is started, according to Fig. 13.

The procedure described in Fig. 13 is performed with all
the keys stored inside the DHT node (variation of index i). In
summary, there are three possibilities during the searching: (a)
One finds a key lesser than the current match and thus the
search continues with the next key in the node data storage
being compared with current match. (b) one finds a key in the
data storage equal than the current match. This represents a
match, key inside the DHT node that is a derived-keyFig. 13 Search algorithm inside a DHT node

Fig. 12 Search algorithm (macro view)
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contained in the query region. (c) One finds a key greater than
the current match. In this case, one needs to recalculate a new
match where this key is the current match parameter of the
next-match discovery algorithm. (c.1) In the case of a zero
result for the newmatch, the search can be considered finished
as explained earlier.

After ending the search in the node data storage and match
zero be reached, we return all the keys found to the node that
requests the query. In the case that match=0 was not reached
inside the node data storage, this means that the search needs
to continue since there may be more data elements belonging
to the query region in other nodes of the overlay network. In
an overlay DHT network, all nodes are organized in ascending
order according to their identifiers. A node is responsible for
the storage of all the keys in the range between the identifier of
its predecessor and its identifier. Hence, when a query with a
non-zero reached match returns from specific node data stor-
age, the query needs to continue, and it is necessary to calcu-
late a new current match, passing its identifier plus 1 as a
parameter as well as the query itself for the next-match dis-
covery algorithm. After doing this, if the new current match
just found is zero, then no more data elements can exist in the
overlay and we can collect the metrics for the query. Other-
wise, in the case that a non-zero current match is found, this
means that this match is minimally greater than the previous
match and is in the query region also; hence the node respon-
sible for this current match has to be queried because it can
store data elements satisfying the query. Another lookup is
sent to the overlay, now for the node responsible for this new
next-match, with the new current-match found and the query,
and then repeat the algorithm inside this new node data
storage. The algorithm running into the node that is requesting
the query is known as macro search.

4.3 Next-match discovery algorithm

The next-match discovery algorithm aims at finding a derived-
key that belongs to the query region and that is minimally
greater than the value passed as a parameter. Although this
parameter is not necessarily a value inside the query region,
we call it the current match. As for the derived-key resulting
from the execution of the algorithm, it is always an
element inside the query region. We rather explain how
this algorithm works through an example. Consider the
query (*, 4), assuming a third-order two-dimensional
Hilbert space as depicted in Fig. 14a. Firstly, we translate
(*, 4) into (*, 100)=(000,100)–(111,100).

Initially, the current search space corresponds to the root of
the Hilbert tree represented by the first order of the Hilbert
curve shown in Fig. 14b. Therefore, the current-level is 1; and
the query region in this level (that is, the current query region)
corresponds to (01) - (11), since we retrieved from the initial
query [(000,100)–(111,100)] the most significant bits in each

dimension. Point C in Fig. 14a represents the derived-key 28
(011100), in the third order, and it is the current match. The
range between lowest and max_lower is known as the lower
bound, while the range between min_higher and highest, the
upper bound [11]. In the case of a two-dimensional space,
there are only two values in both the lower and upper bounds.
However, if we consider a three-dimensional space, there are
more values between lower and upper bounds.

Afterwards, the pd (partitioned dimension) variable is cal-
culated and shown in Fig. 14c, where ‘|’ is the exclusive or
operation and d_to_c is a function that maps the correspond-
ing derived-key, into a n-point. The result found for pd is ‘10’
which means that both lower and upper bound have a com-
mon value in the x axis. In order to know the lower bound we
calculate the variable value as shown in Fig. 14c, resulting in
‘0’ which means that lower bound has x=0, which indeed is
observed in Fig. 14b. As min_higher and highest also have a
common value in the x axis, one may conclude that x=1 for
the upper bound values.

In order to know if the current query region (or cqr)
intercepts the lower or upper bound, we pick up the current
query region in the first order Hilbert curve (01) - (11), where
01 and 11 are the lower and upper bound of the query region
respectively. Then, it is possible to see that the lowest current
query region has x=0 and thus is intercepted by the lowest –
max_lower bounds. On the other hand, the upper query region
has x=1 and therefore is intercepted by the min_highest-
higher bounds. But we need to know which exact values in
these bounds are intercepted by the query region. First of all,
we have to compare if the lower and upper cqr are equal to 00
and 11, respectively. If this is the case, it means that all bounds
(lowest, max_lower, min_higher, highest) intercept the query
region and then the search should proceed in each of these
corresponding quadrants. For the example, this result is neg-
ative and hence we can conclude that max_lower (n-point 01)
intercepts the lower cqr andmin_higher (n-point 11) intercepts
the upper cqr.

However, we also have to analyze the current match, which
is 011100 (point C in Fig. 14a). The derived-key in the first
order Hilbert curve for this current match is ‘01’. This derived-
key corresponds to the quadrant 01 in the first order Hilbert
curve. This means that the search algorithm has to proceed in
the quadrant space 01, which intercepts the query region and
is minimally greater than the current match. The rule is to
firstly proceed in the minimum quadrant satisfying the query
to, in the case of a not found match, backtrack to the other
remaining greater quadrants. Then the search will proceed in
the quadrant of the max_lower bound (01) which gives the
first incomplete next_match: 01????. The search in level 1 is
finished and then we proceed to the second level as shown in
Fig. 14d. In the case that the backtrack occurs and the algo-
rithm is executed in the other remaining quadrants (satisfying
the query) and no data element meets the requirements as the
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next-match, the algorithm returns zero, meaning there is no
element satisfying the query minimally greater than the cur-
rent next match.

From the second level on, one has to calculate the query
region from the current query region and the current search
space (css), which represents the space in the current Hilbert
quadrant where the search is occurring. In the second level,
there is as current query region the bounds (00, 10) {lower cqr
bound} and (11, 10) {upper cqr bound}; the current search
space corresponds to quadrant 01 in the first level, which
is, in the second level, (00, 10) in the lower css bound and
(01, 11) in the upper css bound. Note that the css region
was formed by putting the corresponding x from the quad-
rant in the first order (01) in the most significant bit of x
coordinates of both css lower and upper bounds, whilst the
corresponding y from this quadrant (01) in the most sig-
nificant bit of y coordinates (of both css lower and upper
bounds). Then we complete x and y coordinates of lower
css bounds with ‘0’ since it is the ‘lower’ and two bits are
necessary to be in the second-order Hilbert curve. On the
other hand, x and y coordinates of the upper css bounds are
completed with ‘1’.

After correctly calculating the current search space, one
needs to check if cqr is equal to css. This comparison is always
required when dealing with the next to last level (in this case
this is true because the current level is 2 and the next to last
level, 3). If so, one must consider all the quadrants in the cqr
(or css) as possible valid quadrants to perform the query. But it
is not the case for query (*, 4) so that the intersection described
in Fig. 15a is required.

In Fig. 15a, xcss_l corresponds to the x coordinate, in the
lower bound, of the current search space, while ycss_l corre-
sponds to the y coordinate, also in the lower bound, of the
current search space. The values for xcss_u and ycss_u follow
the same logic but for current search space of upper
bounds. These coordinates represent the current query
region and in the current level (2) css={(00,10),(01,11)}
and cqr={(00,10),(11,10)}, so we have xcss_l=00, ycss_l=
10, xcss_u=01 and ycss_u=11. In addition, xcqr_l=00,
ycqr_l=10, xcqr_u=11 and ycqr_u=10. The resulting query
region for the intersection between css and cqr is (00, 10) for
the lower bounds and (01, 10) for the upper bounds. Then we
have cqr resulting as {(00,10), (01,10)}.

As are result, the values found for pd and value variables
are ‘10’ and ‘00’, respectively. Again, it means that bounds

a) The query (*,4)
b) First-order two-dimensional Hilbert 

curve

c) pd and value variables d) Second level of the search algorithm

Fig. 14 The next-match
discovery algorithm in action

a) Intersection between css and cqr

b) Calculating  pd and value variables

Fig. 15 The next-match discovery algorithm (part 2)
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have the x value in common, which is 0 for the lower bounds,
as depicted by Fig. 15b. We can conclude from the current
query region {(00, 10), (01, 10)} that only lowest and highest
Hilbert quadrants intercept the cqr. Since the value of derived-
key (011100) in the second level is ‘11’, one may choose the
highest quadrant in order to continue the search because the
corresponding derived-key of the highest quadrant is also 11,
minimally greater than the current derived-key in the second
level. The search continues upwards from the highest quadrant
in the second level. And the next_match is now 0111??.
Finally, the algorithm proceeds to the third and last level and
the same steps are performed repeatedly.

5 Evaluation methodology

5.1 Simulation environment

We performed a simulation-based performance analysis to
validate GDD using the Over Sim simulator [2]. Over Sim is
a flexible discrete event simulation framework for the ex-
change and processing of network messages based on
OMNeT++ [24] supporting several structured and unstruc-
tured peer-to-peer protocols such as Chord [22] and Pastry
[18]. A simplified view of the Over Sim architecture is shown
in Fig. 16. According to their terminology, the DHT tier
implements put and get functions as well as the storage of
the keys a specific node owns (and the replication of them),
whereas the Overlay tier is responsible for providing functions
such as the organization of keys in finger tables of the nodes
when a node leaves or joins in the network.

The Application in Tier2 is a user of the DHT module and
GDD is an example. The Underlay provides the basic under-
lying network model that sends data packets directly from one
overlay node to another by using a global routing table [2]. The
Global Observer is a generic module that maintains a global
view of the overlay network during the entire simulation.

5.2 Implementation of GDD in over sim

The development of GDD required a new application in the
same layer of Tier2 as well as a specially modified version of
the DHT module, using Chord (Fig. 17). GDD mechanisms
such as Indexing, Searching and Discovery Next-Match algo-
rithms, explained in Section 4, were included in the DHT
module to be used by the new Tier2 application: the Indexing
Algorithm, instead of the traditional DHT put function and
likewise the Searching Algorithm, which in turn uses the
Discovery Next-Match algorithm, instead of the traditional
DHT get function. This new Tier2 application is the one used
in our experiments presented in Sections 5.3 and 6.

In GDD a network can be represented by an overlay node
or by a set of overlay nodes. We can also have multiple
networks accessing GDD through a unique overlay node.
Each network is seen from the point of view of its information
model, and thus its topology and other characteristics are not
taken into consideration. GDD supports information storage
by network nodes as well as queries (including the flexible
ones). Since GDD is all about answering to queries, we will
provide an explanation of the query event as an example of the
changes we made in Over Sim to develop our simulation
environment.

Queries are generated in the following way: for each index
inserted, one exact query is generated, two invalid queries
(substrings of the dimensions of the index, appended by an
invalid alphabetic character such as ‘$’), and four range
queries. In order to generate a range query, a random number
is generated between 0 and the length - 1 of each index
dimension (number of characters in each index dimension).
After that, a substring for each dimension is created with a “*”
character attached, where its length is a random number. The
set of generated queries is stored in a data structure within the
Global Observer (not presented in Fig. 17) and at the same
time index values are inserted into the DHT. At simulation
time, queries are randomly chosen by picking one of them in
the data structure using a uniform distribution (ranging from 1
to the length of the data structure where the queries are stored)
that will return the element to be searched. When there is a
query event (Fig. 17), a query is picked up from the Global
Observer and the execution begins.

The first step is finding the first next-match for this query
(or the first point in the Hilbert curve satisfying the query)
using the current match equal to zero. The next-match is
obtained from the Hilbert library, also used by the macro
search. After that, message #1 is sent to Tier1 to find data-
elements satisfying the query. It is received by Tier1, which
sends message #2 to the overlay for finding the node respon-
sible for the first next-match. The overlay answers with mes-
sage #3 and sends message #4 to the node that answers the
request in order to execute the search inside the DHT. The
DHT node receives it and executes the search. Afterwards,

Tier2 

Application

Overlay

Underlay

Tier1

DHT Module 

Application

Overlay

Underlay

DHT

Local Node

Remote

Node

Global

Observer

Fig. 16 Simplified oversaw architecture
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message #5 is sent with the results of the search and received
by the source node (the requester), which sends message #6 to
Tier2 with the same results of the previous message. The
message is received and processed by the macro search algo-
rithm, which can decide whether the search process is fin-
ished, or not. In the latter case, message #1 is sent again and
the process goes on.

5.3 Experimental design

The following metrics were adopted to evaluate the perfor-
mance of the GDD mechanism:

a) Number of data elements: Total number of data elements
(or keys) found for each type of query. In the experiments
we have exact queries (for specific information), invalid
queries (for specific non-existing information) and range
queries.

b) Number of data nodes: Number of nodes where data
elements to a specific query are found. It is better when
the number of data nodes is around the same number of
processing nodes. A best result is when the result of the
rate number of processing nodes/number of data nodes is
around 1, which means that whenever the algorithm
inside a node is executed (i.e., it is a processing node),
data elements are found (i.e., it is also a data node).

c) Number of processing nodes: Number of nodes whose
data storage is being queried during a specific query, i.e.
the number of nodes that effectively take part in the query,
by processing the query and searching for matches. In
other words, processing nodes are all nodes that take part
in the search for data elements in a query, whereas data
nodes are the ones that effectively store queried data.

d) Number of messages in overlay: Number of messages
sent to the overlay for each query that search for the node
responsible for a specific key during the processing of the
mechanism. In exact or invalid queries, there is only one
message sent directly to the overlay.

e) Number of messages per query: Total number of required
messages to process a specific query. The exchange of six
messages is required for a lookup for an exact key. A
range query may require an unknown number of exact
queries to be finished and therefore the nodes may have to
exchange a high number of messages.

f) Query time: the time for each query to be finished.

Table 1 shows factors and levels used in the performance
analysis. In different experiments we varied the number of
index instances, the query inter arrival time and the number of
participating networks. The choices factors and their values
(levels) were based on previous experiments and the observa-
tion of their results. For example, it was observed that the use
of a number of networks higher than 1,000 does not make any
difference to the results (this can be observed in section 6).
The query inter arrival time follows an Exponential distribu-
tion, i.e. a Poisson arrival rate.

6 Results

The performance analysis of GDD is performed by observing
how metrics presented in section 5.3 behave as we vary each
factor at a time. In this section, graphs depict a metric by its
final mean values according to the variation of the respective
factors. The 99 % asymptotic confidence intervals were cal-
culated but the vertical bars are not shown since they are not
visually significant.

Each simulation generates an amount of exact (Q0), invalid
(Q1) and range (Q2) queries, which are executed during the
simulation. Invalid queries are important because they repre-
sent a possible action of the user, i.e. the user requests infor-
mation not available in the directory. Thus, the directory
service must return a negative answer for invalid queries.

In the sequence we present results showing the effect of
varying the number of index instances and the number of
networks. We also varied the query load, with different query
inter arrival times, but they are intentionally omitted since the
results were similar to those for the number of instances.

Fig. 17 GDD mechanism
mapped into oversaw for query
processing

Table 1 Factors and levels

Factor Levels

Number of index instances 10, 20, 40, 70, 100

Query inter arrival time (milliseconds) 20, 30, 50

Number of networks 100, 250, 500, 750, 1,000
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6.1 Effect of the number of index instances

In the first experiments we vary the amount of information
stored in the directory. The number of index instances as-
sumes five different levels (10, 20, 40, 70 and 100), the query
inter arrival time is 30 milliseconds and the number of net-
works is 100 (i.e., also 100 DHT nodes). The duration of each
simulation experiment is 1,000 sec and the results are present-
ed in Fig. 18.

As we increase the number of index instances, there is also
an increase in the number of data elements found for Q2 query
(Fig. 18a), which is an expected result because we have more
information stored. Q0 and Q1 queries remain with the same
number of data elements (keys), respectively 1 and 0, since we
always find one data element in an exact query (considering
that there is no replication in the DHT) and there is no data
element in an invalid query. The same happens to the number
of data nodes, where there is only one for exact queries and
none for invalid query. In addition, the other metrics are the
same for both exact and invalid queries, except for the query
time. We have the same number of processing nodes (1), the
same number of messages (6) and messages sent to the over-
lay (1). The metric values for exact and invalid queries are the
same for all the experiments – that is an expected behavior –,
except for the query time metric. Hence all the comments
made are relative to range queries (Q2). However, we are
showing Q0 and Q1 in all figures in order to make it easier
to compare them with the range queries (Q2).

In Fig. 18b, we observe a slight increase in the number of
data nodes when the number of index instances in each index
varies from 10 to 40, the metric remains almost the same
between 40 and 70 and increases again from 70 to 100 index
instances. This is a positive result showing that data tends to
spread more in the GDD system (with more data nodes found
in each query) as more information exists, whereas the mean
value of data nodes and processing nodes found during the
processing of queries does not represent more than 15 %
(seeing y axis and considering a range of 100 DHT nodes)
of the total of data nodes available for storing information.
This is due to the use of HSFC concept, since they concentrate
the semantically related data in a part of the space. This fact
does not imply that only 15 % of the nodes store valid
information. Figure 19f depicts the distribution of data ele-
ments among all nodes. The x axis represents the nodes (100)
and y axis indicates the number of data elements that node
owns. In this case, almost all nodes store information, al-
though the distribution is asymmetric.

Hence, we can conclude by the results in Fig. 18b that it is
only necessary to query, on average, less than 15% of the total
nodes in GDD in order to find data elements satisfying the
queries, which is a very important result because few nodes
have to be queried in the whole network in order to return the
results for the query. This result is even better when we look

the histograms presented in Fig. 19d and e, where most of the
queries only use 5 processing or data nodes, which represent
only 5 % of the total 100 DHT nodes.

In Fig. 18c, we see that the number of processing nodes
remains the same when the number of index instances is
increased and this is expected since there is no change in the
number of nodes in the network structure and therefore the
same nodes are responsible for the same ranges. The number
of total messages exchanged in range queries is more than 8
times higher than the ones exchanged in exact or invalid
queries - Fig. 18d -, whereas the number of messages sent to
the overlay is 14 times higher - Fig. 18e. Although this may
seem to be very high, if we observe the histogram presented in
Fig. 19b, we see that the number of messages sent to overlay
between 0 and 5 for most queries. This number depends
intrinsically on the type of query and can be really very high.
For instance, a query for “fif*, game*” tends to be faster than a
query for “f*, g*”. The processing time for range queries is
also higher compared to the time for exact or invalid queries -
Fig. 18f. However the same explanation given to the number
of messages is valid for the query time. For almost 4000
queries the query time is around 5 sec whereas for exact or
invalid queries is around 1.3 sec. We can see this in histogram
of the Fig. 19e. In Fig. 19a we see that between 0 and 500 data
elements were found in most queries. However, for some
general range queries, such as “a*,b*”, more than 9,500 data
elements were found. This is also linked with the increase of
data elements in Fig. 18a.

An interesting fact is the decrease of the query time as long
as we have more information in GDD - Fig. 18f. This is due
the fact that with a higher concentration of data in the nodes
we have more chances to reach a zero next-match more
quickly and therefore finishing the query. When the query is
processed inside a node, the next-match algorithm passes the
current data element stored in the data storage as a parameter
for the algorithm. Hence, the more this algorithm is executed
(due to more data elements) the higher is the probability to
find a zero next-match inside the node. This avoids an addi-
tional request for a new current next-match in Tier2, when the
result of the processing in the node returns to the requester
node. When this processing is finished and returns, the next-
match is already zero, which means that there is no more data
elements in GDD satisfying the query. Then, no more queries
to the overlay are necessary and the time decreases. This fact
can be also linked with the smooth decrease of the other
metrics such as processing nodes, number of total messages
and number of messages sent to the overlay.

Although HSFC is known as a mechanism that fills in only
a small part of the space, forming clusters, in our case data is
well distributed over the node space. This happens because we
used a simple load balancing mechanism. As our stored data
elements were transformed to 64-bit keys, we used this thresh-
old (64) to limit the identifier of the DHT nodes. In this way,
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the range of keys which nodes are responsible for is limited to
64-bit keys, which helps considerably in the natural distribu-
tion of data. If we were to apply a more elaborate balancing

mechanism or take more advantage of the physical space
available, we would have to measure the other metrics and
observe their behavior, to conclude if it is worthwhile.

a) Data Elements b) Data Nodes

c) Processing Nodes d) Messages Exchanged

e) Messages to the Overlay f) Query time
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Q0

Q1

Q2
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Fig. 18 Effect of varying the
number of instances per index

526 Peer-to-Peer Netw. Appl. (2015) 8:512–531



We also measure the relation between processing nodes
and data nodes found during the queries. A perfect situation
would be if the result of this division was always 1, which
means that every time the algorithm inside a node is executed
(i.e. this node is a processing node), data elements are found
(i.e. this node is a data node). However, this fact does not
always occur and sometimes we can pass through a node
without finding data elements belonging to the query. GDD
presented adequate results (Fig. 19c), since the ratio between
processing nodes and data nodes is around 1 in most of the
queries.

6.2 Effect of the number of networks

Figure 20 presents the results of the selected metrics for 100,
250, 500, 750 and 1,000 networks, 10 index instances for each

network and 100 DHT nodes. In Fig. 20a we can observe that
the number of data elements found per query increases as the
number of networks increase. This is an expected result be-
cause the information used by GDD grows with the number of
networks.

Figure 20b shows a steady increase in the number of
data nodes as the number of networks is increased,
which means that at a first moment the data tend to
spread in the network, as observed in Fig. 18b. How-
ever, the number of data nodes for range queries (Q2)
has a peak for 500 networks, whereas we can see a
steep decrease over 750 and 1,000 networks. This is
associated with the Hilbert Space-Filling curves concept,
which tends to concentrate the data. Hence, fewer data
nodes are returned per query when there is more infor-
mation. In Fig. 20c, the number of processing nodes

a) Data Elements b) Messages to the Overlay

c) Processing Notes / Data Nodes Ratio d) Data Nodes

e) Processing Nodes f) Data Elements

Fig. 19 Histograms for 100
instances per network index; a)
number of data elements; b)
number of messages in the
overlay; c) ratio between
processing and data nodes; d)
data nodes; e) processing nodes;
f) distribution of data elements
into nodes
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remains almost constant over 100, 250 and 500 net-
works, but for 750 and 1,000 networks there is a steady
decreasing trend. The explanation given for Fig. 18c can
be also applied to the initial constant values of the
number of processing nodes in Fig. 20c. However, the
decrease observed for 500 and 1,000 networks follows
the same trend in data nodes showed in Fig. 20b. This
happens because the more concentrated the data, the
faster a zero next-match is returned so that fewer nodes
have to be queried and processed in order to complete a

query. The other metrics in Fig. 20d, e and f also
follow this trend for more than 500 networks.

7 Discussion

Design rationale adopted here recognizes the tradeoff
between two different and actually opposite approaches
for providing such a distributed directory. The first
approach analyzed is to adapt an existing directory

a) Data Elements b) Data Nodes

c) Processing Nodes d) Exchanged Messages

Number of Networks

D
a
t
a
 
E
le
m
e
n
t
s

Q0

Q1

Q2

0       200     400     600     800    1000

900

800

700

600

500

400

300

200

100

0

Number of Networks

Q0

Q1

Q2

0       200     400     600     800    1000

12

10

8

6

4

2

0

D
a
t
a
 
N
o
d
e
s

Number of Networks

Q0

Q1

Q2

0       200     400     600     800    1000

14

12

10

8

6

4

2

0

P
r
o
c
e
s
s
in
g
 
N
o
d
e
s

Number of Networks

Q0

Q1

Q2

0       200     400     600     800    1000

90

80

70

60

50

40

30

20

10

0

M
e
s
s
a
g
e
s
 
E
x
c
h
a
n
g
e
d

e) Messages Overlay f) Query Time

14

12

10

8

6

4

2

0

Number of Networks

Q0

Q1

Q2

0       200     400     600     800    1000

M
e
s
s
a
g
e
s
 
t
o
 
t
h
e
 
O
v
e
r
la
y

20

18

16

14

12

10

8

6

4

2

0

Number of Networks

Q0

Q1

Q2

0       200     400     600     800    1000

Q
u
e
r
y
 
T
im

e

Fig. 20 Effect of varying the
number of networks
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service adding support for massive network, node and
information distribution and dynamics. The second ap-
proach is to adapt a highly distributed environment that
supports dynamicity but only exact-key searches, and
add a flexible query engine layer. In this paper, we
chose the second approach and therefore GDD is based
on DHT with extended support for flexible queries
provided by our directory indexing and searching
mechanisms.

Our new HSFC-based DHT mechanism do not use a
hash function to generate the keys, since it spreads the
content over the existing nodes. Rather, we use an
indexing mechanism to generate the derived keys for
each index instance, which are directly used to insert
information into the DHT. In addition, a library that
composes our new HSFC-based DHT mechanism was
developed, containing the indexing, macro search and
next-match discovery algorithms used to guarantee key
insertion and search, which extend typical DHT mecha-
nisms. The results showed that the use of DHT for
allowing flexible queries together with HSFC for flexi-
ble queries yields an important synergy.

We also built a new simulator on top of the
OMNeT++ framework, implementing the main features
of GDD. Performance analysis revealed that GDD ful-
fills different requirements of distribution and scalabili-
ty, typical for some present and probably future net-
works. The scalability was evaluated with the number
of networks and information. Results show that the
number of data and processing nodes, the number of
messages and the query response time do not present
significant variations as we increase the number of data
elements and networks. Particularly, results show that
query time and number of messages are not influenced
by the number of indexes and participating networks.
Our approach keeps the complexity of the underlying
DHT structure, which can be observed by the query
time and number of messages for range queries (Q2)
that maintain a consistent linear relationship with exact
queries (Q0). Also, unlike other proposals for flexible
queries, our approach is able to find all answers
matching a query in a given DHT substrate.

As for the requirements for a global directory service
presented in Section 3.1 we think they have been ful-
filled by GDD and its implementation and validated
through the simulation study. Also, the use of DHT
for distribution and dynamicity together with HSFC
for flexible queries yields an important synergy. DHT
is robust to node churn and highly tolerant to node
failure. HSFC and the performance of the new mecha-
nism are significantly invariant to the growth of the
network size.

A different, and simpler, way to implement range
queries in a DHT might be by generating multiple
indexes, each one with a different possible search op-
tion. However, this approach suffers from a serious
drawback, since there will be a tradeoff between the
number of possible search options and the maximum
number of indexes needed for storing a data item and
the maximum number of queries needed for retrieving
the information. Therefore, the usefulness of such a
strategy might be low if we store just a few different
options for each data item and the scalability may be an
issue if we store many options.

8 Conclusion

Distributed directory services are not novel, but still
today there is no definitive solution for information
management in highly mobile, heterogeneous, dynamic,
and collaborative networks. In this paper we proposed
the Global Distributed Directory (GDD) to deal with
such important challenge.

The design rationale of GDD follows the approach of
adding features for providing flexible queries to a highly
distributed and scalable environment, by using Hilbert curves
in a peer-to-peer DHT system. This required the key genera-
tion process of the DHT to be changed for a mechanism based
on Hilbert curves. Simulation results we obtained from a
customized simulator based on the OMNeT++ framework.
Results show that the new mechanisms are scalable with the
number of networks, DHT nodes, and amount of information.
Particularly, query time and number of messages exchanged
are orthogonal to the number of indexes and participating
networks.

As future work, we intend to extend the GDD architecture
and its evaluation. We aim at proposing and evaluating load
balancing mechanisms and indexes that go beyond the limit of
three-dimensions, as well as security mechanisms to control
the access to the information. In addition, we aim at making
the GDDmechanism as generic as possible in terms of receiv-
ing an information model as parameter and automatically
generating the corresponding indexes.
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