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Abstract
Mutualisms (reciprocally beneficial heterospecific interactions) are thought as susceptible to exploitation by “cheaters” 
receiving benefits from partners without fair return. Theoretical studies suggest that partner discrimination is one of the 
key mechanisms to prevent cheaters from prevailing, but recently, a paradox is suggested that costly partner discrimination 
might collapse as the result of decreasing in quality variation among potential partners imposed by partner discrimination 
itself. Here, I develop a simple general mathematical model that consists of two host strains (discriminators/indiscrimina-
tors) and two symbiont strains (cooperators/non-cooperators) to establish a framework for the coevolutionary dynamics of 
mutualisms. First, I present a basic model, a positive equilibrium of which is neutrally stable. Secondly, I derive a formula 
to describe how the equilibrium shifts with a change in arbitrary parameters: I show a counter-intuitive result that the 
equilibrium frequency of discriminator hosts decreases as discrimination efficiency increases. Finally, I examine how the 
equilibrium and its stability changes by adding dependence of fitness of symbionts or hosts on their own frequencies: I find 
that negative or positive frequency dependence makes the equilibrium asymptotically stable or unstable, respectively. I also 
find that mutation and immigration of symbionts always make the equilibrium asymptotically stable, even if it does not 
increase low-quality symbionts.

Keywords  One-to-many mutualisms · Partner choice · Replicator equation · Volterra’s principle

Introduction

Mutualisms are a type of heterospecific interactions in 
which each participant can gain benefits from each other. 
Various mutualisms play essential roles in a wide range 
of ecosystems on the earth including tropical rain forests 
(Janzen 1979; Mcguire 2007), temperate forests (Bennett 
et al. 2017; Kadowaki et al. 2018), coral reefs (Poulin and 
Vickery 1995; Rowan 2004), etc. As mutualisms seem sus-
ceptible to exploitation by less cooperative or completely 
uncooperative partners (“cheaters”) receiving benefits from 
partners without appropriate return, evolutionary ecologists 
have addressed those apparently paradoxical interactions to 
identify key mechanisms to prevent cheaters from prevailing 

and allow them to evolve and persist (Bull and Rice 1991; 
Sachs et al. 2004).

Partner discrimination, here I use this term in a wide 
sense including partner choice (Bull and Rice 1991; Sachs 
et al. 2004), sanction (West et al. 2002a, b; Kiers et al. 2003; 
Frederickson 2013), preferential allocation (Bever et al. 
2009; Kiers et al. 2011), preferential rewarding (Heath and 
Tiffin 2009), etc., is thought as one of such mechanisms. In 
partner discrimination, individuals prefer to associate with 
more cooperative partners, which result in purging cheat-
ers and less cooperative partners from a potential partner 
population. West et al. (2002a, b) theoretically demonstrated 
that the presence of low-quality symbionts can select for 
partner discrimination by hosts (West et al. 2002a) and that 
the presence of hosts discriminating symbionts can select for 
more cooperative symbionts (West et al. 2002b). However, 
Foster and Kokko (2006) paradoxically suggests that those 
two results do not guarantee stability of mutualistic systems 
between hosts and symbionts in coevolutionary dynamics; 
the variation in quality of symbionts within the symbiont 
population monotonically decreases as the result of partner 
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discrimination, which in turn diminishes the advantage of 
partner discrimination for hosts. Thus, it is difficult for mutu-
alisms to persist stably unless that variation is maintained 
via constant immigration or biased mutation introducing 
low-quality symbionts into the symbiont populations. Fur-
ther theoretical studies are necessary to identify how and 
when costly partner discrimination by hosts can emerge and 
persist in coevolutionary dynamics of mutualistic systems.

To date, mathematical models assuming continuous dis-
tribution of the strength of partner discrimination in the 
host population and cooperation in the symbiont population 
have been proposed by previous studies. However, they are 
analytically intractable, and computer simulations are the 
main methods available for analysis, which can substantially 
restrict their predictive capability (Foster and Kokko 2006; 
Ezoe 2016). An alternative framework is a “two-by-two” 
model, in which two discrete genotypes in each of host and 
symbiont populations (“discriminator”/ “indiscriminator” 
host strains and “cooperator”/ “non-cooperator” symbiont 
strains) are competing within each population (Steidinger 
and Bever 2014; Uchiumi et al. 2017). This type of models 
(her,e I temporarily name them “DICN models”) is analyti-
cally tractable and has a good potential for giving compre-
hensive insights into the coevolutionary dynamics of mutu-
alistic systems.

In this study, I develop a generic DICN model to estab-
lish a framework for the dynamics of mutualistic systems 
based on partner discrimination by hosts without specifying 
detailed function forms (Fig. 1). This model describes the 
dynamics of the frequencies of two host and two symbi-
ont strains by a replicator dynamics system (Hofbauer and 
Sigmund 1998), assuming that the strength of partner dis-
crimination by discriminator hosts and cooperation by coop-
erator symbionts are set to fixed values and do not change 
in time. Similar formulation is adopted by previous stud-
ies (Steidinger and Bever 2014; Uchiumi et al. 2017), and 
the aim of this study is to generalize them. First, I present 

a basic model in which fitness of both host and symbiont 
individuals is independent from the frequencies of their own 
strains and show that its equilibrium is neutrally stable. Sec-
ondly, I derive a formula to describe in which direction the 
equilibrium shifts with a slight change in values of involv-
ing parameters. Finally, I examine how the stability of the 
equilibrium changes by considering frequency dependence 
in the fitness of host and symbiont individuals.

Model and analysis

I assume a mutualistic system between a host population 
and a symbiont population (Fig. 1). Each host individual 
can associate with many symbiont individuals horizontally 
transmitted among hosts, while each symbiont can associate 
with only a single host (one-to-many mutualism). This type 
of mutualisms includes many well-known examples such as 
plant–pollinating seed predator (Janzen 1979; Pellmyr and 
Huth 1994) and legume–rhizobium systems (Denison 2000; 
Heath and Tiffin 2007, 2009).

The host population consists of two distinct strains: “dis-
criminator” hosts preferentially associate with symbionts 
beneficial to themselves, while “indiscriminator” hosts do 
not show such preference. The symbiont population also 
consists of two strains: “cooperator” symbionts contribute 
to their associating hosts at the expense of a part of benefit 
that they receive from the hosts, while “non-cooperator” 
symbionts receive benefit from the hosts without return.

The frequencies of discriminator and indiscriminator 
hosts in the host population are denoted by H and 1-H, 
respectively (0 ≤ H ≤ 1). Similarly, the frequencies of coop-
erator and non-cooperator symbionts are denoted by S and 
1-S, respectively (0 ≤ S ≤ 1). The expected fitnesses of each 
discriminator host, indiscriminator host, cooperator sym-
biont, and noncooperator symbiont are denoted by φD, φI, 
ψC, and ψN, respectively, which are assumed continuously 
partially differentiable functions with respect to H and S.

I assume that partner preference by discriminator hosts 
incurs costs to themselves. Therefore, when all symbionts 
are cooperators (S = 1), indiscriminator hosts are favored 
over discriminator ones, because there is no variation in 
quality among symbionts, so that the partner preference 
has no advantage: φ = φD-φI < 0. In addition, I also assume 
that ψ = ψC-ψN < 0 at H = 0 and ψH = ∂ψ/∂H > 0 for 0 < H < 1, 
because noncooperator symbionts freely exploit hosts when 
all hosts are indiscriminators, while such exploitation 
becomes more difficult as the frequency of discriminator 
hosts increases in the host population.

The coupled dynamics of H and S is described by a 
replicator equation system, which is a framework widely 
adopted to study common evolutionary dynamics (Hofbauer 
and Sigmund 1998):

Fig. 1   The schema of the Discriminator/Indiscriminator hosts and 
Cooperator/Noncooperator symbionts (DICN) model. Arrows indi-
cate provision of benefits
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where φ=HφD + (1-H)φI and ψ=SψC + (1-S)ψN.
For the system Eqs. (1) and(2), I assume that the discrimi-

nator hosts are favored (φ > 0) when the frequency of non-
cooperator symbionts is at an intermediate level, because 
discriminator hosts are less susceptible to exploitation by 
non-cooperator symbionts. Since I have assumed that φ is 
a continuous function and φ < 0 at S = 1, there should be a 
value 0 < S* < 1 satisfying φ = 0 at S = S* and φS = ∂φ/∂S < 0 
in a neighborhood of S*. Similarly, I reasonably assume that 
that there should be a value 0 < H* < 1 satisfying ψ = 0 at 
H = H* and ψH = ∂ψ/∂H > 0 in a neighborhood of H*. On 
the other hand, if φ and ψ are negative over 0 ≤ H ≤ 1 and 
0 ≤ S ≤ 1, (H, S) = (0, 0) should be a globally stable equilib-
rium, so that the mutualistic system eventually collapses.

The basic model

In this section, I focus on a simple case by making an 
additional assumption that fitnesses of host and symbiont 
individuals are independent from frequencies of their own 
strains:

Therefore we have,

In this case, H* and S* are independent from S and H, 
respectively, and (H*, S*) is an internal equilibrium of Eqs. 
(1) and (2).

The equilibrium (H*, S*) can be shown neutrally stable by 
constructing a Lyapunov function (Hofbauer and Sigmund 
1998). The total derivative of the Lyapunov function V(H, 
S) is given by:

The function V is time-independent, and has a local mini-
mum at (H*, S*) (Appendix 1). Thus, the solutions of Eqs. 
(1) and (2) starting from any point in a neighborhood of (H*, 
S*) move along closed curves around the equilibrium in a 
counter-clockwise direction on the H–S phase plane.

An example is shown in Fig. 2, which is based on “one-
shot discrimination” model in Uchiumi et al. (2017) with 
setting the mutation rate of symbionts to 0:
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Parameter dependence of the equilibrium

Next, I examine how (H*, S*), a neutrally stable equilib-
rium of Eq. (2), depends on parameter values of the basic 
model explained above. Note that any change in parameter 
values does not affect the stability of the equilibrium if 
Eq. (3) holds.

Considering H* and S* as the functions of an arbitrary 
parameter p, differentiation of both sides of equations 
φ(H*, S*) = 0 and ψ(H*, S*) = 0 with respect to p leads to:

respectively. Solving Eqs. (5) and (6) for the derivatives 
of H*and S*, I have

�D = S(B − C) − (1 − S)�C − ΔE(1 − S) − ΔM ,�N = SB − C

�C = b − c,�I = b − c(1 − H)b + H�b.

(5)
��

�H
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dp
+

��
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dp
+

��

�p
= 0,

(6)
��

�H

dH∗

dp
+

��

�S

dS∗

dp
+

��

�p
= 0,

Fig. 2   An example of solution trajectories for the basic model after 
Uchiumi et al. (2017). The three gray closed curves around an inter-
nal neutrally stable equilibrium (H*, S*) (the filled circle) represent 
the solutions of Eqs. (1) and  (2) with different initial values ((H(0), 
S(0)) = (0.5, 0.1), (0.5, 0.3), (0.5, 0.5)). The values of other param-
eters are: B = 1.0 × 10−4, C = 5.0 × 10−5, b = 1.0 × 10−4, c = 1.0 × 10−5, 
ΔE = 1.0 × 10−5, and ΔM = 5.0 × 10−6
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where φp = ∂φ/∂p and ψp = ∂ψ/∂p. For the basic model, I have 
assumed φH = ψS = 0, then

Equation (8) indicates how the equilibrium (H*, S*) 
shifts as the parameter p slightly changes.Although the 
equilibrium is neutrally stable for the basic model, some 
additional (sufficiently small) factor can make the equilib-
rium asymptotically stable. In such cases, Eq. (8) allows 
us to predict how the stable equilibrium eventually moves 
after a small change in the value of any parameter.

One counter-intuitive consequence of the above analysis 
is a change in parameters related to either hosts or symbionts 
does not affect its own equilibrium but others. For example, 
when p is the cost for symbionts to cooperate with hosts, it 
is reasonable to assume ψp < 0. Given that φS < 0 and ψH > 0, 
Eq. (8) predicts that H* increases as p increases, although S* 
remains constant if φp = 0.

Furthermore, an increase in “efficiency” of partner dis-
crimination by discriminator hosts is found to result in a 
decrease in the equilibrium frequency of discriminator hosts 
as well as an increase in that of cooperator symbionts. This 

(7)
dH∗

dp
=

�S�p − �p�s

�H�S − �S�H

and
dS∗

dp
=

�p�H − �H�p

�H�S − �S�H

,

(8)
dH∗

dp
= −

�p

�H

and
dS∗

dp
= −

�p

�S

.

situation is similar to “Volterra’s principle” for Lotka–Volt-
erra predator–prey equation (Hofbauer and Sigmund 1998). 
In fact, when p is the efficiency parameter, we suppose that 
φp > 0 and ψp > 0, because an increase in p should favor both 
discriminator hosts and cooperator symbionts over indis-
criminator hosts and noncooperator symbionts, respectively, 
which result in dH*/dp < 0 and dS*/dp > 0 from Eq. (8). Such 
an eventually decreasing transition of the frequency of dis-
criminator hosts from a previous equilibrium to the new one 
often starts with a temporal increase for a short period of 
time, because when p abruptly increases, the previous equi-
librium is likely to be left in the lower-right region of the 
new equilibrium, where φ > 0 (Fig. 3).

Modification to the basic model

In the following sections, I consider additive factors to the 
basic model Eqs. (1) and (2) assuming Eq. (3) to examine 
how they affect the equilibrium.

Frequency dependence of host and symbiont strain 
fitness

First, I examine how the dependence of the host and symbi-
ont fitness on their own frequencies affects the equilibrium. 

a b

Fig. 3   The equilibrium shift with a change in the efficiency of part-
ner discrimination by hosts. This example is based on the same model 
as Fig. 2 with a positive mutation rate of symbionts (μ = 2.0 × 10−7) 
(Uchiumi et al. 2017), then the equilibrium is asymptotically stable. 
a the H–S phase plane, and b the time courses of the frequencies of 
discriminator hosts (the solid curve) and cooperator symbionts (the 

dashed curve). After an abrupt shift in the parameter for efficiency of 
partner discrimination by discriminator hosts from δ = 0.4 to δ = 0.6 
at time t = 0, the trajectory of (H, S) starting from a previous equilib-
rium (the gray circle in Fig. 3a) converges to the new one (the black 
circle). Other parameter values are the same as Fig. 2
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In general, host or symbiont individuals belonging to the 
same strain (discriminators, indiscriminators, cooperators, 
or non-cooperators) are likely to be genetically more similar 
to each other than to the individuals of the different strains. 
Then, interactions between individuals are greater within a 
strain than between different strains in the host or symbiont 
population. If it is the case, the fitness of individuals posi-
tively or negatively depends on the frequency of their own 
strain in the population.

Similar to the result of the previous section, adding the 
frequency dependence of symbiont or host strains to the 
basic model does not shift the equilibrium of their own fre-
quencies but that of the others (Appendix 2).

To examine a change in stability of the equilibrium, first 
I consider sufficiently small positive frequency dependence 
of symbionts only, with replacing Eq. (2) with:

where ψF is the difference between the frequency-dependent 
fitness of a cooperator symbiont ψFC and that of a nonco-
operator symbiont ψFN: ψF = ψFC-ψFN. Assuming positive 
frequency dependence, ∂ψF/∂S > 0. Note that the equilib-
rium of the symbiont frequency remains S = S*, because the 
dynamics of symbionts Eq. (2) is unchanged. As the magni-
tude of frequency dependence is sufficiently small, I expect 
that there is still an equilibrium of the host H** nearby H* 
(0 < H** < 1).

At the new equilibrium (H**, S*), the components of the 
Jacobian matrix of Eqs. (2) and (9) are

where the sign of ∂ψF/∂H is the same as that of ∂ψ/∂S if 
density dependence is sufficiently small. From Eq. (10) and 
(13), the trace of the Jacobian matrix is.

which indicates that the equilibrium is unstable. On the other 
hand, when I consider negative frequency dependence of 
symbionts, the sign of the left-hand side of Eq. (13) to (15) turns  

(9)
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,
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negative because ∂ψF/∂S < 0. From Eqs. (10) to (12), the trace 
and the determinant of the Jacobian matrix are

respectively, which indicates that the equilibrium is asymp-
totically stable.

Similarly, it can be shown that positive (sufficiently small) 
frequency dependence of host strains tends to destabilize 
the equilibrium, while the negative one tends to stabilize it 
(Appendix 3).

Mutation and immigration of symbionts

Mutation of symbionts, especially biased mutation (dete-
riorating the level of cooperation of mutants to their hosts), 
has been thought to be a factor to maintain partner discrimi-
nation of hosts and stabilize mutualistic systems, because 
it reintroduces the variation in quality into the symbiont 
population against the selection imposed by partner dis-
crimination by hosts (Foster and Kokko 2006; Heath and 
Stinchcombe 2013; Uchiumi et al. 2017).

Considering mutation terms of the symbionts in the pre-
sent model, Eq. (2) is modified to:

where μ+ and μ- are ameliorating (from noncooperator to 
cooperator symbionts) and deteriorating (from cooperator 
to noncooperator symbionts) mutation rates, respectively. I 
assume that they are sufficiently small that there is still an 
internal equilibrium nearby (H*, S*), the internal equilibrium 
of Eqs. (1) and (2).

Note that as the dynamics of host frequency Eq. (2) is 
unchanged, so is the equilibrium of symbiont frequency as 
in the previous section. It can be proved that

where (H**, S*) is an equilibrium of Eqs.  (2) and (15) 
(Appendix 2). Equation (16) indicates that dominance of 
ameliorating mutation of symbionts (μ-/μ+ < (1-S*)/S*) 
makes the equilibrium of host frequency decrease, while 
that of deteriorating mutation makes it increase.

It can be shown that Eq. (15) is a special case of negative 
frequency dependence that I have considered in the previous 
section. In fact, putting
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Equation (15) results in Eq. (9). In addition, the function 
ψF satisfies

at the equilibrium (H**, S*). The last equality in Eq. (18) 
is held only when μ+ = μ− = 0. Thus, the mutation of sym-
bionts should always render the equilibrium asymptotically 
stable, regardless of whether it is biased or not. In particular, 
it is interesting that ameliorating mutation as well as the 
deteriorating one can stabilize the equilibrium.

Immigration of low-quality symbionts from an outside 
source population has also been suggested as a factor main-
taining variation in quality of symbionts (Foster and Kokko 
2006). Considering immigration from outside source sym-
biont populations, Eq. (2) is modified to:

where m > 0 is the immigration rate from outside source 
populations and σ is the proportion of cooperator symbionts 
in the immigrating symbionts. Here, I assume m and σ to be 
constants. Again, putting

Equation (20) results in Eq. (9). At the equilibrium (H**, 
S*), I have

because 0 < S* < 1, m > 0, and 0 ≤ σ ≤ 1. Equation (21) shows 
that the constant immigration of symbionts also tends to 
stabilize the equilibrium, regardless of the proportion of 
cooperator symbionts in the immigrant population.

Discussion

In this study, I have developed a general mathematical model 
(DICN model) for the coevolutionary dynamics of mutual-
istic systems consisting of two host strains (discriminators/
indiscriminators) and two symbiont strains (cooperators/
noncooperators). First, I have constructed a basic model 
an equilibrium of which is neutrally stable. Next, I have 
derived a formula to describe how the equilibrium shifts 
with a change in an arbitrary parameter and shown that at 
the equilibrium frequency of discriminator hosts decreases 
as discrimination efficiency increases. Finally, I have exam-
ined how position and stability of the equilibrium change by 
adding dependence of fitness of hosts or symbionts on their 
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−
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= −
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−
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(19)
dS

dt
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(21)
𝜕𝜓F

𝜕S
= −m

(𝜎 − S)2 + 𝜎(1 − 𝜎)

S2(1 − S)2
< 0,

own frequencies to show that positive frequency dependence 
of hosts or symbionts makes the equilibrium unstable, while 
the negative one makes it asymptotically stable. I have also 
shown that mutation and immigration of symbionts make the 
equilibrium asymptotically stable, irrespective of whether 
they increase low-quality symbionts in the symbiont popu-
lation or not.

Relevance to Volterra’s principle

I have found that at the equilibrium, the frequency of dis-
criminator hosts decreases as the discrimination efficiency of 
hosts increases in the DICN model. Based on analysis of the 
Lotka–Volterra predator–prey (LVPP) equation, Volterra’s 
principle states that catching both predators and prey leads 
to a decrease of predators and an increase of prey (Hofbauer 
and Sigmund 1998). The DICN model seems very differ-
ent from the LVPP model, but they are both special cases 
of Kolmogorov model (Brauer and Castillo-Chavez 2012) 
and their fundamental structures are similar to each other: 
both generate negative feedback between two variables (the 
frequencies of the discriminator host and cooperator sym-
biont strains in the DICN model, and the predator and prey 
population densities in the LVPP model).

One possible translation between them is that indiscrim-
inator hosts and non-cooperator symbionts in the DICN 
model corresponds to prey and predators in the LVPP model, 
respectively, since the former are exploited by the latter in 
both models. In the DICN model, an increase in discrimina-
tion efficiency enhances the fitness of discriminator hosts 
and cooperator symbionts, which means a decrease in the 
relative fitness of indiscriminator hosts and non-cooperator 
symbionts. Then, that would result in a decrease of non-
cooperator symbionts as well as an increase of indiscrimina-
tor hosts at the equilibrium.

Factors stabilizing or destabilizing the equilibrium

Biased mutation or immigration from an outside source 
population to restore lower quality symbionts has been con-
sidered as a key to maintain costly discrimination in previ-
ous studies (Foster and Kokko 2006; Heath and Stinchcombe 
2013; Uchiumi et al. 2017). In this study, however, I have 
shown that mutation and immigration always stabilize the 
equilibrium irrespective of whether they increase the fre-
quency of non-cooperator symbionts in the symbiont popu-
lation. I have clarified that a more general criterion to deter-
mine stability of the equilibrium is dependency of host and 
symbiont “fitnesses” on the frequency of their own strains 
in each population; positive frequency dependence tends to 
destabilize the equilibrium, while the negative one tends to 
stabilize it.
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Examining the frequency dependence of other factors, we 
can discuss whether they would stabilize or destabilize the 
equilibrium. Uchiumi et al. (2017) considers a “resampling” 
strategy of discriminator hosts in which the hosts reacquire 
symbionts after purging associating non-cooperator symbi-
onts and suggests that strategy destabilizes the equilibrium 
by inducing positive feedback in frequency of cooperator 
symbionts.

In contrast, Akçay (2017) assumes that hosts have a fixed 
target number of associating symbionts and continue sequen-
tial sampling of symbionts until they reach that number. This 
assumption leads to negative frequency dependence of the 
symbiont fitness, because the relative advantage of coopera-
tive symbionts in the probability chosen by hosts decreases 
as their own frequency increases.

Similarly, Ezoe (2019) shows that the adaptive regula-
tion in the number of associating symbionts by hosts coun-
teracts the positive feedback between host strains and their 
beneficial symbiont strains in a mutualistic system con-
sisting of two competing host–symbiont associations and 
promotes stable coexistence between them. In that study, 
the total number of symbionts that a single host associates 
to maximize its own fitness decreases as the frequency of 
the symbionts beneficial to the host increases, which results 
in negative frequency dependence of the symbiont fitness. 
Therefore, the adaptive regulation of the number of associat-
ing symbionts by host would also stabilize the equilibrium 
of the DICN model.

As well as recruitment of symbionts, reward offered by 
hosts can also induce positive or negative frequency depend-
ence in symbiont populations. If the amount of net reward 
to each associating cooperative symbiont is an accelerating 
or decreasing function of its own frequency, it can stabilize 
or destabilize the equilibrium via positive or negative fre-
quency feedback, respectively.

Partner fidelity feedback is considered as another major 
mechanism that can promote the evolution of mutualisms 
(Bull and Rice 1991; Sachs et al. 2004; Weyl et al 2010). 
However, partner fidelity feedback can promote positive 
feedback between host and symbiont strains; therefore, it can 
destabilize the equilibrium of mutualistic systems driven by 
partner discrimination (Shapiro and Turner 2014; Uchiumi 
et al. 2017).

Several studies suggest that spatial structure of popula-
tions can promote the evolution of mutualism, as it induces 
partner fidelity feedback via positively correlated spatial 
distribution between cooperative heterospecific partners 
(Doebeli and Knowlton 1998; Yamamura et al. 2004; Travis 
et al. 2006; Ezoe 2009; Ezoe and Ikegawa 2013). In contrast, 
Akçay (2017) demonstrates that spatial structure can desta-
bilize mutualism with partner choice, although he suggests 
that it is because spatial structure decreases local variation in 
the cooperativeness trait of symbionts so that the benefit of 

partner choice for hosts diminishes, rather than spatial struc-
ture causes the partner fidelity feedback explained above.

Conclusion

The model I have developed in this study is a generaliza-
tion of discrete-trait models consisting of discriminator/
indiscriminator hosts and cooperator/non-cooperator sym-
bionts (Steidinger and Bever 2014; Uchiumi et al. 2017). 
This model is sufficiently comprehensive as well as trac-
table that we can analytically derive general principles for 
the coevolutionary dynamics between host and symbiont 
populations irrespective of specific model details. My find-
ings should be a helpful guide in analyzing of more realis-
tic continuous-trait models for coevolutionary dynamics of 
mutualistic systems.

Appendix 1 Local stability of the equilibrium 
of the basic model

By the definition of equilibrium, φ = ψ = 0 at the equilibrium 
(H, S) = (H*, S*). In addition, I assume that the finesses of 
hosts and symbionts are independent from the frequencies 
of their own strains: ∂φ/∂H = ∂ψ/∂S = 0. From Eq. (4), I have

at the equilibrium (H*, S*). In addition,

because ψH = ∂ψ/∂H > 0 and φS = ∂φ/∂S < 0 at (H*, S*). Then

Equations (22) and (23) indicate that V has a local mini-
mum at (H*, S*). Moreover, from Eqs. (1), (2) and (4),

(22)
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�H
=

�

H(1 − H)
= 0 and
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=
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= 0
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−
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=
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−
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at any points (H, S). Equation (24) indicates that the value 
of V is time invariant. Thus (H*, S*) is a neutrally stable 
equilibrium of Eqs. (1) and (2).

Appendix 2 Effects of frequency dependence 
on the position of the equilibrium

Let u be a continuous parameter for the degree of frequency 
dependence of symbiont strains; if u is positive (negative), 
the degree of the positive (negative) frequency dependence of 
symbiont strains monotonically increases with the magnitude 
of u. Functions ψFC and ψFN denote the frequency-dependent  
fitnesses of cooperator and non-cooperator symbionts, 
respectively. I assume that they are continuously partially dif-
ferentiable with respect to u, and that ψFC = ψC and ψFN = ψN 
(and therefore ψF = ψC-ψN = ψ) when u = 0, where ψC and ψN 
are frequency-independent fitness functions of cooperator and 
non-cooperator symbionts, respectively.

The equilibrium of Eqs. (1) and (9) is denoted by (H**, 
S*). Note that H** = H* when u = 0. Applying the same 
procedure as Eqs. (5) and (6), I have

where �F
H
= ��F∕�H , �F

S
= ��F∕�S , �F

u
= ��F∕�u , and 

φu = ∂φ/∂u. As I have assumed φH = φu = 0, then at (H**, S*),

I have also assumed that ψH is positive at (H*, S*), the 
equilibrium of the frequency-independent system Eqs. (1) 
and (2). Therefore, if the magnitude of density dependence 
is sufficiently small, it should be 𝜓F

H
> 0 at (H**, S*). Equa-

tion (26) indicates that the sign of d H**/du is the opposite 
to the sign of �F

u
 at the equilibrium, which depends on the 

detail of the functions ψFC and ψFN.
To consider mutation of symbionts, I set k = μ-/μ+. Then 

Eq. (17) becomes

Equation (27) is continuously partially differentiable with 
respect to μ+ and ψF = ψ when μ+ = 0. Therefore, from Eq. (26),

(24)=
�

H(1 − H)
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.

Given ψH > 0 and ψ(H*) = 0, Eq.  (28) is followed by 
Eq. (16).

Similarly, I consider (sufficiently small) positive fre-
quency dependence of host strains with replacing Eq. (2) 
with

where φF = φFD-φFI. In addition, I introduce a continuous 
parameter v and assume that φFD and φFI are continuously 
partially differentiable with respect to v, and that φFD = φD 
and φFI = φI when v = 0, where φD and φI are frequency-
independent fitness functions of discriminator and indis-
criminator hosts, respectively. A derivation similar to the 
above leads to

where (H*, S**) is the equilibrium of Eqs. (2) and (29). Given 
𝜑F
S
< 0 at the equilibrium, Eq. (30) indicates that the sign 

of dS**/dv is the same as the sign of �F
v
= ��F∕�v at the 

equilibrium, which again depends on the detail of the func-
tions φFD and φFI.

Appendix 3 Stability of the equilibrium 
and frequency dependence of host strains

Here I assume sufficiently small frequency dependence of 
host fitness on the frequency of its own strain in the popula-
tion. The sign of the density dependence is the same as the 
sign of ∂φF/∂H. From Eqs. (2) and (29), I have the following 
components of the Jacobian matrix at the equilibrium (H*, 
S**):

If ∂φF/∂H > 0 (positive frequency dependence), it is found 
from Eqs. (31) and (34) that the trace of the Jacobian matrix.
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which indicates that the equilibrium is unstable. On the 
other hand, if ∂φF/∂H < 0 (negative frequency dependence), 
Eq. (14) is satisfied so that the equilibrium is asymptotically 
stable.
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