
Securing BitTorrent using a new reputation-based trust
management system

Behrooz Shafiee Sarjaz & Maghsoud Abbaspour

Received: 29 September 2011 /Accepted: 2 May 2012 /Published online: 17 May 2012
Springer Science+Business Media, LLC 2012

Abstract Nowadays, BitTorrent as a means of sharing files
has become highly popular among internet users. However,
due to the open nature of BitTorrent protocol and lack of any
security mechanism, number of attacks against BitTorrent
has significantly increased. Sybil, Collusion, Lying-Piece,
Fake-Block, and Chatty-Peer are attack types which have
been considered in this paper to secure BitTorrent against
them. These attacks can decrease the download performance
of BitTorrent clients considerably. In this paper a new rep-
utation based trust management system to cover aforemen-
tioned attack types is presented. The proposed approach
calculates a local score at peers and a global score at the
tracker for each peer. First, peers are sorted according to
their cumulative score at the tracker and then top 10 % of
these peers are used to determine other peers global score.
These local and global scores are used to find attackers. In
addition, a novel formula has been utilized to calculate peers
local score. Using the global score concept makes our
mechanism robust and swift to detect collusion attack which
has not been considered in most of similar previous works.
In order to evaluate the effectiveness of the proposed sys-
tem, several simulation and real experiments in the Emulab
testbed were performed. The outcomes indicate that our
method is highly effective in detection of rogue peers and
Free-Riders; moreover, performance of honest peers has
significantly improved.

Keywords Peer to peer security . BitTorrent security .

Reputation based Trust Management

1 Introduction

BitTorrent [1] has become one of the most popular peer-peer
(P2P) protocols. According to a recent study [2] 66 % of
P2P traffic which is approximately 35-55 % of the whole
internet traffic belongs to BitTorrent. BitTorrent popularity
is due to its fundamental advantages over traditional client-
server architecture such as: self-scalability, reliability, fair-
ness and cost- efficiency.

Using BitTorrent as a means of sharing copyrighted con-
tents has provoked multimedia producing companies to im-
pede distribution of their products over BitTorrent [3].
Expectedly, multimedia industries have begun Torrent-
Poisoning carried out by Anti-Piracy organizations as an
attempt to prevent the peer-to-peer (P2P) sharing of copy-
righted content [4, 5]. Torrent-Poisoning is the act of inten-
tionally sharing corrupt data or using different kinds of attack
to slow down BitTorrent downloads. Clients such as ZipTor-
rent [5] are an indication to this attempt; the goal of ZipTorrent
is to slow down popular downloads as much as possible. Anti-
Piracy organizations utilize hundreds of these clients at the
same time and this can potentially bring the average download
speed down to zero [5]. The evaluation of these kinds of attack
shows that they can seriously threaten BitTorrent protocol. In
[6] a mixed attack strategy is proposed which its results
indicate that the robustness of the BitTorrent swarm can be
damaged and most peers cannot complete the downloading
even though the attack is not distributed to every downloading
peer evenly. Moreover, the evaluation results of Lying-Piece
attack against BitTorrent by Konrath et al. [7] indicate that this
attack type can significantly damage the performance of

B. Shafiee Sarjaz :M. Abbaspour (*)
Department of Computer Engineering, Faculty of Electrical
and Computer Engineering,
Shahid Beheshti University, G. C., Evin.,
Tehran, Iran
e-mail: maghsoud@sbu.ac.ir

B. Shafiee Sarjaz
e-mail: behrooz.shafiee@ieee.org

Peer-to-Peer Netw. Appl. (2013) 6:86–100
DOI 10.1007/s12083-012-0141-y

swarm and when number of attackers is high enough, the
attackers can even cause general swarm failure.

In addition to different kinds of attacks against BitTor-
rent, Free-Riding is another serious threat to it. Free-Riding
is profiting BitTorrent file-sharing but not contributing
resources to the overall system capacity [8]. As the fraction
of free-riders increases, the overall system capacity per peer
decreases. Although BitTorrent incentives long have be-
lieved to be robust to strategic manipulation, recently come
under inspection. Clients like BitThief [9] and BitTyrant
[10] empirically show that users are not any more encour-
aged to follow the BitTorrent protocol. For instance, the
BitTyrant client can reach relatively high download rates,
surprisingly in some conditions, even a 70 % speed im-
provement in comparison with regular clients [10].

Based on the stated reasons, the conclusion can be drawn
that existence of a defense mechanism for the BitTorrent pro-
tocol is absolutely essential. Due to open nature of BitTorrent
and existence of many challenges in cooperationwith unknown
partners, providing a comprehensive defense mechanism has
many difficulties. Sharing knowledge between peers is one of
the ways to make at least some trust among peers. This system
is called reputation-based trust management [11].

In this paper a new reputation-based Trust Management
System (TMS) has been proposed to defeat different kinds of
attacks against BitTorrent as well as improving performance
of BitTorrent protocol by limiting Free-Riding. The proposed
TMS profits the central point in the BitTorrent, the Tracker.
Tracker is used to collect and propagate peers’ experiences
about each other in addition to judge about peers and recog-
nition of misbehaving peers. The main advantages of the
proposed TMS are: 1) Resistance in presence of high amount
of malicious peers with collusion among them 2) Covering
different attack types. 3) Easy integration with BitTorrent
present protocol with a negligible overhead.

The proceeding parts are organized as follows: in sec-
tion 2 related works are discussed. Section 3 presents pre-
liminaries, then section 4 describes the proposed method,
section 5 presents simulations and Emulab implementation
results; finally, section 6 concludes the paper.

2 Related works

Due to the excessive amount of related works only two main
groups of works are discussed; in the first group, works on
BitTorrent incentive are discussed; then, Trust management
works are reviewed.

2.1 BitTorrent incentive

The study of BitTorrent protocol’s incentives began by its
inventor, Cohen. He demonstrated that tit-for-tat-based

incentives make BitTorrent robust to strategic gaming
[12]. In contrast, several studies have shown that the
current BitTorrent mechanism is not adequate to prevent
free-riding and cannot encourage peers to cooperate
enough [9, 10, 13].

Piatek et al. [10] showed that incentive mechanism of
BitTorrent is not robust to strategic clients. In order to prove
their claim, they developed BiTyrant which tries to deter-
mine the exact amount of contribution necessary to maxi-
mize its download rate by dynamically adapting the upload
rate allocated to neighbors. The authors claim that BitTyrant
provides a median 70 % performance gain for a 1 Mbps
client on live Internet swarms.

Locher et al. [9] study BitTorrent’s vulnerability to
selfish-behavior. They showed that even entire files can be
downloaded without reciprocating at all. To this end, they
presented BitThief, a free riding client that never contributes
any real data. BitThief connects to all the peers that it can
find in order to get the maximum amount of optimistic
unchokes. They also, demonstrated that a simple trick suf-
fice in order to achieve high download rates, even in the
absence of seeds.

Levin et al. [13] arrive at a conclusion that BitTorrent’s
incentives are not fair, even under a simple definition of
fairness which tells “the more a peer gives, the more it gets”.
They proposed a game theoretic model for BitTorrent and
within that model, they have shown that BitTorrent does not
use tit-for-tat; moreover, they proposed an auction-based
model which they found to be more accurate for BitTorrent.
Based on their auction-based model they expressed that
BitTorrent does not use tit-for-tat as widely believed but
an auction to decide which peers to serve.

2.2 Trust mangement

Trust management in P2P networks can be classified into 3
main categories: credential and policy-based trust manage-
ment [14, 15], social network-based trust management [16,
17] and reputation-based trust management. In this paper
only reputation-based TMSs has been considered.

Peers in reputation-based systems interact with one an-
other and assign trust values to one another. Assigned trust
values are a function of local trust scores, global trust scores
or a combination of the peers’ global and local trust scores.

Eigen Trust Algorithm [18] stores a global trust score for
each peer which is computed from scores given by all other
peers and it uses pre-trusted peers concepts to avoid collu-
sion attack in which malicious peers conspire together in
order to defame honest peers. However, no mechanism for
choosing these peers is presented and there is no guarantee
that these peers are really trusted. Moreover, this work does
not consider lying piece attack and peers who tell lye about
the scores of others. Eigen trust algorithm uses matrix

Peer-to-Peer Netw. Appl. (2013) 6:86–100 87

calculation to compute global score which is slow especially
in BitTorrent swarms which may consist of thousands of
peers. In addition, it does not make any difference between
fake peers who change their identity and newcomers and
impose an overhead such as CAPTCHA on newcomers to
stop Sybil attack. Finally, keeping a lot of old data to compute
global scores introduces a significant storage overhead in
populated swarms. These issues make this mechanism im-
practical especially in the BitTorrent network which usually
has high number of peers. The study of Hu et al. [19] is
another example of algorithms which stores a global trust
score for each peer but unlike Eigen Algorithm, they provide
a mechanism against Sybil attack; however, it still suffers
from a significant overhead.

Stakhanova et al. [20] and Singh et al. [21] proposed a
TMS in which each peer computes local trust score rather
than a global trust score for other peers. As it is stated by
Shah et al. [22], TMSs that don’t utilize global trust scores
have a slower convergence rate and cannot react as rapidly
as they should to the changes in peers’ behaviors. Moreover,
the presented TMS in [21], TrustMe, uses broadcasting the
query messages to query or report the reputation scores.
This method will impose a lot of message in the network.
In addition, when network size is very large especially in the
BitTorrent swarms, it will take a long time to disseminate
scores and this is why its convergence rate is slow. Conse-
quently, this mechanism is not suitable for implementation
in highly populated networks such as BitTorrent.

From another perspective, TMSs can be classified into
fully decentralized and partially decentralized as well. In
fully decentralized TMSs [18, 20, 21] different algorithms
have been used such as pagerank [18], fuzzy logic [23] or
ecological network [24] but the large amount of computa-
tion and reputation in these mechanisms bring a significant
overhead and latency to the network.

In [25] an example of partially decentralized approaches
which uses a credit-debit mechanism for Gnutella network
has been presented. This mechanism credits the peer for
serving content and debits the peer for downloading resour-
ces. In this approach a Reputation Computation Agent
(RCA) at regular intervals collects reputation information
from peers. The RCA maintains the transaction state of the
system keeping track the full list of transactions and points
to be granted for those transactions for a period of time.
After each transaction, each peer reports the transaction to
RCA. This large amount of transactions imposes a commu-
nication overhead on peers. Moreover, in [25], no direct
mechanism for decreasing the score for malicious behavior
is presented.

To the best of our knowledge, [22] is the only work which
proposes a reputation based trust management scheme for the
BitTorrent network. In this work, a partially decentralized
reputation-based TMS for BitTorrent is presented which uses

global trust scores to evaluate peers as well as their local trust
scores. The tracker functionality is extended to act as a Rep-
utation Computation Agent but the algorithm which is used to
compute global scores of peers is vulnerable to collusion
attack as our simulation results show. In addition, the pro-
posed method doesn’t address Chatty-Peer attack, in which
malicious peers advertise ownership of many pieces but do
not upload any block neither authentic nor fake one.

In this paper, like [22] we use a partially decentralized
reputation-based TMS for BitTorrent with both local and
global trust score concepts. However, based on the evalua-
tion results, our mechanism is significantly more resilient to
different kinds of attack especially collusion attack in com-
parison with [22]. In addition, the majority of previous
works in P2P networks introduce a large amount of trans-
action among peers and message overhead to the network
which can decrease the performance of peers even in small
swarms. This issue makes most of them impractical in
BitTorrent network; however, our mechanism has a negligi-
ble overhead which makes it practical to integrate with
BitTorrent present protocol. Finally, unlike most of previous
studies, in this paper free-riding and a variety of attack types
are considered and evaluated in detail.

3 Preliminaries

3.1 BitTorrent overview

In this section, sufficient relevant details about BitTorrent
are presented to allow us expressing our hypothesis. BitTor-
rent works by a group of users (called swarms) with an
interest in downloading a specific file and cooperating to
accelerate the process.

In BitTorrent jargon, each file is divided into some pieces
(usually of the length 256 KB) and each piece is divided to
some blocks (typically 16 blocks). To release a file on
BitTorrent network, a specific description file (called “tor-
rent file”) is necessary which holds the general information
of the file such as name, piece length, and Pieces (a string
consisting of the concatenation of all SHA-1 hash values of
the pieces) as well as the trackers addresses. Each swarm is
managed by the trackers (the only central points in the
swarm) which keep track of all peers and their activities.
There are two kinds of interactions between peers and the
tracker: 1) a peer asks the tracker for a list of available peers
(a maximum of 50 peers is typical) and 2) peers announce
periodically the tracker of their status regarding download of
the file.

Using the reply from the tracker, the client connects to
the peers and downloads pieces of the file from them, as
well as uploading completed pieces to other peers. When a
file is being downloaded, this peer is considered as a leecher.

88 Peer-to-Peer Netw. Appl. (2013) 6:86–100

Once the file is completely downloaded and shared, the peer
is converted to a seed.

The maximum number of peers served concurrently is
configurable by the user. All other peers connected to a peer
(whether they are interested or not) which are not being served
are said to be choked. In consequence, each client implements
an algorithm to choose which peers to choke and un-choke
among those connected to him over the time. The strategy
proposed by BitTorrent is named “tit-for-tat”, meaning that a
client will preferably cooperate with the peers cooperating
with him. This strategy however, if implemented strictly,
would considerably slow down the insertion of newcomers
into a running swarm because they do not have anything to
share at the beginning. Thus, clients which have nothing to
share are given three times more chances to be selected by the
optimistic unchoke algorithm. Another important algorithm in
BitTorrent is the piece selection algorithm which follows the
Rarest First (RF) policy. This algorithm is based on the con-
cept of choosing the pieces that are less replicated among
peers at first. When there is more than one piece with the
smallest degree of replication, then the choice is random.

3.2 BitTorrent attacks

There are many kinds of attacks against BitTorrent, which
are frequently deployed today, including: DoS [26], Sybil
[27], Collusion [26], Lying-Piece [7], Fake-Block [28] and
Chatty-Peer [28] attack. In the following, six mentioned
attack types are described briefly.

3.2.1 DoS attack

Denial of Service attack happens when malicious peer sends a
large amount of requests or useless messages to the victim
peer. As a result, bandwidth and other resources of the victim
peer are used without any gain. Covering this attack type is
outside the scope of a TMS and there are several approaches
for encountering with this type of attack [29, 30].

3.2.2 Sybil attack

The Sybil attacker creates a large number of identities in
order to become more powerful. Depending on how identi-
ties are generated, system may be vulnerable to this attack.
Usually this attack type can be prevented by refusing mul-
tiple connections from a specific IP address. In addition,
there are some more effective proposed defense mechanisms
against this attack [31, 32].

3.2.3 Collusion attack

In this attack type, a set of malicious peers under guidance
of a central peer (leader), perform a correlated attack against

the system. This attack type is the most dangerous
attack type because if invader peers function correctly
as planned at each step, it would be extremely difficult
to locate and annihilate the attackers [26]. Usually in
Reputation-Based TMSs, collusion attack’s goal is to
decrease the reputation and score of honest peer as well
as increasing score of malicious peers. This behavior
finally results in: destroying fairness among peers and
a false global belief about peers. Attackers achieve to
this goal by spreading false information about honest
peers and themselves.

3.2.4 Lying-piece attack

The goal of attacker in Lying-Piece attack is to destroy
balance of Rarest First Policy by announcing ownership
of a piece it does not have. This behavior will artifi-
cially increase the replication level a piece, and will
reduce the actual availability level of the piece in the
swarm. This attack type is necessary and also a kind of
tool for other attack types because it tempts other peers
into responding the attacker false advertisement. In fact,
this is a prologue for other attacks such as Fake-Block
or Chatty-Peer attack. Attacker can tell lie not only
about a limited number of pieces but also about a great
number of or all pieces [7].

3.2.5 Fake-block attack

In this attack type, attacker advertises ownership of
many pieces of the file (Lying-Piece Attack) right after
joining the swarm. Upon receiving this information,
victim peer sends the request to the attacker and the
attacker instead of sending the authentic block sends
fake block. When download of all blocks of a piece
completed the victim peer performs a hash check for
that piece. The check will fail and all blocks of the
piece should be downloaded again. Therefore, the at-
tacker could force the victim to redownload a 256 KB
piece, only by sending a 16 KB fake block. By repeat-
ing this process, attacker can make a big delay in
download process of the victim peer.

3.2.6 Chatty-peer attack

In this type of attack similar to Fake-Block attack, attack-
er advertises ownership of many pieces but the different
point is that when victim requests one or more pieces the
attacker doesn’t upload any block neither authentic block
nor fake one. As a result, through repetition of this sce-
nario over and over, the victim spends a considerable
amount of time dealing with attackers with no beneficial
consequence.

Peer-to-Peer Netw. Appl. (2013) 6:86–100 89

4 Proposed trust management scheme

In this section, the proposed TMS is introduced. It uses the
BitTorrent peers’ transactions for calculating local scores
and the BitTorrent tracker to compute global trust scores.
There are five main steps in the proposed TMS, which are
illustrated in Fig. 1.

At the first step, peers calculate and assign local scores to
one another. These local score are calculated according to
the transaction history which each peer keeps for every other
peer it has had dealt with. In the second step, each peer
sends calculated local scores to the tracker. As it was stated
in section 3.1 peers interact with tracker at fixed intervals
which are called tracker_update_intervals. At these inter-
vals, each leecher sends to the tracker, a list of scores for the
peers with whom it had interaction. In this way the tracker
gathers scores from different leechers including honest and
fake ones. When a leecher becomes a seed, because it
doesn’t download from other leechers, it can’t distinguish
malicious peers from honest peers; therefore, it won’t par-
ticipate in this scenario anymore. In the third step, first, the

tracker calculates global cumulative score of each peer, and
then finds the top 10 % of peers that have the highest global
scores. In the fourth step, the top 10 % of peers determine
global score of other peers, and finally in the last step, these
global scores are sent back to the peers along with the
tracker response. Peers after receiving global scores, use
them to distinguish rouge peers from honest peers in their
Choking and Optimistic Unchoking algorithms.

As a result, during five steps, peers simple interactions
are converted to valuable information for identifying mali-
cious behaviors in a swarm. In the following sections, first
trust scores calculation algorithms are presented in detail;
second, robustness of the proposed TMS is discussed, and
finally the modified choking algorithm is presented.

4.1 Local and global trust scores calculation

The proposed TMS utilizes both local and global informa-
tion for calculating trust score for each peer. Local score
calculation is done inside the peers using their transaction
logs with other peers, and global scores are calculated at the
tracker using peers’ local scores. In the following, calcula-
tion of local and global trust score are discussed.

4.1.1 Local trust score calculation

As indicated in preceding sections, each peer keeps record
of any interaction with other peers, including upload, down-
load, unanswered request, and time of interaction. This
information is kept in a local Hash Table data structure with
Peer-ID as the key, to be accessed quickly. Peers can utilize
this information to calculate a fairness score for other peers.
Equation 1 defines fairness score of peer j given by peer i.
Peer i calculate this score according to peer j recorded
behaviors during recent t seconds as follows:

Fij tð Þ ¼ dij tð Þ � uij tð Þ � urij tð Þ ð1Þ
Where dij(t) is number of chunks that peer i have been

downloaded from peer j since time t till now; uij(t) is number
of chunks that peer i have been uploaded to peer j during
recent t seconds, and urij(t) is number of unanswered
requests sent by peer i to peer j during recent t seconds. If
the time passed from sending piece-request moment exceeds
a threshold called request_time_out, then an unanswered
request will be accounted.

Equation 1 considers peers’ cooperation with download
(dij) and upload amount (uij) parameters because for peer i
downloading more than uploaded amount to the peer j
shows more cooperation and more fairness score. In addi-
tion, number of unanswered requests (urij) is considered to
combat with chatty peers because more unanswered request
means less fairness score (Fij). At this point, peer i usesFig. 1 The Proposed TMS main steps

90 Peer-to-Peer Netw. Appl. (2013) 6:86–100

fairness score to assign a local trust score, to peer j, with use
of Eq. 2:

LocalScoreijðtÞ ¼
�1 if there is at least one bogus chunk

in j0s uploaded chunks
2
p

� �
*atanatanðFijðtÞÞ else

8
<

:
ð2Þ

During devising Eq. 2, three major factors were consid-
ered: the first factor was fast reaction to suspicious behaviors
like receiving bogus chunks. When a peer sends a bogus
chunk, that peer is highly probable of being fake; therefore,
upon detection of this fact, a fast reaction is required which is
done with assigning the lowest possible score (−1); the second
factor was necessity of a non-linear function to determine
peers scores. At low fairness scores a high sensitive function
is required but when fairness score is high, sensitivity should
be avoided because high scores represent a steady state in peer
behavior. To accomplish this concern, atan() function is used
because the rate of changes in atan() function at low values is
high and vice versa. As an example, by using atan() function,
between local trust scores of two peers with fairness scores of
−10 and −1 there is 0.43 difference but for two peers with
fairness scores of −1000 and −1500 the difference is only
around 0.0003. Another advantage of using atan() function
is normalizing scores in the range of [−1, 1]; the third and last
factor is time. Time was used in order to give a rehabilitation
chance to the peers who were defamed. Sometimes due to
unintentional sending of fake blocks or other uncontrollable
factors such as delays, honest peers’ fairness scores gets low
but this should be forgotten after a period which is called
rehabilitation_interval.

4.1.2 Global trust score calculation

At the tracker, during each update interval, global scores of
peers are calculated and announced to the connected peers.
One crucial point in the calculation of global score is valid
both peers score each other. This means that a fake peer
can’t assign a negative score to an honest peer unless it
communicates with that honest peer. Therefore, assigning
a negative score by the fake peers to the honest peers is at
the expense of being recognized by the honest peers.

In the calculation of global scores, all peers are not
considered equal. First, peers are sorted descending accord-
ing to their cumulative scores. Then the top 10 % of peers
are selected as Super-Peer and local scores of these Super-
Peers are used to calculate global score of other peers. The
global score of each peer is the average score given by all
Super-Peers or some of them; however, there is the possi-
bility that all Super-Peers have no score for all peers. In
addition, if the score for a specific peer is not available in
none of Super-Peers, it will be the average score given by
other peers. By using this mechanism collusion attacks can
be controlled because this method doesn’t let fake peers to

affect other peers global score by trying to prevent them
from being Super-Peer. The effectiveness and robustness of
this method is certified in the next sections.

4.2 Robustness analysis

In this section, robustness of the proposed TMS against two
different attack scenarios is discussed. The assumptions are
existence of collusion attack between fake peers which
means fake peers know one another, and they deliberately
organize to attack the network. In addition as it was stated in
section 4, in our system only bidirectional scoring is con-
sidered and unilateral scores are ignored; thus, if fake peers
intend to assign negative score to honest peers they should
necessarily communicate with them.

In the following, first, two different scenarios for behav-
ior of fake peers are introduced, then essential parameters
and calculation of global score of each type of peer are
discussed and finally analysis of robustness in each scenario
is explained.

In the first scenario which is called Active-Scenario, fake
peers joins the BitTorrent swarm and communicate with
other peers, assign maximum score to one another, and they
also do malicious behaviors in the swarm.

The second scenario is called Passive-Scenario. In this
scenario, fake peers join the BitTorrent swarm but don’t
communicate with other peers and they just give maximum
score to one another in order to get Super-Peer positions at
the tracker.

In order to analyze each scenario, four constant parame-
ters are required. These constant parameters are:

Kg shows average percentage which honest peers
communicate with other peers.

Kf indicates average percentage which fake peers
communicate with honest peers.

Sp demonstrates average score given to honest peers by
honest peers.

Sn shows average score given to fake peers by honest
peers.

In addition to these constant parameters the only varia-
bles are number of fake peers in the swarm indicated by F,
and the total number of peers including fake and honest
peers together indicated by N. Calculation of constant
parameters is discussed thoroughly in appendix A, also fake
and honest peers global score is calculated as follows. In a
swarm with total number of N peers including F fake peers
and N-F honest peers, the global score of a fake peer is:

fake peer global score ¼ F � 1ð Þ þ Kf * N � Fð Þ*Sn ð3Þ
The first part of Eq. 3 indicates the score given by other

fake peers to this fake peer due to collusion assumption, and
the second part of this equation is the average given score by

Peer-to-Peer Netw. Appl. (2013) 6:86–100 91

honest peers to this peer. The global score of an honest peer
can be calculated as in Eq. 4:

honest peer global score ¼ Kg*ðFÞ* �1ð Þ þ Kg* N � F � 1ð Þ*Sp ð4Þ
In Eq. 4, first part is the assigned score by the fake peers

to an honest peer, and the second part indicates average
score given to this honest peer by other honest peers.

At this point all the prerequisites for analyzing both men-
tioned scenarios are presented and it’s time to discuss the
scenarios. In the Active-Scenario fake-peers communicate
with other peers and behave according to their types. As an
example, Fake-Block peers upload fake blocks and Chatty
peers don’t respond to honest peers requests. As a result, fake
peers try to decrease performance of swarm through malicious
behaviors. Fake peers follow another aim in addition to de-
creasing performance of swarm, they want to occupy as much
as possible Super-Peer positions; thus, they give maximum
scores to each other (collusion attack) and minimum score to
honest peers but receive a negative score(Sn) as well.

If there are r Super-Peer positions available, then the
following equation shows how many fake peers in the
Active-Scenario are necessary to occupy all the Super-Peer
positions.

rthfake peer global score > Max honest peer global scoreð Þ
rth F � 1ð Þ þ Kf * N � Fð Þ*Sn
� �

> MaxðKg*ðFÞ* �1ð Þ þ Kg* N � F � 1ð Þ*SpÞ ð5Þ

In order to calculate the score of rth peer of fake peers, in
case of our TMS, 10 % of total swarm peers which is N*0.1,
a large amount of fake peers global score samples were
collected. By plotting these scores, we observed that scores
follow an arc tangent function, and score of rth fake peer0
N*0.1 is on average around 0.85 of the maximum score of
fake peers. Therefore Eq. 5 is simplified as follows:

0:85*Max F � 1ð Þ þ Kf * N � Fð Þ*Sn
� �

>

Max Kg*ðFÞ* �1ð Þ þ Kg* N � F � 1ð Þ*Sp
� � ð6Þ

Replacing constant parameters from Appendix A gives
that, in order to satisfy Eq. 4, fake peers must consist at least
%36 to %40 of the whole swarm population. In the Passive-
Scenario unlike Active-Scenario fake peers don’t communi-
cate with other peers and they just give maximum score to
one another; however, they can’t assign score to honest
peers because unilateral scores in our system are ignored.
In this scenario the correspondent equation for occupying all
r Super-Peer positions by fake peers is:

rthfake peer global score > Max honest peer global scoreð Þ
F � 1ð Þ > Kg* N � F � 1ð Þ*Sp ð7Þ

In Eq. 7 the second part of fake peer global score and the
first part honest peer global score are omitted due to the fact
that fake peers don’t communicate with other peers and global

score of all fake peers is same and equal to F-1. Replacing Kg

and Sp from Apendix.A parameters shows that fake peers
must consist at least %34 to %44 of whole swarm population.

Therefore in both Active and Passive scenarios, fake peers
must consist a large amount of swarm in order to occupy all
the Super-Peer positions. In addition, as the evaluation results
indicate, even when fake peers consist 50 % of swam, they
can’t occupy all the Super-Peer positions. This is due to the
fact that, this analysis is the optimistic case, and in the imple-
mentation from the begging, the algorithm detects fake peers
gradually, and they can’t affect the swarm any more.

4.3 Modified choking algorithm

In this section the modified choking algorithmwhich is used by
peers for Unchoking and Optimistic Unchoking is discussed.
The input of this algorithm is a list of peers sorted based on the
original BitTorrent tit-for-tat mechanism. This sorting based on
the tit-for-tat ensures fairness among peers. After sorting, can-
didate peers are selected according to their local and global
scores in three stages. Algorithm 1. shows the modified chok-
ing algorithm.

In the first part of this algorithm, lines 4 through 10,
judgment about peers is done using their global and local
scores; if their scores are upper than a threshold then they
will be unchoked.

In the second part of this algorithm, lines 11 through 17, if
there is still unchoke capacity, peers who don’t have negative

92 Peer-to-Peer Netw. Appl. (2013) 6:86–100

global score and a local score greater than local score thresh-
old will be unchoked. The third section of this algorithm, lines
18 through 24, tries to prevent performance downfall in the
swarm. One of the existing threats in BitTorrent arises when
peers don’t unchoke one another which decreases perfor-
mance of swarm significantly. After unchoking peers due to
their global and local scores, if there is still capacity to un-
choke, peers who have had no suspicious behavior (usually
newcomers) will be unchoked. Finally, in the last section of
this algorithm, lines 25 and 26, peers which have uploaded
fake blocks are choked immediately.

5 Impact evaluation

To evaluate effectiveness of the proposed TMS, we imple-
mented it both in a BitTorrent simulator and in a real
BitTorrent swarm in the Emulab [33] testbed. Performance
and robustness of the proposed TMS was evaluated against
Free-Riders and under different kinds of attacks with vari-
ous percentages of the rogue peers. Attacks included: 1)
Fake-Block 2) Chatty-Peer 3) Lying-Piece and the collusion
attack. To clarify differences and characteristics of different
kinds of malicious peers, their properties are summarized in
Table 1. In the following sections first, simulation results are
presented; then, results of the implementation of BitTorrent
in Emulab testbed are demonstrated.

5.1 Simulation

We used the JAVA based discrete event General P2P Simu-
lator (GPS) [34] to implement our simulations. GPS is
between Message-Level and Packet-Level network simula-
tor. It provides a selection of flow models including: Peer
Based Bandwidth (PBB), Dynamic Link-level Network
Bandwidth (DLNB) and TCP Based Flow (TBF) Model.
Although packet level network simulation is more accurate
than message level, but it requires long simulation time. In
addition, approximate models ought to be sufficient espe-
cially when macro-level phenomena like download amount
or time are important. The GPS has a built-in BitTorrent
implementation, and this built-in implementation was mod-
ified to implement the proposed algorithm.

Each downloading session consisted of 100 peers including
one tracker and one peer as the seed. The network topology
was generated using GT-ITM [35] which is integrated into
GPS. The calculation of local and global trust score thresholds
is discussed in the Appendix B. Other simulation parameters
are illustrated in Table 2. Each simulation was done to down-
load completion of all peers; however, after spending 60 min,
the simulations were terminated. The simulations were per-
formed to evaluate the effect of Fake-Block and Chatty-Peer
attack separately. In the proceeding sections first Fake-Block
attack results are presented, and then Chatty-Peer attack out-
comes are discussed.

5.1.1 Evaluation of fake-block attack

This section illustrates the impact of Fake-Block attack on
the performance of honest peers. In order to evaluate the
impacts of this attack, honest peers average download speed
with the purposed TMS was compared to the original Bit-
Torrent peers. In addition, to measure effectiveness of the
proposed TMS in comparison with the previous work [22],
we implemented their TMS as well.

Figure 2 shows the average download speed of honest
peers with the proposed TMS compared to the original
BitTorrent peers and peers with the TMS [22]. The simu-
lations were performed under presence of various percen-
tages of Fake-Block peers with collusion between them. The
results indicate a considerable improvement in the down-
load speed of honest peers in comparison with the original
BitTorrent and TMS [22] peers. As it is evident in Fig. 2
when more than 30 % of the peers send fake blocks, the
average download speed of the original BitTorrent peers
decreases significantly. This significant decline is due to
the fact that original BitTorrent peers lack any specific
mechanism to detect and limit this kind of peers.

Table 1 Properties of different malicious peers

Send Bogus
Chunk

Piece-
Lying

Fake
Trust info

Upload Valid
Chunk

Fake-
Block
Peer

YES YES YES NO

Chatty
Peer

NO YES YES NO

Free-Rider NO NO NO NO

Table 2 Simulation parameters

Property Value

File size 500 MB

Peers’ Bandwidth 1 Mb Down/Up

Chunk size 256 KB

Max number of Unchoked
Connections

5

Rechoking interval 10 sec

Number of random peers in

Tracker’s response 50

Tracker update interval 60 sec

Local Score Threshold 0.2

Global Score Threshold 0.5

request_time_out 3 times of an answered
request

rehabiliation_interval 10 min

Peer-to-Peer Netw. Appl. (2013) 6:86–100 93

Moreover, although peers with the TMS [22] performs
satisfactory in the presence of 10 % and 20 % Fake-Block
peers, their average download speed plunges sharply after
presence of more than 30 % Fake-Block peers. This signif-
icant decline is obvious in the presence of 40 % Fake-Block
peers in which the average download speed of honest peers
is approximately similar to original BitTorrent peers. We
believe that this sharp decline is result of using a random
mechanism at tracker to select peers for judging about other
peers global scores. When number of fake peers grows, the
chance of a fake peer to be opted as a Super-Peer becomes
more and more. In this way false trust information will be
propagated, and this adverse downfall in the performance of
honest peers will be imminent.

Finally, as it was surmised in the Robustness Analyses
section, after growing of fake peers to more than 40 % they
can enter the Super-Peer positions. This phenomenon trig-
gers the downfall in the speed of TMS-Enabled peers.
However, their speed is still substantially higher than Bit-
Torrent and TMS [22] peers.

5.1.2 Evaluation of chatty-peer attack

In this section evaluation of the proposed TMS facing with
Chatty-Peers is presented. Figure 3 shows the average
download speed of honest peers with the proposed TMS

compared to the original BitTorrent peers and peers with
the TMS [22]. Similar to the results of previous section,
the average speed of TMS-Enabled peers is substantially
higher than the original BitTorrent and TMS [22] peers.
Moreover, also in Chatty-Peer attack, the average down-
load speed of peers with TMS [22] declines significantly
in the presence of more than %30 chatty peers. This
decline as well as the decline in the Fake-Block attack
indicates that using a random mechanism at the tracker to
find Super-Peers which determine the global score of
other peers is not reliable.

Another considerable point about Fig. 3 is that the impact
of Chatty-Peer attack on the download speed of honest peers
is less effective than Fake-Block attack and shows that
Fake-Block attacks are nearly 15 % more harmful and
effective than Chatty-Peer attacks. One reason can be that
honest peers spend a considerable time for detection of fake
blocks because they first should download the whole block
and then identify the corruption of that block.

5.2 TMS implementation results

In order to evaluate the proposed TMS in a real BitTorrent
swarm we used Snark [36], an open-source implementation of
BitTorrent in Java. Snark was manipulated to include the
proposed TMS.

0

0.5

1

1.5

2

2.5

3

3.5

10.0% 20.0% 30.0% 40.0% 50.0%

A
vg

. D
o

w
n

lo
ad

 S
p

ee
d

(M
b

p
s)

Fake-Block Infection Percent

Original
BitTorrent Peers
TMS-Enabled
Peers
TMS [21] Peers

Fig. 2 Average download
speed of honest peers with the
proposed TMS compared to the
original BitTorrent peers and
peers with TMS [22]

0

0.5

1

1.5

2

2.5

3

3.5

0.0% 10.0% 20.0% 30.0% 40.0% 50.0%

A
vg

. D
o

w
n

lo
ad

 S
p

ee
d

(M
b

p
s)

Chatty-Peer Infection Percent

TMS-Enabled
Peers

Original BitTorrent
Peers

TMS [21] Peers

Fig. 3 Honest peers average
download speed with the
proposed TMS compared to
original BitTorrent and TMS
[22] peers in presence of
various percents of Chatty-
Peers

94 Peer-to-Peer Netw. Appl. (2013) 6:86–100

The Emulab testbed was used to perform the real experi-
ments. A 200 MB file was shared in two distinct swarms
with different number of malicious peers. In the first
swarm malicious peers consisted 20 % of swarm, and in
the second swarm they consisted 40 % of the whole swarm
population. In each swarm there were totally 50 nodes of
six different types which are summarized in Table 3. All
other properties except the bandwidth were same as the

simulator configurations in Table 2. In order to ensure that
low-bandwidth peers would not be penalized, different
bandwidth was assigned to various peers. To achieve this
goal, each peer’s bandwidth was selected randomly from
the set of 256 Kbps, 512 Kbps, and 1024 Kbps. Moreover,
to spread peers in different clusters we developed a random
graph generator which outputs the Tcl correspondent code.
The source codes for our BitTorrent Implementation with
TMS and Emulab Topology generator are publicly avail-
able at: http://sbu-alumni.ir/behrooz/projects.html. Figure 4
is an example of generated graph and nodes distribution
with automatic graph generator.

As Fig. 4 indicates, a combination of different types of
nodes was experimented. In addition, to assess the effective-
ness of the proposed TMS in prevention of free riding,
BitThief, the prominent BitTorrent Free-Rider was included
in the swarm as well. Each node was run to completion of its
download; however, after spending 100 min all nodes were
terminated. In order to compare different nodes perfor-
mance, the ratio of each node average speed to its bandwidth
was calculated and demonstrated in Fig. 5.

Table 3 Number of different node types

Node type No. of nodes
first exp.

No. of nodes
second exp.

TMS-Enabled Honest Peers 36 26

Tracker 1 1

BitThief Client 1 1

Vuze Client 1 1

Transmission Client 1 1

Chatty Peers 5 10

Fake-Block Peers 5 10

Total 50 50

Fig. 4 An example of
generated graph with the
automatic random graph
generator for the Emulab
testbed

Peer-to-Peer Netw. Appl. (2013) 6:86–100 95

http://sbu-alumni.ir/behrooz/projects.html

As Fig. 5 demonstrates, the TMS-Enabled peers have a
considerable higher performance in comparison with other
peers in the both experiments. In addition, two of famous
BitTorrent Clients, Vuze and Transmission were experi-
mented as well. As the results show, in the first experiment
the TMS-Enabled peers were nearly %35, and in the second
experiment more than twice more successful than Vuze and
Transmission clients. This increase is due to the fact that the
ordinary clients are adversely affected by Chatty and Fake-
Block peers activities because they don’t utilize the trust
information at the tracker. In the first experiment the number
of malicious peers is half of the second experiment; conse-
quently, the Vuze and Transmission reach a higher ratio, but
in the second experiments, as the number of rogue peers
increase their performance decreases. Therefore, it is evident
that the ordinary BitTorrent clients are vulnerable to misbe-
havior in the swam. In contrast with Vuze and Transmission
clients, TMS-Enabled peers, based on their knowledge of
other peers can easily distinguish these activities, and avoid
communication with malicious peers.

In addition to malicious activities such as sending fake
blocks (Fake-Block attack) or evading from responding
(Chatty attack), Free-Riding is substantially penalized in
the proposed TMS. According to Fig. 5, the performance
of TMS-Enabled peers is approximately three times
higher than BitThief, one of the most famous Free-
Riding clients.

Finally, the significant low performance of Chatty and
Fake-Block peers even in the second experiment demon-
strate that their behavior is recognized during early
stages of download process. In addition, they will be
choked and cannot delay TMS-Enabled peers any longer.
The main reason for the low download speed of Chatty
and Fake-Block peers is that the number of TMS-
Enabled peers is high and they detect the malicious
peers, and choke them; as a result, malicious peers speed
declines significantly.

5.3 Proposed TMS robustness evaluation

The main threat for the proposed TMS is collusion attack and
entrance of rogue peers in Super-Peers set which can result in
significant decrease in the performance of swarm. On the
other hand, we believe that through the repetition of Super-
Peer selection process at the tracker, number of rogue peers in
Super-Peers set approaches a small constant. To show this
fact, number of rogue peers which could enter in the Super-
Peers set was measured, in the presence of 30 %, 40 %, and
50 % rogue peers. This measurement was performed in the
GPS simulator with total number of 100 peers during 15 min.

As Fig. 6.a, b and c indicate, after some overshoot in the
beginning of downloading process, number of rogue peers se-
lectedasSuper-Peer,approachesaconstantvalue, likeadamping
wave. At the beginning of Super-Peer selection process, peers
behaviorsarestillunknown;therefore, theTMSneedsanamount
of time topass the transit state and reaches toa steadystate. Inour
simulation results, this required transit time was nearly 11 min,
but this time can vary in different conditions, and depends on
different parameters such as type and entrance rate of rogue
peers. Usually this time compared to life time of a swarm is
inconsiderable and TMS can reach a steady state during early
phasesof its life.Thus,afterpassingthe transit state, theproposed
TMS can prevent rogue peers to be selected as Super-Peer.

6 Tms imposed overhead

In this section imposed overhead on BitTorrent clients and
the tracker by the proposed TMS is discussed. In the pro-
posed TMS, list of peers transactions and correspondent
scores are kept at the clients; as a result, transactions history
is distributed along the peers. This distribution of transac-
tions causes a negligible overhead on each peer individually
and each peer just keeps track of its transactions and com-
putes score for its transactions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TMS-Enabled
Honest Peers

Vuze Honest Peer Transmission
Honest Peer

BitThief Chatty Peers Fake-Block Peers

R
at

io
 (

A
vg

.e
S

p
ee

d
/B

an
d

w
id

th
)

Node Type

First Experiment

Second Experiment

Fig. 5 The ratio of each node
type average speed to its
bandwidth

96 Peer-to-Peer Netw. Appl. (2013) 6:86–100

The imposed overhead on the tracker is important as well
because today’s trackers are required to do a small amount
of work. The only additional duty of tracker is to collect
scores from different peers and calculate cumulative score of
each peer when they connect to tracker to announce their
status. Therefore, the amount of storage and computation at
tracker side is not significant; conversely, the amount of
communication on the part of tracker needs a more accurate
attention. As it was stated in section 3.1, peers interact with
tracker at fixed intervals and they send their progress and
local scores at these intervals as well. Thus, no extra con-
nection in comparison with the original protocol, to the
tracker is initiated and only the amount of data exchanged
during each interval between peers and tracker is slightly
increased.

In summary, the conclusion can be drawn that, the pro-
posed TMS does not imposes a significant overhead neither
on peers nor on the tracker.

7 Future works

One of the considerable topics about the proposed TMS is
the tracker, which can become a single point of failure and

susceptible to a DoS attack. In addition, relying on the tracker
to calculate the global trust scores, adds overhead to the
tracker when the size of the swarm is extremely large. As it
was stated in the section 6 there is no connection overhead but
the amount of storage and calculation overhead in extremely
large swarms may become a bottleneck and significant. The
Torrentfreak website [37] reports that the largest BitTorrent
swarm (seeds and leechers) ever witnessed was an epi-
sode of a serried entitled “Heroes” with a total of
144,663 peers. In such large and crowded swarms the
overall imposed overhead on the tracker can become
significant because even these highly small amount of
extra storage and calculation per peer when observed as
a whole become huge amounts.

In order to solve these issues, BitTorrent has drafted an
addition to its protocol that allows for trackerless torrents. In
the trackerless mode a distributed hash table (DHT) is used
instead. Usually most of client implementations, support
Peer Exchange (PEX) which allows peers to supplement
the trackers functionality by sharing peers lists among them-
selves. In an attempt to address both of expressed concerns,
we are designing and evaluating a distributed tracker proto-
col for our TMS using DHT.

Fig. 6 a Number of Rogue Peers selected as Super-Peer when. b Number of Rogue Peers selected as Super-Peer when 30 % of swarm is infected.
c Number of Rogue Peers selected as Super-Peer when 50 % of swarm is infected. 30 % of swarm is infected

Peer-to-Peer Netw. Appl. (2013) 6:86–100 97

8 Conclusion

In this paper, we have presented a new reputation based trust
management system for BitTorrent protocol. The goal of our
work is to cover different attack types against BitTorrent with-
out changing the present protocol a lot. Themain concept of our
TMS is sharing experiences among peers. We used both local
and global score concepts to detect malicious peers as fast as
possible. The tracker’s functionality is extended to collect local
scores as well as calculation and dissemination of global scores.

The results of simulation and implementations indicate
that the proposed TMS can improve performance of honest
peers significantly. In addition, our TMS was highly suc-
cessful in limiting activity of rogue peers and minimizing
downloading by Free-Riders. Another considerable point
about the proposed TMS is its robustness in presence of
large amount of rogue peers with collusion among them.
Our analyses and experiment results show that even in
presence of 50 % percent rogue peers in swarm the proposed
TMS can act and decide rationally.

Acknowledgments This research has been done by financial support
of Shahid Beheshti University research chancellor under Contract No.:
600/537-90/3/30.

Appendix A Calculation of Sn, Sp, Kg and Kf parameters

In order to estimate Sn parameter we collected a huge amount
of data samples. By plotting data and fitting probability
curves, we discovered that fake peers’ scores follow a normal
distribution. As a result, in order to estimate the average score
of fake peers given by honest peers, statistical confidence
interval estimation was used. A %85 confidence interval for
the average score of fake peers was calculated as following:

A 100* 1� að Þ confidence interval for average of data μð Þ :
μ 2 ðx�z1�a

2
ðn� 1Þ sffiffi

n
p ; xþz1�a

2
ðn� 1Þ sffiffi

n
p Þ

Where μ is average score of fake peers, x and s are
standard average and deviation of samples, n is number of
samples and (1-α) equals 0.85. Replacing these values, we
have μ Є (−0.9223, −0.7023) confidence interval for aver-
age score of fake peers. By a similar analysis to Sn, the
following intervals for other parameters were estimated.

Parameter Confidence-Interval

Sp (+0.6703,+0.8803)

Kg (+0.6326,+0.8504)

Kf (+0.7806,+0.8308)

Appendix B Calculation of local and global trust score
thresholds

In order to find optimal values for the local and global trust
score thresholds, we ran several simulations of a swarm with
100 peers including 25 malicious peers of different types.
These thresholds can have a value in the range of [-1, 1];
however, we know that if peer A wants to unchoke peer B,
peer B should have at least a positive score. Therefore, we
limited the possible range for these parameters to [0, 1]. In
addition, as it was discussed in the section 4.3 the exces-
sively high values for these parameters can cause perfor-
mance downfall in the swarm; consequently, the range was
limited to [0, 0.7]. All the simulations parameters except the
local and global trust score thresholds were same as those in
the section 5. Figure 7.a and b show the results of simulation
for these parameters. As these figures indicate, 0.2 is the
best value for the local trust score threshold and 0.5 is the
best for the global trust score threshold.

Moreover, in order to evaluate the effect of different values
of local and global thresholds on the robustness of proposed
system and the number of fake peers selected as super-peer,
we used some of the combinations of these thresholds. We

Fig. 7 a the average download speed of honest peers with different values for the local trust score thresholds and same global trust score thresholds.
b the average download speed of honest peers with different values for the global trust score thresholds and same local trust score threshold

98 Peer-to-Peer Netw. Appl. (2013) 6:86–100

tested six different combinations of 0.2, 0.3 for local score
threshold and 0.4, 0.5, and 0.6 for global trust score threshold.
The simulations were performed in GPS simulator in a swarm
of 100 peers with 40 malicious peers of different types. The
following table shows the number of malicious peers selected
as the super peer after 15 min during which system reaches a
steady state. As the results indicate, the proposed mechanism
is not highly dependent on these thresholds and all the values
for these thresholds within the given ranges have a similar
effect on the robustness of system.

Local & Global Trust Score Number of malicious peers
selected as super-peer

Local: 0.2 Global:0.4 1

Local: 0.2 Global:0.5 2

Local: 0.2 Global:0.6 1

Local: 0.3 Global:0.4 1

Local: 0.3 Global:0.5 1

Local: 0.3 Global:0.6 1

References

1. BitTorrent. http://www.bittorrent.com/. Accessed Dec. 2011
2. Ipoque, “Internet study 2007: Data about P2P, VoIP, Skype, file

hosters like Rapidshare and streaming services like YouTube”.
http://www.ipoque.com/resources/internet-studies/internet-study-
2007/,2007. Accessed Dec. 2011

3. Banerjee A, Faloutsos M, Bhuyan L (2007) “Is someone tracking
P2P users?”. Proc IFIP NETWORKING, Atlanta, GA

4. BitTorrent servers under attack. http://en.wikipedia.org/wiki/
Torrent_poisoning/. Accessed Dec. 2011

5. Ziptorrent blacklist. http://torrentfreak.com/ziptorrent-pollutes-
and-slows-down-popular-torrents/. Accessed Dec. 2011

6. Kong J, Cai W, Wang L, Zhao Q (2010) “A study of pollution on
BitTorrent”, Proc. The 2nd International Conference on Computer
and Automation Engineering, Singapore, Feb. 2010

7. Konrath MA, Barcellos MP, Mansilha RB (2007)” Attacking a
swarm with a band of liars: evaluating the impact of attacks on
bittorrent”, Proc. IEEE P2P, Galway, Ireland

8. Shin K, Reeves DS, Rhee I (2009) “Treat-before-trick: Free-riding
prevention for BitTorrent-like peer-to-peer networks”, Proc. IEEE
International Symposium on Parallel&Distributed, pp 1–12

9. Locher T, Moor P, Schmid S, Wattenhofer R (2006) “Free riding in
bittorrent is cheap”, Proc Hot-Nets

10. Piatek M, Isdal T, Anderson T, Krishnamurthy A, Venkataramani
A (2007) “Do incentives build robustness in bittorrent?”, Proc. 4th
USENIX Symposium on Networked Systems Design & Imple-
mentation, pp 1–14

11. Maini S (2006) “A Survey Study on Reputation-Based Trust
Management in P2P Networks”, Technical Report, Department
of Computer Science; Kent State University

12. Cohen B (2003) “Incentives build robustness in BitTorrent”, Proc.
1st Workshop on Economics of Peer-to-Peer Systems

13. Levin D, LaCurts K, Spring N, Bhattacharjee B (2008) “BitTorrent
is an Auction: Analyzing and Improving BitTorrent’s Incentives”,
Proc. SIGCOMM’08, Seattle, Washington, USA

14. Blaze M, Feigenbaum J (1996) “Decentralized Trust Manage-
ment”, Proc. IEEE Symposium on Security and Privacy

15. Kagal L, Cost S (2001) “A framework for distributed trust Man-
agement”, Proc. Second Workshop on Norms and Institutions in
MAS, Autonomous Agents

16. Sabater J, Sierra C (2002) “Reputation and social network analysis
in multi-agent systems”, Proc. First International Joint Conference
on Autonomous Agents and Multi-Agent Systems, Bologna, Italy

17. Pujol J, Sanguesa R (2002) “Extracting reputation in multi agent
systems by means of social network topology”, Proc. First Inter-
national Joint Conference on Autonomous Agents and Multi-
Agent Systems, Bologna, Italy

18. Kamvar SD, Schlosser MT, Garcia-Molina H (2003) “The Eigen
Trust algorithm for reputation management in p2p networks”.
Proc. 12th International World Wide Web Conference

19. Hu J, Li X, Zhou B, Li Y (2010) “SECTrust: A Secure and
Effective Distributed P2P Trust Model”, Proc. IITSI, pp 34–38

20. Stakhanova N, Ferrero S, Wong J, Cai Y (2004) “A reputation-
based trust management in peer-to-peer network systems,” Proc.
International Workshop on Security in Parallel and Distributed
Systems, San Francisco, CA

21. Singh A, Liu L (2004) “TrustMe: Anonymouss management of trust
relationships in decentralized P2P systems”, Proc. The Third IEEE
International Conference on Peer-to-Peer Computing, Linkopings

22. Shah P, Pâris J-F (2007) “Incorporating trust in the BitTorrent
protocol”, Proc. of SPECTS, Paris

23. Chen H, Ye Z, Liu W, Wang C (2009) “Fuzzy Inference Trust in
P2P Network Environment”, Proc. International Workshop on
Intelligent Systems and Applications, Wuhan, pp 1–4

24. Liu F, Ding Y (2007) “Ecological Network-Inspired Trust Manage-
ment Model of P2P Networks”, Proc. Second Workshop on Digital
Media and its Application in Museum & Heritages, pp 297–302

25. Gupta M, Judge P, Ammar MA (2003) “A reputation system for
peer-to-peer networks”. Proc. NOSSDAV

26. Gheorghe G, Cigno RL,Montresor A “Security and Privacy Issues in
P2P Streaming Systems: A Survey”, Springer. Peer-to-Peer Network-
ing and Applications, 2010, Springger New York, pp 1–17

27. Douceur JR (2002) “The Sybil attack”, Proc. 1st International Work-
shop on Peer-to-Peer Systems, Cambridge, MA, USA, pp 251–260

28. Dhungel P,WuD, Schonhorst B, RossKW(2008) ”Ameasurement study
of attacks on BitTorrent leechers”, Proc. IPTPS, Tampa Bay, FL, USA

29. Conner W, Nahrstedt K, Gupta I (2006) “Preventing DoS attacks in
peer-to-peer media streaming systems”, Proc. 13th Annual Con-
ference on Multimedia Computing and Networking (MMCN’06),
San Jose, CA, USA

30. Yang J, Li Y, Huang B, Ming J (2008) “Preventing DDoS attacks
based on credit model for P2P streaming system”, Proc. 5th inter-
national conference on Autonomic and Trusted Computing
(ATC’08), Berlin, Heidelberg, pp 13–20

31. Kohno T, Broido A, Claffy K (2005) Remote physical device finger-
printing. IEEE Trans Dependable Secure Comput 2(2):93–108

32. Bazzi R, Konjevod G (2005) “On the establishment of distinct
identities in overlay networks”, Proc. ACM Symposium on Prin-
ciples of Distributed Computing, Las Vegas, NV

33. Emulab - Network Emulation Testbed. www.emulab.net. Accessed
Aug. 2011

34. Yang W, Abu-Ghazaleh N (2005) “GPS: a general Peer-to-Peer
simulator and its use for modeling BT”, Proc. 13 Int. Symposium
on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems, Atlanta, GA

35. Zegura EW, Calvert KL, Bhattacharjee S (1996) How to model an
internetwork. Proc IEEE Infocom USA 2:594–602

36. The Hunting of the Snark Project, http://klomp.org/snark/, Accessed
Oct. 2010

37. Indie Band Tops a Million Downloads, Breaks BitTorrent Record.
http://torrentfreak.com/indie-band-tops-a-million-downloads-
breaks-bittorrent-record-110317/. Accessed Aug. 2011

Peer-to-Peer Netw. Appl. (2013) 6:86–100 99

http://www.bittorrent.com/
http://www.ipoque.com/resources/internet-studies/internet-study-2007/,2007
http://www.ipoque.com/resources/internet-studies/internet-study-2007/,2007
http://en.wikipedia.org/wiki/Torrent_poisoning/
http://en.wikipedia.org/wiki/Torrent_poisoning/
http://torrentfreak.com/ziptorrent-pollutes-and-slows-down-popular-torrents/
http://torrentfreak.com/ziptorrent-pollutes-and-slows-down-popular-torrents/
http://www.emulab.net
http://klomp.org/snark/
http://torrentfreak.com/indie-band-tops-a-million-downloads-breaks-bittorrent-record-110317/
http://torrentfreak.com/indie-band-tops-a-million-downloads-breaks-bittorrent-record-110317/

Behrooz Shafiee Sarjaz is an un-
dergraduate student in computer
engineering at Shahid Beheshti
University. He is currently work-
ing on network security with fo-
cus of P2P networks security. His
main research interests include
Network Security, Distributed.

Maghsoud Abbaspour received
the B.S., M.S., and Ph.D. degrees
in electrical engineering from the
University of Tehran, Tehran,
Iran, in 1992, 1995 and 2003, re-
spectively. He has been an assis-
tant professor of Computer
Engineering department and the
manager of Wireless Networking
Laboratory in Shahid Beheshti
University, Tehran, Iran since
2005. He is interested in Wireless
Sensor Networks, peer to peer and
ad hoc networks, network security
and multimedia networking.

100 Peer-to-Peer Netw. Appl. (2013) 6:86–100

	Securing BitTorrent using a new reputation-based trust management system
	Abstract
	Introduction
	Related works
	BitTorrent incentive
	Trust mangement

	Preliminaries
	BitTorrent overview
	BitTorrent attacks
	DoS attack
	Sybil attack
	Collusion attack
	Lying-piece attack
	Fake-block attack
	Chatty-peer attack

	Proposed trust management scheme
	Local and global trust scores calculation
	Local trust score calculation
	Global trust score calculation

	Robustness analysis
	Modified choking algorithm

	Impact evaluation
	Simulation
	Evaluation of fake-block attack
	Evaluation of chatty-peer attack

	TMS implementation results
	Proposed TMS robustness evaluation

	Tms imposed overhead
	Future works
	Conclusion
	Appendix A Calculation of Sn, Sp, Kg and Kf parameters
	Appendix B Calculation of local and global trust score thresholds

	References

