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Abstract
Long-distance dispersal (LDD) has long been recognized as a key factor in determining rates of spread in biological inva-
sions. Two approaches for incorporating LDD in mathematical models of spread are mixed dispersal and heavy-tailed 
dispersal. In this paper, I analyze integrodifference equation (IDE) models with mixed-dispersal kernels and fat-tailed (a 
subset of the heavy-tailed class) dispersal kernels to study how short- and long-distance dispersal contribute to the spread 
of invasive species. I show that both approaches can lead to biphasic range expansions, where an invasion has two distinct 
phases of spread. In the initial phase of spread, the invasion is controlled by short-distance dispersal. Long-distance dispersal 
boosts the speed of spread during the ultimate phase, and can have significant effects even when the probability of LDD is 
vanishingly small. For fat-tailed kernels, I introduce a method of characterizing the “shoulder” of a dispersal kernel, which 
separates the peak and tail.
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Introduction

Although long-distance dispersal (LDD) has been recognized as a 
key factor in the spread of populations, many aspects of LDD are 
still poorly understood (Cain et al. 2000). Long-distance dispersal 
can surely hasten invasions (Shigesada and Kawasaki 2002), but 
how else does it affect invasions? The mechanisms underlying 
LDD are also poorly understood (Higgins et al. 2003). Long-
distance dispersal events are often attributed to multiple dispersal 
vectors, with infrequent but extreme vectors facilitating far-flung 
dispersal, but can LDD occur without so-called mixed dispersal? 
The terms “fat-tailed” and “heavy-tailed” dispersal are often asso-
ciated with long-distance dispersal, but it is unclear exactly how 
these terms from probability relate to long-distance dispersal or 
range expansion.

Much of classical ecological theory has focused on 
asymptotic dynamics, yet transient dynamics have increas-
ingly been recognized as important, especially over ecologi-
cally relevant time scales (Hastings et al. 2018). Mathemati-
cal analyses of long-distance dispersal have typically focused 
on the spreading speed, or asymptotic, long-time average 

speed of spread (Higgins and Richardson 1999; Shigesada 
and Kawasaki 2002; Kawasaki et al. 2006; Lutscher 2019). 
This focus on asymptotics leaves unaddressed many practi-
cal questions about how LDD affects invasions. How rare 
can LDD be while still meaningfully affecting invasions, 
and what possible impacts can it have? How is the range 
expansion, or full course of an invasion, rather than just its 
speed, affected?

The scattered- and coalescing-colony models of strati-
fied diffusion by Shigesada et al. (1995) are an important 
exception to the focus on asymptotics in the study of LDD. 
Their work showed that diffusion paired with long-distance 
dispersal could generate range expansions of three types: 
linear, biphasic linear–linear, and accelerating (Shigesada 
et al. 1995); however, their models were spatially implicit 
and assumed that all short-distance dispersal occurred by 
diffusion. In this paper, I study a spatially explicit integrodif-
ference equation model of spread with generalizable disper-
sal, and demonstrate its capacity to produce two types of 
biphasic range expansion.

Long-distance dispersal is hypothesized to occur in two 
ways (Higgins et al. 2003). First, long-distance dispersal 
may occur when rare dispersal vectors act on a small pro-
portion of propagules to disperse them to extreme distances. 
In these cases, dispersal is governed by two or more distinct 
dispersal vectors. The most common vectors act at relatively 

 * Benjamin R. Liu 
 benliu@uw.edu

1 Department of Applied Mathematics, University 
of Washington, Seattle, WA 98195-3925, 353925, USA

/ Published online: 12 April 2021

Theoretical Ecology (2021) 14:409–427

http://orcid.org/0000-0001-6425-6070
http://crossmark.crossref.org/dialog/?doi=10.1007/s12080-021-00505-x&domain=pdf


1 3

short distances and account for the majority of dispersal, 
while atypical vectors act at great distances. Such dispersal 
is said to be mixed (Nathan et al. 2008). Second, typical dis-
persal vectors, such as wind, which most often deposit prop-
agules close to their source, may occasionally disperse much 
further (Bullock et al. 2006). Long-distance dispersal of this 
type may be attributed to fat- or heavy-tailed dispersal, both 
technical terms from probability relating to probability dis-
tributions with capacities to generate extreme events with 
low yet non-negligible probability (Cooke et al. 2014).

There are many examples of multiple reproduction and dis-
persal vectors in the dispersal of plants, many of which can 
reproduce vegetatively but also by seed, but also in the move-
ments of ants (Suarez et al. 2001), beetles (Shigesada and Kawa-
saki 1997), and birds (Kesler et al. 2010). Plants that reproduce 
by seed may have some proportion of their seeds transported 
long distances by birds and mammals (Janzen 1984). Studies 
that have modeled the distribution on dispersal distances of 
seeds or pollen often resort to mixed models to achieve good 
fits to data (Bullock and Clarke 2000; Streiff et al. 1999; Goto 
et al. 2006). Even within a movement vector, dispersal may be 
stratified. Horn et al. (2001) partition dispersal of tree seeds by 
wind according to whether the seed falls below or rise above the 
canopy, with the latter portion becoming candidates for long-
distance dispersal; Higgins and Richardson (1999) hypothesize 
similarly.

“Fat-tailed” dispersal kernels have become popular for 
describing dispersal data (Nathan et al. 2012), and the tail of 
the dispersal kernel is often cited as a cause of long-distance 
dispersal (Katul et al. 2005) or faster-than-expected spread 
(Clark 1998; Caswell et al. 2003). Although the term has a 
formal definition in probability, it is often used beyond that 
scope in ecology to describe heavy-tailed or leptokurtic ker-
nels. “Fat-tailed” kernels from ecology are often in fact heavy 
tailed. Fat- and heavy-tailed kernels have been found to accu-
rately represent many sets of dispersal data, where thin-tailed 
kernels do not. A recent and comprehensive meta-analysis 
of plant dispersal data conducted by Bullock et al. (2017) 
compared popular thin- and heavy-tailed kernels, and found 
the best fitting ones to be heavy- and fat-tailed.

Dispersal is undoubtedly mixed, at least for some spe-
cies, but fat-tailed kernels may still be useful models. Even 
if dispersal is better explained mechanistically by mixed-
dispersal kernels, such kernels may be harder to deal with 
practically. Mixed kernels have, in general, more param-
eters than fat-tailed kernels, and so require more data or 
types of observations to properly fit (Higgins et al. 2003). 
Some researchers argue that, when taken together in com-
bination, the sum total of dispersal by multiple vectors will 
yield a fat-tailed kernel (Nathan et al. 2008). Ultimately, 
the choice between mixed and fat-tailed kernels may in 

some cases be moderated by whether a mechanistic or phe-
nomenological model is desired.

Integrodifference equation (IDE) models are one way by 
which many types of dispersal, including mixed dispersal 
and fat-tailed dispersal, can be incorporated into models 
of spread. IDE models are discrete-time, continuous-space 
models that describe populations whose growth and dis-
persal occur in distinct, non-overlapping stages. At each 
generation, reproduction occurs in-place, followed by dis-
persal according to a dispersal kernel, a probability density 
function that governs the likelihood of an offspring settling 
at any location relative to its parent.

In this paper, I analyze IDE models with two classes of 
dispersal kernels: mixed thin-tailed dispersal kernels and 
fat-tailed dispersal kernels, a particular class of heavy-
tailed kernels whose tails decay according to power laws. 
I use a combination of known approaches, as well as new 
analytic techniques to analyze point-release invasions. 
Whereas many analyses of invasions focus on asymptotic 
properties of spread, I focus on their transient dynamics. 
I show how both mixed-dispersal and fat-tailed kernels 
can give rise to invasions with biphasic range expansions, 
which have two distinct phases of spread. For fat-tailed 
kernels, I introduce a way of quantifying how different 
parts of the kernel contribute to the rate of spread of an 
invasion, allowing me to more clearly define the “shoul-
ders” of a dispersal kernel in the context of an invasion.

The remainder of this paper is organized as follows. In 
Model, I introduce the nonlinear and linear IDE models that I 
study, their components, how to measure invasion, and the key 
assumptions I make when using these models. I next review 
the relevant types and characteristics of Dispersal kernels, 
focusing on mixed and fat-tailed kernels. I also review thin-
tailed and regularly varying probability densities for the role 
that they play in my analyses. I begin by analyzing Invasions 
with mixed thin-tailed dispersal, and show that they produce 
biphasic range expansions. I relate their speeds of spread to 
short- and long-distance dispersal. I find that a diminishing 
probability of LDD may or may not eliminate the effects of 
LDD, depending on the form of long-distance dispersal. In 
Fat tails: long- and short-distance dispersal, I show that fat-
tailed dispersal can also generate biphasic range expansions. 
Fat-tailed invasions can invade at near-constant speeds for long 
times, so I review techniques for approximating this speed. I 
also introduce a technique for graphically delineating between 
the peak and tail of a dispersal kernel based on speed rarefac-
tion curves. For both mixed-dispersal and fat-tailed kernels, I 
find the Time of phase transition, which corresponds to a tran-
sition between dynamics governed by short- and long-distance 
dispersal. In Discussion, I briefly summarize and interpret my 
results and their implications for the study of long-distance 
dispersal, range expansions, and invasions.
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Model

Consider the discrete-time, nonlinear integrodifference equation 
(IDE) model

In this model, space is continuous and time is discrete, with t 
corresponding to the generation number. nt(x) is the popula-
tion density at position x in generation t. Reproduction and 
dispersal occur in two distinct phases. First, the growth func-
tion f(n) measures the recruitment of the next generation, 
during the sedentary stage, as a function of the population 
density n at a particular point. Dispersal then occurs accord-
ing to the dispersal kernel k(x − y) , a probability density 
function that gives the probability of offspring from position 
y settling at location x.

I also study the linearized IDE model,

Here, the nonlinear growth model nt+1 = f (nt) has been 
replaced with linear growth, nt+1 = R0nt . The parame-
ter R0 = f �(0) is the net reproductive rate, which governs 
recruitment at low densities. The linear model is often easier 
to analyze than the nonlinear model, but can have different 
dynamics. Under certain conditions on the growth function, 
the rate of spread of the linear model will match the nonlin-
ear model. Further, for certain initial conditions, a formal 
solution exists.

Initial condition

The initial condition, n0(x) , describes the spatial density or 
distribution of the population at time t = 0 . In this paper, I 
restrict my attention to point-release invasions, or invasions 
whose populations are initially highly localized.

The most idealized point-release condition corresponds 
to total concentration of the initial population at a single 
point. This condition is represented mathematically by the 
Dirac-delta distribution �(x) . This initial condition can only 
be used in conjunction with the linear model, for which the 
formal solution becomes,

(1)
nt+1(x) =∫

∞

−∞

f (nt(y))k(x − y)dy

=
(
f (nt) ∗ k

)
(x).

(2)
nt+1(x) =∫

∞

−∞

R0nt(y)k(x − y)dy

= R0 ⋅

(
nt ∗ k

)
(x).

(3)nt(x) = Rt
0
(

t-many

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
k ∗ k ∗ ⋯ ∗ k)(x)

= Rt
0
kt∗(x).

Here kt∗(x) denotes the convolution power, or convolution of 
k(x) with itself t-many times (Feller 1971).

In simulations, and when using the nonlinear IDE model 
(1), a non-idealized initial condition must be used so that 
the population begins at a finite density. In this paper, I use 
a uniform distribution as the initial condition,

I set nt(x) = 1∕2 at the discontinuities of the uniform dis-
tribution because 1/2 is the average value across each dis-
continuity; I have found this to improve the convergence of 
numerical methods.

Growth function

The growth function f (n) can take many forms, depending 
on how the population reproduces at various densities. Typi-
cally, zero and the population carrying capacity are fixed 
points of f (n) ; it is possible that f (n) may have other fixed 
points, but I will not be considering these cases in this paper. 
Rescaling nt(x) so that the carrying capacity is 1, this means 
that f (0) = 0 and f (1) = 1 , with n = 0 being an unstable 
and n = 1 a stable equilibrium of the non-spatial model, 
nt+1 = f (nt).

A key factor in growth, especially when considering 
long-distance dispersal, is whether the growth function has 
an Allee effect, or reduced recruitment at low densities com-
pared with recruitment at higher densities (Allee 1938). This 
occurs when f (n∗)∕n∗ > R0 for some value n∗ > 0 . Under a 
weak Allee effect, R0 > 1 , so that the population will grow 
at low densities, but at a reduced rate. A strong Allee effect 
corresponds to the case where R0 < 1 , so that the population 
dies off at low densities (Wang et al. 2002). In this paper, I 
will assume that there is no Allee effect, so that f (n)∕n ≤ R0 
for all n > 0 . With no Allee effect, the speed of invasion of 
the linear model (2) matches that of the nonlinear model (1) 
(Lewis et al. 2002; Lutscher 2019).

I further restrict my attention to growth functions with no 
overcompensation. Overcompensation occurs when the growth 
function is not monotonically increasing between zero and the 
population carrying capacity, typically at high densities (Li 
et al. 2009). These assumptions result in the discrete-time IDE 
model behaving qualitatively very similarly to a continuous-time 
reaction-diffusion model, such as the Fisher–KPP model.

Throughout this paper, I will use the Beverton–Holt 
stock-recruitment curve (Beverton and Holt 1957) as the 
growth function in all simulations of the nonlinear model,

(4)n0(x) =

⎧
⎪⎨⎪⎩

1 �x� < 1

2
1

2
�x� = 1

2

0 otherwise.
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This function has no Allee effect.

Measuring invasion extent

To measure the extent of an invasion at time t, I set a detec-
tion threshold N > 0 , and look for the position of the inva-
sion front xt such that

In general, there may be many points satisfying equation 
(6). These points comprise the level set of nt(x) with level-
set value N . The number of points can even change in time, 
if for instance two spatially separated populations coalesce 
or the population goes extinct.

In a point-release invasion with conditions on the growth 
function as I have laid out, there will ultimately be two 
points satisfying (6), moving outward symmetrically from 
the point source. For values of R0 > 1 that are close to 1, 
or if the kernel disperses very widely compared to the ini-
tial population distribution, the invasion front may recede, 
as the initially concentrated population is redistributed. In 
some cases, the population density may temporarily decrease 
below the detection threshold before ultimately increasing 
(Shigesada and Kawasaki 1997).

Dispersal kernels

In this section, I briefly review thin-tailed, mixed, and fat-
tailed dispersal kernels.

Thin‑tailed kernels

The term “thin-tailed” comes from probability, and describes 
probability distributions that possess moment generating 
functions. For example, the Gaussian or Normal distribu-
tion, with variance �2 has kernel k(x) given by

and corresponding moment generating function

Another thin-tailed kernel commonly seen in modeling stud-
ies is the Laplace kernel,

(5)f (n) =
R0n

(1 + (R0 − 1)n)
.

(6)nt(xt) = N.

(7)k(x) =
1√
2��2

exp

�
−x2

2�2

�
,

(8)M(s) = e�
2s2∕2.

(9)k(x) =
1

2a
exp

(
−|x|
a

)
,

which has moment generating function

Note that the domain of the moment generating function 
is bounded for the Laplace kernel, but unbounded for the 
Gaussian kernel. The bounded support of the moment gen-
erating function is not unique to the Laplace kernel. The 
WALD kernel, used in ecology to model dispersal by wind, 
also has a moment generating function with bounded support 
(Thompson and Katul 2008). We will see that the bounded 
support of the moment generating function has implications 
for long-distance dispersal in Invasions with mixed thin-
tailed dispersal.

Invasions with thin-tailed kernels are known to approach 
constant speeds of invasion. An invasion starting from a 
point release, or any initial condition with bounded support, 
will approach an asymptotic speed c, known as the spread-
ing speed. When the growth function has no Allee effect, 
this speed can be found in terms of the net reproductive rate 
R0 and the moment generating function M(s) of the kernel,

For a derivation of this result, see Lewis et al. (2016). Alter-
natively, equation (11) can be transformed into a system of 
parametric equations,

This latter representation was first derived by Kot et al. 
(1996).

Thin-tailed kernels, and in particular the Gaussian kernel, 
have largely fallen out of favor for representing dispersal 
data, as numerous studies have shown that dispersal is lepto-
kurtic and potentially even heavy-tailed. One noteable study 
by Bullock et al. (2017) found that thin-tailed kernels gener-
ally performed worse than heavy-tailed kernels when fit to 
dispersal data. In the study, eleven common kernel forms, 
both thin- and heavy-tailed, were fit to dispersal data from 
over one hundred plant species; the Gaussian kernel was said 
to perform “very poorly,” and the two overall best-fitting 
kernels that they tested were both heavy-tailed.

Thin-tailed kernels are still popular as mechanistically 
derived models of dispersal. The Gaussian kernel cor-
responds to movement by a diffusive process for a fixed 
amount of time, and the Laplace kernel to diffusive move-
ment for an exponentially distributed amount of time (Lewis 

(10)M(s) =
1

1 − a2s2
, |s| < 1

a
.

(11)c = inf
s>0

log
(
R0M(s)

)
s

.

(12a)c =
M�(s)

M(s)

(12b)R0 =
exp

[
sM�(s)∕M(s)

]
M(s)
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et al. 2016). The thin-tailed WALD kernel was mechanisti-
cally derived to model the dispersal of seeds by wind with 
the goal of having parameters that can be estimated from 
characteristics of the environment and the dispersing spe-
cies, rather than from dispersal data (Katul et al. 2005).

Mixed dispersal

A mixed-dispersal kernel is a dispersal kernel that represents 
dispersal through distinct vectors by combining multiple dis-
persal kernels. Mixed-dispersal kernels, functions, or models 
are also called mixtures (Higgins and Richardson 1999) or 
composite (Shigesada and Kawasaki 2002).

For each of m-many dispersal modes or vectors, there 
is a probability pi ≥ 0 of a propagule dispersing according 
to that vector, and an associated dispersal kernel ki(x) that 
governs the probability and distance of dispersal according 
to that vector. The probabilities sum to one, so that dispersal 
by one of the vectors is guaranteed. These distinct disper-
sal kernels are combined into a single dispersal kernel in a 
weighted sum,

In principle, mixed kernels can combine any number of dis-
persal vectors that may act at similar or dissimilar spatial 
scales.

In a mixed kernel, the heaviness of the tail is determined 
by the tail of the heaviest component kernel. This means that 
if any constituent kernel is heavy-tailed, the resulting mixed 
kernel will itself by heavy tailed. If all constituent kernels 
are thin-tailed, the resulting mix is thin-tailed.

Fat‑tailed kernels

Despite their name, fat-tailed kernels are not “opposite” 
or complementary to thin-tailed kernels. While thin-tailed 
kernels possess moment generating functions, it is actually 
heavy-tailed kernels that are defined by their lack of moment 
generating functions; therefore, every symmetric dispersal 
kernel is either thin- or heavy-tailed. Fat-tailed kernels are 
a subclass of heavy-tailed kernels with a much more spe-
cific form. A kernel k(x) is fat-tailed if it has tails that decay 
asymptotically like a power law,

where c̃ is a scaling constant and 𝛼 > 1 is the degree of tail 
fatness. A smaller value of � indicates more slowly decaying 
tails, and so increases the fatness of the tails. Because fat-
tailed kernels are also heavy-tailed, they lack moment gener-
ating functions. In addition, fat-tailed kernels have infinitely 

(13)k(x) =

m∑
j=1

piki(x).

(14)k(x) ∼ c̃x−� x → ∞,

many divergent moments, with all moments of order � − 1 
and higher failing to converge.

Perhaps the most well-known fat-tailed kernel is the 
Cauchy distribution,

Here b is a shape parameter that controls the width of the 
kernel. The Cauchy distribution has degree of tail fatness 
� = 2 ; as such, it is so fat-tailed that none of its moments, 
including its mean, variance, and kurtosis, are defined.

Student’s t-distribution is a family of fat-tailed distribu-
tions, indexed by a parameter � that controls the degree of 
tail fatness. For � ≥ 1 , the density function is given by

Student’s t-distribution has tail fatness of degree � + 1 . For 
� = 1 , the t-distribution reduces to the Cauchy distribution 
(15). In the limit as � → ∞ , the t-distribution converges to 
the Gaussian distribution.

I also introduce the following fat-tailed kernel, which I 
term the fat-tailed Laplace kernel,

This kernel has a peaked shape at the origin, and in the limit 
as � → ∞ , k(x) converges to the Laplace distribution.

Regular variation and tail additivity

A class of distributions that has not received much attention 
in ecology is that of regularly varying distributions. A kernel 
k(x) is regularly varying with index � if, for all t > 0,

Regularly varying distributions can be thought of as a gener-
alization of fat-tailed kernels. A fat-tailed kernel with degree 
of tail fatness � is also necessarily regularly varying with 
index −�.

Regularly varying densities possess several useful tail 
additivity properties. For my purposes, the most useful theo-
rems are those proven by Bingham et al. (2006). First, if k(x) 
is a regularly varying probability density, then

This result says that the convolution, which in general has no 
simple closed-form expression, can be approximated in the 

(15)
k(x) =

1

�b

[
1 +

(
x

b

)2
] .

(16)k(x) =
Γ
�

�+1

2

�

Γ
�

�

2

�√
��

�
1 +

x2

�

�−
�

�+1

2

�

.

(17)k(x) =
� − 1

2�(1 + |x|∕�)� .

(18)lim
x→∞

k(tx)

k(x)
= t� .

(19)(k ∗ k)(x) ∼ 2k(x), x → ∞.
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tails as simply twice the original kernel density. A similar 
result holds for repeat convolutions, in which

This latter property is particularly useful in analyzing point-
release invasions under the linear model, where the formal 
solution (3) involves the repeat convolution of the kernel 
k(x).

Comparing mixed and fat‑tailed dispersal

Shape  In practice, a near surefire way of distinguishing 
thin- and fat-tailed kernels is by viewing log-scale plots of 
their tails. For a fat-tailed kernel, the log of k(x) appears 
concave-up in the tail, rather than concave-down; see for 
example Fig. 1. This behavior is in direct contrast to that of 
the Gaussian kernel, whose tails decay rapidly to zero; its 
tails appear concave-down. Most heavy-tailed kernels that 
are used in practice have tails that are concave-up, although 
pathological examples can be constructed as exceptions. 
Near the source, a fat-tailed kernel can be either concave-up 
or concave-down (called convex by some authors, see for 
example Clark et al. 1999), examples include the fat-tailed 

(20)(kt∗)(x) ∼ tk(x), x → ∞.

Laplace kernel (17) and the t-distribution (16). A mixed thin-
tailed kernel can be shaped similarly to a fat-tailed kernel on 
a limited domain; in Fig. 1, the Gaussian–Gaussian mixed 
kernels flare outward where the long-distance kernel meets 
the short-distance kernel.

Short‑ and long‑distance dispersal  Mixed kernels clearly delin-
eate between distinct dispersal vectors. Each vector may be 
clearly defined as short- or long-distance, and its corresponding 
component kernel can be tuned to disperse widely or narrowly. 
The probability of dispersal by each vector is set by a parameter, 
and so the total probability of dispersal by LDD vectors can be 
considered the probability of long-distance dispersal.

Fat-tailed dispersal kernels naturally incorporate capacities 
for short- and long-distance dispersal in a continuum of dispersal 
distances. Although the degree of tail fatness can be controlled, 
fat-tailed kernels do not have a parameter that directly tunes the 
probability of long-distance dispersal. Although short- and long-
distance dispersal can be attributed to the ‘peak’ and ‘tail’ of the 
kernel, there is no clear or obvious delineation between these 
parts of the kernel. In Spreading speeds for truncated fat-tailed 
kernels, I introduce a method of characterizing the “shoulder” 
of a fat-tailed kernel as a region lying between the peak and tail.

Capacity to generate LDD  There are two commonly used crite-
ria for classifying LDD. The first stipulates that LDD is defined 
proportionally, for example by the furthest 5% or even 1% of dis-
persing propagules. The second stipulates an absolute criterion, 
whereby a fixed distance, say 100 km, qualifies long-distance 
dispersal. Both mixed and fat-tailed kernels can generate LDD 
according to either of these criteria.

Heavy- and fat-tailed kernels have special capacities for gen-
erating extreme events. This capability is exemplified by the 
tail additivity property of regularly varying densities (also of 
the larger subexponential class) and can be interpreted as fol-
lows. Suppose that several random dispersal displacements are 
summed, and that the sum is very large. If the displacements 
are drawn from a thin-tailed distribution, such as the Gaussian 
or Laplace, then it is most likely that each individual displace-
ment was larger than typical. If on the other hand, the displace-
ments are from a fat-tailed distribution, then it is more likely 
that a single displacement was very large, or “extreme” (Cooke 
et al. 2014).

Invasions with mixed thin‑tailed dispersal

In this section, I analyze thin-tailed mixed dispersal kernels 
of the form

(21)k(x) = (1 − p)kS(x) + pkL(x).

Fig. 1  Mixed and fat-tailed dispersal kernels. Top Mixed thin-tailed 
dispersal kernels. The short-distance kernel kS(x) is the Gaussian 
kernel with �S = 1 , and is shown as a black dashed curve. The long-
distance kernel kL(x) is another Gaussian kernel, but with �L = 20 . 
The plot shows the mixed kernel for p = 10−1, 10−2,… , 10−10 , from 
top to bottom. Bottom Fat-tailed dispersal kernels. Each solid curve 
is a t-distribution (16), with � = 2, 3,… , 11 , from top to bottom. 
The Gaussian kernel with � = 1 is shown for comparison, as a black 
dashed curve
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Here p is the probability of dispersal by the long-distance 
vector, with 0 < p < 1 . The kernels kS(x) and kL(x) are dis-
persal kernels associated with short- and long-distance dis-
persal vectors, respectively. In addition to assuming both 
kernels are thin-tailed, I also assume that kS(x) is thinner-
tailed than kL(x) , or that kL(x) dominates kS(x) in the tail. 
This assumption is important for guaranteeing that all long-
distance dispersal is in fact due to kL(x).

I show that invasions with mixed dispersal can have 
biphasic range expansions that spread at an initially slow 
speed before transitioning to a higher speed. The invasion 
speed during the first phase is governed by short-distance 
dispersal, whereas long-distance dispersal boosts the speed 
in the second phase of spread. The parameter p, governing 
the probability of long-distance dispersal, controls the time 
of occurrence of the transition between phases of spread. 
A lower probability of LDD delays the onset of the second 
phase, and extends the initial phase of spread.

The probability of LDD also influences the speed of 
spread during the second phase of spread, but the nature of 
this influence depends heavily on the long-distance dispersal 
kernel kL(x) . In some cases, long-distance dispersal elevates 
speeds of invasion even when p is made arbitrarily small, 
while in others, the speed smoothly reduces to that of short-
distance dispersal. I explore this phenomenon in detail in 
Persistent effects of infinitesimal LDD.

Speeds of spread and biphasic range expansion

In a mixed kernel, the spreading speeds for both the mixed 
and unmixed kernels can be found.

For a mixed-dispersal kernel k(x) of the form (21), the 
moment generating function M(s) is given in terms of the 
moment generating functions of the constituent kernels. 
Denoting the moment generating functions of kS(x) and kL(x) 
as MS(s) and ML(s) , respectively,

Thus, if the moment generating functions of all of the con-
stituent kernels are known, it is easy to find the moment 
generating function of a mixed kernel itself. The resulting 
moment generating function can be used in system (11) to 
find the spreading speed for a particular value of R0 . Alter-
natively, the parametric system (12) can be used to relate 
spreading speed c and net reproductive value R0 as the 
parameter s is varied. Doing so yields a speed curve, which 
can be graphically interpreted to yield c as a function of R0.

Figure 2 shows speed curves for mixed-dispersal kernels, 
along with the speed curve for an unmixed kernel represent-
ing short-distance dispersal only. In each mixed kernel, both 
kS(x) and kL(x) are Gaussian kernels, with variances �2

S
= 1 

and �2
L
= 100 . The thick black curve indicates the spreading 

(22)M(s) = (1 − p)MS(s) + pML(s).

speed cS associated with short-distance dispersal only. For 
p = 10−1 , long-distance dispersal is less common than short-
distance dispersal, but still disperses one tenth of propagules. 
The speed of invasion is significantly increased, relative to cS , 
for all values of R0 > 1 . As p is reduced, the speed likewise 
reduces, and eventually converges to cS . The speed curve for 
p = 10−15 , shown in yellow, is visually closest to the short-
distance speed curve, and shows that c essentially coincides 
with cS for values of R0 less than around 1.15. Smaller values 
of p are omitted for visual clarity, but further reducing p 
results in closer agreement for larger values of R0 . Note that 
this behavior does not occur with all mixed kernels; Lutscher 
(2019) has proven when the speed of the mixed kernel con-
verges to that of the short-distance kernel, as well as when 
it does not. For further information on how this latter case 
affects range expansion, see Persistent effects of infinitesimal 
LDD.

Numerical simulations

I perform numerical simulations to complement my analytic 
results. While the spreading speed tells us how fast an inva-
sion will spread as time becomes large, it does not inform 
us about any transient behaviors that may occur. Transient 
dynamics can last for short or long times, and can be difficult 
to predict or anticipate.

In my simulations, the domain is a large interval, centered 
about the origin, with half-width H. The domain is represented 
by an evenly spaced grid of points, with grid-spacing Δx . The 
population density nt(x) is represented on this domain. In each 
simulation, H is chosen sufficiently large so that the invasion 

Fig. 2  Spreading speed c as a function of net reproductive rate R0 for 
mixed-dispersal kernels. For each mixed kernel, kS(x) and kL(x) are 
Gaussian kernels with �S = 1 and �L = 20 . The probability p of long-
distance dispersal varies from p = 10−1, 10−2,… , 10−15 ; the curves 
for the largest given values of p are labeled. The thick black curve 
corresponds to p = 0 , or dispersal by the short-distance kernel kS(x) 
only
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front position does not tend too close to the boundary of the 
domain. I implement point-release initial conditions by setting 
n0(xj) = 1 , for all gridpoints xj where xj ∈ (−1∕2, 1∕2) , and 
n0(xj) = 1∕2 for |xj| = 1∕2.

I perform my simulations in MATLAB. To evalu-
ate the convolution integrals in the nonlinear IDE (1), I 
use a midpoint-rule integration scheme. I implement this 
scheme with the numerical convolution function “conv” 
with the “same” option. To find the invasion extent xt , 
I define a threshold value N  , typically N = 0.1 , and use 
the “find” command to select the last grid point xj such that 
nt(xj) > N  . I then use the “interp1” command to perform 
cubic spline interpolation on the points xj−1, xj, xj+1, xj+2 to 
compute the position xt satisfying nt(xt) = N .

Figure 3 shows range-expansion curves from four separate 
invasions, two with mixed dispersal and two with unmixed, 
short-distance dispersal only. Dispersal is as in Fig. 2, with 
kS(x) Gaussian with �S = 1 , and kL(x) Gaussian with �L = 10 . 
The probability of LDD is p = 10−5 . Only R0 is varied, tak-
ing on the values R0 = 1.2, 1.5 . For each value of R0 , two 
invasions, one with mixed dispersal ( p = 10−5 ) and one with 
unmixed dispersal ( p = 0 ), are shown.

Perhaps the most striking feature in Fig. 3 is that each inva-
sion with mixed dispersal has a biphasic range-expansion 
curve. These invasions initially spread at slow constant speeds, 
but later transition to faster speeds. In plots of invasion extent 
xt versus time, the transition appears very rapid. Plots of the 
per-step invasion speed, vt = xt − xt−1 , show that the velocity 
can grow rapidly during this transition, and can temporarily 
spike to very high speeds before slowing.

The spreading speed c of the mixed-dispersal kernel 
determines the asymptotic speed of invasion during the sec-
ond, ultimate phase of spread. This speed is calculated using 
the parametric system (12), and is shown in Fig. 3 as black 
dashed lines for each mixed-dispersal invasion and associ-
ated value of R0 . At the start of the second phase of spread, 
the per-step invasion speed vt jumps far above the spreading 
speed, but soon after decays and begins oscillating around 
the spreading speed. These oscillations continue to dampen 
as the per-step invasion speed converges to c.

During the initial phase of spread, the speed does not 
match or approach the spreading speed. Instead, each 
mixed-dispersal invasion initially advances at the spread-
ing speed cS associated with the short-distance dispersal 
kernel, kS(x) . This can be seen by the close agreement 
of the invasions with mixed and unmixed dispersal for 
each value of R0 ; the timeseries of xt from the two inva-
sions are indistinguishable, and the same is true for the 
timeseries of vt . This indicates that the initial rate of 
spread of invasions with mixed dispersal is governed by 
short-distance dispersal. To calculate cS , I again use sys-
tem (12), this time with the moment generating function 
MS(s) of the short-distance kernel kS(x).

There are a number of ways to conceptualize why LDD 
only affects the latter phase of an invasion. First, if we con-
sider the mixed kernel as a perturbation of the unmixed ker-
nel, it makes sense that the timeseries of the two invasions 
would initially closely agree. A second perspective comes 
from how steepness and speed of the invasion front are 
related, and how thin-tailed invasions converge to a traveling-
wave profiles. As a thin-tailed invasion progresses, the tail 
of its population density nt(x) converges to a decaying expo-
nential, proportional to e−sx for some s > 0 . A smaller value 
of s corresponds to a shallower yet more rapidly traveling 
invasion front, whereas larger values of s describe steeper 
and more slowly moving fronts. On the other hand, after only 
one generation, n1(x) closely resembles the dispersal kernel, 
which can be seen from the formal solution (3). Initially, the 
invasion front is close to the origin, well away from the tails, 
and the shape of the kernel in this region is governed by the 
short-distance kernel. The invasion-front profile produced 
by the mixed-distance kernel is typically much shallower in 

Fig. 3  Invasions with short- and long-distance dispersal and R0 var-
ied. Plots show range expansion curves for four invasions, two with 
mixed dispersal and two with unmixed, short-distance dispersal only. 
In all cases, short- and long-distance dispersal are Gaussian with 
�S = 1 and �L = 20 , respectively. Growth is Beverton–Holt with 
R0 = 1.2 (open circles) and R0 = 1.5 (dots). For invasions with mixed 
dispersal (black markers), the probability of LDD is p = 10−5 ; inva-
sions with unmixed, short-distance dispersal (gray markers) have 
p = 0 . The dashed lines in the plots of invasion speed indicate the 
spreading speed of the mixed-dispersal kernel for each value of R0 . 
Red cross symbols indicate the approximate time and position of the 
phase transition as determined by the procedure in Time of phase 
transition. In all simulations, the grid spacing is Δx = 1∕16 and the 
domain half-width is H = 1000
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shape than the short-distance dispersal kernel, and takes time 
to develop; the invasion front is steep and moves slowly dur-
ing this time, until the exponentially decaying tail develops 
and boosts the speed of invasion, after which point it is shal-
lower and faster. For a relevant discussion of how the slope 
of a decaying exponential determines the speed of traveling 
waves in reaction-diffusion equations, see (Murray 2007, 
p. 442).

The parameter R0 affects mixed-dispersal range expan-
sions in two ways. First, R0 determines the speed of spread 
during both phases of the invasion. This conforms with the 
behavior of the speed curves in Fig. 2, where all curves 
increase as R0 grows. Second, as R0 is increased, the duration 
of the initial phase of spread decreases. For R0 = 1.2 , the 
initial phase of spread lasts for around 60–65 generations. 
In contrast, for R0 = 1.6 , the initial phase lasts for a shorter 
time of around 30 generations.

To see how the probability p of LDD events affects 
range expansion, I perform additional simulations, this time 
keeping R0 constant and varying p. Figure 4 shows range 
expansion curves from six invasion simulations. Dispersal 
is as in Fig. 2; both kS(x) and kL(x) are Gaussian kernels, 
with �2

S
= 1 and �2

L
= 100 . The only parameter varied is 

p = 10−1, 10−2,… , 10−5 ; the case where p = 0 , which cor-
responds to dispersal by the short-distance vector only, is also 
shown.

The range expansions in Fig. 4 appear similar to those 
shown when R0 was varied, but there is an important differ-
ence in the initial phase of spread. All of the mixed-dispersal 
invasions have linear–linear biphasic range expansions, but 
the speed of spread during the initial phase is identical across 
simulations. This is because the net reproductive rate R0 and 
short-distance dispersal are kept constant, so the short-distance 
spreading speed cS does not change.

The probability p of LDD affects the second phase 
of range expansion in two ways. First, as p is decreased, 
the spreading speed c of the mixed kernel decreases. We 
first saw this in Fig. 2, and the range expansions in Fig. 4 
confirm this; the spreading speed for each value of p is 
shown as a dashed line, and the per-step invasion speed 
vt converges to the spreading speed. Second, decreas-
ing p delays the onset of the second phase of spread, or 
equivalently lengthens the initial phase of spread. The 
initial phase of spread lasts for around ten generations 
for p = 10−1 , fifty generations for p = 10−3 , and around 
one hundred generations for p = 10−5.

In all of the mixed-dispersal invasions shown so far, 
the effects of long-distance dispersal vanished as p was 
reduced to zero. This is not always the case, and in fact 
even when p is decreased to zero, some kernels signifi-
cantly impact range expansion when used as the long-
distance kernel. The determining factor turns out to 
be the moment generating function. I next explore this 

phenomenon, when it happens, and how it affects range 
expansions.

Persistent effects of infinitesimal LDD

Vanishingly rare long-distance dispersal may or may not 
impact range expansions, depending on the nature of 
the long-distance kernel kL(x) . In this section, I analyze 
how range expansions respond when the probability p 
of long-distance dispersal is reduced to zero, and show 
that invasions may nevertheless invade faster and exhibit 
biphasic range expansions. Lutscher has previously found 
that the asymptotic spreading speed can be boosted in 
sedentary (Lutscher 2007) and dispersing populations 
(Lutscher 2019), and that the deciding factor is whether 
the moment generating function ML(s) of kL(x) diverges 
within the support of MS(s) . Here, I examine this result 
in the context of range expansions.

The first case occurs if ML(s) converges on the entire 
support of MS(s) , as in the case of the Gaussian–Gauss-
ian mixed kernels in the preceding section. Here, the 
effects of LDD vanish as p goes to zero. In the second, 

Fig. 4  Invasions with mixed dispersal and the probability p of long-distance 
dispersal varied. Dispersal is as in Fig.  3, growth is Beverton–Holt with 
R0 = 1.1 , and p = 10−1, 10−2,… , 10−5 . Dashed lines in the plot of inva-
sion speeds indicates the spreading speed of the mixed kernel for each value 
of R0 . The thick black curve corresponds to an invasion with short-distance 
dispersal only ( p = 0 ). In all simulations, the grid spacing is Δx = 1∕16 ; 
the domain half-width is H = 1000 for p = 10−1 , H = 700 for p = 10−2 , 
and H = 500 for p = 10−3, 10−4, 10−5
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the moment generating function ML(s) diverges within 
the support of MS(s) . This can occur, for example, in a 
Gaussian–Laplace or Laplace–Laplace mixed kernel. In 
these cases, the effects of LDD do not disappear as p is 
reduced to zero, and I refer to the long-distance kernel 
kL(x) as persistent.

A persistent long-distance dispersal kernel affects the R0

-versus-c speed curve in the following way. Denote by C0 
the R0-versus-c speed curve of the short-distance dispersal 
kernel kS(x) , and by Cp the speed curve for the mixed ker-
nel with parameter value p. As p is decreased, Cp does not 
converge to C0 , but rather to a curve I will denote by C0+ . 
In a neighborhood of R0 = 1 , the curves C0 and C0+ coin-
cide. At a transition point T, the curves C0 and C0+ diverge, 
with C0+ taking on larger values than C0 for increasing R0 
(Lutscher 2019). Figure 5 shows how this behavior mani-
fests in the speed curves for a Laplace–Laplace family of 
mixed kernels. Here, the transition point T occurs at roughly 
R0 = 1.0434 and c ≈ 0.41667.

Typically, the R0-versus-c speed curve cannot be solved 
for in closed form; the parametric variable cannot in gen-
eral be eliminated. In the case of a persistent LDD kernel, 
a portion of the C0+ speed curve can be explicitly solved 
for. The portion of the curve lying between the point 
(R0, c) = (1, 0) and T exactly matches that of C0 , and so 
can be found parametrically; the point T lies on this curve, 
evaluated at the parametric value s = a , or the point of 

divergence of ML(s) . Beyond T, the curve C0+ has the closed 
form (Lutscher 2019),

This function is shown in Fig. 5 as a black dashed curve.
Figure 6 shows example range expansions with mixed 

dispersal where kL(x) is a persistent kernel. For nearly 
all values of p, the resulting range expansion is bipha-
sic, with two distinct phases of spread. For p = 10−1 , the 
duration of the initial phase is shortened, but this also 
coincides with the LDD vector being quite common.

Although reducing the probability of occurrence of LDD has 
little effect on the ultimate spreading speed, it does affect when 
the transition between phases occurs. As we see in Fig. 4, as p 
is decreased, the onset of the phase transition is delayed; thus, p 
plays a role similar to R0 in determining when the phase transi-
tion occurs. Further, as p decreases in orders of magnitude, this 
delay grows roughly linearly.

(23)c =
log(R0) + log(MS(a))

a
, R0 ≥

exp
[
aM�

S
(a)

MS(a)

]

MS(a)
.

Fig. 5  Speed curves for a family of mixed kernels with a persistent 
long-distance component. Here kS(x) is the Laplace kernel (9) with 
parameter a = 1 (variance �2

S
= 2 ), and kL(x) is also a Laplace kernel 

but with a = 5 (variance �2

L
= 50 ). Each curve indicates the spreading 

speed c as a function of R0 for a mixed kernel with probability of LDD 
p = 10−1, 10−2,… , 10−4 . The thick black curve (label C0 ) corresponds 
to the case where p = 0 , and the dashed black curve (label C0+ corre-
sponds to the limiting curve as p approaches zero from above. The curves 
C0 and C0+ meet in tangency at the point T, and overlap for smaller values 
of R0

Fig. 6  Mixed-dispersal invasions with persistent long-distance disper-
sal. Dispersal is as in Fig.  5. Growth is Beverton–Holt with R0 = 1.3 . 
Seven mixed-dispersal invasions are shown, corresponding to 
p = 10−1, 10−2,… , 10−7 , along with an unmixed invasion ( p = 0 ). The 
ultimate speed of spread decreases as p is reduced, but for p < 10−3 , 
the reduction in speed is negligible. The duration of the first phase of 
spread increases as p decreases; rarer long-distance dispersal delays 
the onset of the phase of spread that is dominated by LDD. In all simu-
lations, the grid spacing is Δx = 1∕16 , and the domain half-width is 
H = 1000, 800, 600 for p = 10−1, 10−2, 10−3 respectively, and H = 400 
for p = 10−4,… , 10−7
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Fat tails: long‑ and short‑distance dispersal

I now turn to invasions with true fat-tailed dispersal. In 
contrast with the mixed-dispersal models described in the 
previous section, where two distinct modes of dispersal 
were incorporated into a single dispersal kernel, there is 
no such distinction with fat-tailed dispersal. As such, there 
is no clear way to separate the effects of short- and long-
distance dispersal. Furthermore, an invasion with true fat-
tailed dispersal will continuously accelerate, and so has no 
asymptotic spreading speed (Kot et al. 1996).

Despite these differences, fat-tailed invasions behave quali-
tatively very similarly to mixed-dispersal invasions: they can 
express biphasic range expansions, and can initially progress 
at near-constant speeds for long times before ultimately accel-
erating. To find this speed, I review approaches for approxi-
mating the speed of spread and introduce a new method 
based on speed rarefaction curves (Kot and Neubert 2008). 
This method also enables us to measure the contribution of 
different parts of the dispersal kernel to the invasion speed, 
which defines a notion of kernel “shoulders” in the context 
of invasion.

Range expansions with fat‑tailed dispersal

In a previous paper (Liu and Kot 2019), we detailed how 
the tail-additivity properties of regularly varying probabil-
ity density functions can be used to approximate the tail of 
a point-release invasion with fat-tailed dispersal. We used 
these tail approximations to find that the invasion front 
position, xt , advances geometrically fast, with the base of 
geometric growth a function of net reproductive rate R0 
and the degree of tail fatness �,

Consequently, the per-step invasion speed vt = xt − xt−1 itself 
grows geometrically quickly,

Despite asymptotically accelerating without bound, fat-
tailed invasions initially spread slowly. How long an inva-
sion spreads at a slow speed depends in part on the rate of 
acceleration of the invasion, but there can also be a delay 
before the onset of acceleration. Figure 7 shows plots of 
range expansions for invasions with fat-tailed dispersal. In 
each case, dispersal is governed by the fat-tailed Laplace 
kernel (16). Growth is according to the Beverton–Holt stock-
recruitment function (5) with R0 = 1.3, 1.5, 2.0 . These inva-
sions have linear–accelerating biphasic range expansions: in 

(24)xt+1 ≈ R
1∕�
0

xt, t → ∞.

(25)vt+1 ≈ R
1∕�
0

vt, t → ∞.

the first phase spread is linear at a constant speed, and in the 
second phase they continuously accelerate.

Raising and lowering the net reproductive rate R0 affects fat-
tailed invasions similarly to mixed-dispersal invasions. As R0 is 
increased, the speed of range expansion increases, both during 
the initial rate of constant-speed expansion as well as during the 
accelerating phase. Lowering R0 delays the onset of the acceler-
ating phase, or extends the duration of the initial phase.

Unlike mixed dispersal kernels, fat-tailed kernels do not 
comprise distinct short- and long-distance dispersal vectors. 
As such, there is no obvious speed that can be associated 
to short-distance dispersal only. In the following section, I 
review ways of approximating this speed.

Fig. 7  Range-expansion curves of fat-tailed invasions. Each inva-
sion follows from a point-release, with dispersal given by the fat-
tailed Laplace kernel (16) with � = 8 , and Beverton–Holt growth 
with R0 = 1.3 ( ◦ ), R0 = 1.5 ( ∙ ), and R0 = 2.0 ( ⊳ ). Range expansion 
can be biphasic linear–accelerating or continuously accelerating; for 
small values of R0 , the initial phase of spread is at a constant speed, 
but for larger values this phase disappears. Each invasion eventu-
ally enters into an accelerating regime, where its rate of advance 
is geometric with base R1∕�

0
 ; this can be seen in logarithmic scale 

(bottom panel), when the per-step invasion speed vt tends to follow 
straight lines, indicating geometric growth at the expected rate (24). 
Red crosses in the plots of xt indicate the approximate time t  and 
position x of the phase transition between constant and accelerating 
phases. In the plots of vt , red crosses are plotted on the vertical axis 
at the value x∕t . In all simulations, the grid spacing is Δx = 1∕16 
and the domain half-width is H = 2000
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Spreading speeds for truncated fat‑tailed kernels

Fat-tailed invasions have no finite spreading speed (Kot 
et al. 1996), but some techniques for finding or approxi-
mating the spreading speed can be applied or adapted. 
Techniques for calculating the spreading speed of thin-
tailed kernels depend on the moment generating function 
— something that fat-tailed kernels lack — but there are 
approximations for the speed with milder requirements. Here 
I review two such approximations: the Gaussian and Kur-
tosis approximations. I then introduce a technique based on 
truncation of tails of the kernel.

To apply the Gaussian approximation, it is necessary 
that k(x) have finite variance. Many fat-tailed kernels have 
finite variance, with notable exceptions being the Cauchy 
distribution or any fat-tailed kernel with tail fatness � ≤ 3 . 
Denoting �2 as the variance of k(x), the Gaussian approxi-
mation gives the approximate speed

The Gaussian approximation comes from replacing the ker-
nel k(x) with a Gaussian kernel of equal variance, and in 
practice under-predicts the speed of invasion. Alternatively, 
the Gaussian approximation can be derived from a trunca-
tion of the Taylor series expansion of the moment generating 
function (Lutscher 2007).

The kurtosis approximation comes from a higher-
order truncation of the moment generating function 
(Lutscher 2007), and is given by

Whereas the variance �2 is the second-order moment of 
k(x), the excess kurtosis �2 is derived from the fourth-order 
moment. In order for the excess kurtosis to be defined, k(x) 
must have tail decay of order 𝛼 > 5 ; the kurtosis is unde-
fined for � ≤ 5 . Therefore, despite being more accurate, 
the kurtosis approximation is more restrictive in that it 
cannot be applied to as many kernels as can the Gaussian 
approximation.

To find a better approximation for the initial constant 
speed of spread of a fat-tailed invasion, I return to the 
moment generating function, formally defined as

The key feature of heavy- and fat-tailed kernels that dis-
tinguishes them from thin-tailed kernels is their lack of 
moment generating functions. This means that analytic 
methods for characterizing thin-tailed dispersal that use the 

(26)cG =

√
2�2 logR0.

(27)c�2 = cG

(
1 +

�2
12

logR0

)
.

(28)M(s) = ∫
∞

−∞

esxk(x)dx.

moment generating function cannot be simply extended for 
use with fat-tailed kernels.

The moment generating function fails to exist for fat-
tailed dispersal kernels precisely because of their tails, 
which do not decay to zero fast enough for the integral in 
equation (28) to converge. Truncating these tails, even at 
a great distance from their peak, will cause the integral to 
converge. This is because a dispersal kernel with compact 
support, where the kernel is nonzero only over a closed 
and bounded interval, must be thin tailed.

I define the moment generating function of the normalized 
dispersal kernel with truncated support −H ≤ x ≤ H , denoted 
MH(s) , as

In this definition, the integral in the numerator is modified 
from the moment generating function, and the integral in the 
denominator is a normalization constant. This normalization 
constant accounts for the fact that truncating the tails of the 
dispersal kernel results in its integral being less than one.

The truncated moment generating function (29) can be 
used in the parametric relations (12). Doing so yields the 
spreading speed of the thin-tailed kernel that is obtained 
from truncating and re-normalizing the fat-tailed kernel 
k(x) at a fixed half-width H. I denote this speed as cH , with 
H indicating the truncation half-width. Holding H constant 
and finding the spreading speed as a function of R0 yields a 
speed curve like those shown in Figs. 2 or 5. Alternatively, 
fixing R0 and varying H allows us to find the spreading 
speed of a truncated fat-tailed kernel as a function of the 
H, yielding a “speed rarefaction curve”.

Speed rarefaction curves were first introduced by 
Kot and Neubert (2008) in the study of range-limited or 
censored dispersal data. They studied thin- rather than 
fat-tailed kernels, for which the speed rarefaction curve 
approaches a finite limit: the spreading speed of the non-
truncated thin-tailed kernel. They used speed rarefaction 
curves to determine the sampling radius required for accu-
rate estimates of the spreading speed.

For fat-tailed kernels, the speed rarefaction curve does 
not approach a finite limit. Instead, as the truncation half-
width increases, the speed of spread of the truncated ker-
nel approaches infinity. Despite having no finite limit, the 
shape of the speed rarefaction curve is useful in indicating 
the importance of different parts of the kernel.

Rarefaction curves for the fat-tailed t-distribution for 
a variety of values of R0 are shown in Fig. 8. For each 
curve, the spreading speed increases as truncation length 
increases, but the rate of increase is not steady. The behav-
ior of these rarefaction curves is most easily understood 

(29)MH(s) =
∫ H

−H
esxk(x)dx

∫ H

−H
k(x)dx

.

420 Theoretical Ecology (2021) 14:409–427



1 3

for very large and very small values of H. The spreading 
speed first increases rapidly near H = 0 ; for a zero-width 
kernel, spread does not occur. As the truncation width H 
approaches infinity, so does the spreading speed; this is 
consistent with the fact that full, non-truncated fat-tailed 
kernel produces continuously accelerating invasions, for 
which the invasion speed is unbounded and approaches 
infinity.

For some range of intermediate truncation widths, the rar-
efaction curve of a fat-tailed kernel can plateau or become 
nearly flat. For the curves in Fig. 8, this occurs in a range 
of values of approximately 8 ≤ H ≤ 50 for R0 = 1.2 . For 
R0 = 1.4 the interval is shorter, around 8 ≤ H ≤ 30 . As R0 
increases, the length the interval decreases; for R0 = 2.0 , the 
rate of increase of the curve slows near H ≈ 12 , but does not 
flatten to the degree seen in the curves for lower values of R0 . 
When the plateau is present, I denote by H∗ the truncation 
half-width at which cH changes most slowly, or the derivative 
dcH∕dH is minimal. The corresponding speed cH∗ is the speed 
at which the rarefaction curve plateaus.

It is not immediately obvious that cH∗ should be relevant 
to a true fat-tailed invasion, but I have found cH∗ to be a good 
predictor of the near-constant speed of spread during fat-
tailed invasions. I give the following heuristic argument for 
why this may be the case. Denote by vt the per-step invasion 
speed of the invasion with the non-truncated, true fat-tailed 
dispersal kernel k(x). Consider the family of invasions by 
the truncated kernels kH(x) for all H, and denote the per-step 
invasion speed for these invasions by vH

t
 . As the truncation 

half-width H is taken to infinity, vH
t
→ vt for each fixed t. 

Furthermore, for each invasion with truncated dispersal, the 
per-step invasion speed will approach the spreading speed, 
so vH

t
→ cH as time increases. These two facts mean that 

|vH
t
− vt| becomes small as H becomes large, while |vH

t
− cH| 

becomes small as t becomes large. Applying the triangle 
inequality gives

At certain times and for certain truncation widths, the two 
positive quantities on the right of equation (31) are simulta-
neously small, and consequently so is the difference on the 
left. I have observed that this occurs for values of H ≈ H∗ . 
Under these circumstances, the per-step speed vt approaches 
or becomes very close to the spreading speed of the trun-
cated kernel. Formalizing this heuristic argument is difficult 
because these limits do not concurrently hold as both t and 
H become infinite, and indeed the per-step speed cannot be 

(30)|vt − cH| ≤ |vt − vH
t
| + |vH

t
− cH|.

Fig. 8  Rarefaction curves for a fat-tailed kernel. Horizontal axes on 
each plot both correspond to distance at the same scale. Top A fat-
tailed dispersal kernel. The peak corresponds to the bulk of disper-
sal that occurs at a short scale, and the tail corresponds to rare long-
distance dispersal. The term “shoulder” describes a part of the kernel 
that lies between the peak and the tail. Bottom The spreading speed 
associated with truncating and re-normalizing the fat-tailed kernel at 
various lengths. As the truncation half-width increases, the spreading 
speed increases. A flat part of the curve indicates a part of the kernel 
that contributes minimally to the spreading speed. This plateau defines 
the shoulder of the kernel in the context of invasion

Fig. 9  Speed of spread of a fat-tailed invasion. Data (black points) 
indicate the per-step invasion speed vt of a simulated fat-tailed inva-
sion; the grid spacing is Δx = 1∕16 and the domain half-width is 
H = 1000 . Dispersal is governed by the fat-tailed Laplace kernel with 
tail fatness � = 100 . Growth is Beverton–Holt with R0 = 1.8 . The 
invasion progresses at a steady pace for over 200 generations, and 
appears to approach a finite spreading speed, before rapidly accelerat-
ing. The solid, dashed, and dash-dotted lines indicate estimates of the 
transient speed from the rarefaction curve ( CH∗ ), the kurtosis approxi-
mation ( c�2 ), and the Gaussian approximation CG , respectively
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said to converge in a typical limiting sense. I hope to expand 
on this argument in future work.

Figure 9 shows how the Gaussian, kurtosis, and rarefac-
tion approaches compare with the speed of spread of a fat-
tailed invasion. The invasion has Beverton–Holt growth with 
R0 = 1.8 and fat-tailed Laplace dispersal (17) with tail fatness 
� = 100 . These values were chosen to increase the differences 
between the three quantities cG, c�2 , and cH∗ in order to make 
comparison with data clearer and to delay the onset of the 
accelerating regime of spread. The plots show that the per-
step invasion speed vt appears to asymptotically approach a 
constant value up until a time around t = 225 , after which the 
speed rapidly grows, corresponding to the transition between 
the constant-speed and accelerating phases of range expan-
sion. The Gaussian approximation under-predicts this speed, 
the kurtosis approximation over-predicts but is closer, and 
the speed cH∗ from the rarefaction curve closely matches the 
apparent limit of vt before the phase transition.

Time of phase transition

In this section, I find an approximation for the time at which 
a phase transition will occur in a biphasic range expansion 
of a fat-tailed invasion. To do this, I develop an approxi-
mation for the central, established portion of the invading 
population, and another for the tail of the population under 
the linear model. I then look for the time at which these 
approximations are simultaneously equal and match a detec-
tion threshold. At this time, the invasion front transitions 
from being governed by short-distance dispersal to long-
distance dispersal.

I begin by developing an approximation for the central 
portion of the population density, nt(x) . Assume that k(x) has 
finite variance, denoted by �2

S
 . All thin-tailed kernels possess 

a finite variance, as do fat-tailed kernels with tail fatness 
𝛼 > 3 . As long as the dispersal kernel k(x) has finite vari-
ance, the central limit theorem applies. For my purposes, the 
related local limit theorems are more useful, as they allow 
approximation of probability densities rather than distribu-
tion functions. Lutscher (2007) previously detailed how local 
limit theorems can be applied in this context, with the key 
result being

Equation (31) can be combined with the formal solution for 
a point-release invasion under linear IDE model (3),

(31)k∗t(x) →
1√
2�t�2

S

exp

(
−x2

2t�2
S

)
, t → ∞.

Unfortunately, this approximation converges too slowly to 
provide a good approximation in the tails of nt(x) at large 
times; this is because approximation (31) converges more 
slowly than the growing factor of Rt

0
 due to repeated growth 

of the population. Fortunately, I will use this approximation 
at the edge of the central bulk of the invasion, rather than 
in the tails, and restrict my attention to finite and relatively 
small, rather than large, times.

To approximate nt(x) in the tails, I use the tail additivity 
properties of fat-tailed kernels. Assuming that k(x) is fat-tailed, 
it is also a regularly varying density. Due to tail additivity of 
the kernel (20), nt(x) is asymptotically equal to a scaled copy 
of the dispersal kernel,

To predict when the behavior of the invasion front transi-
tions from being dominated by short- to long-distance dis-
persal, I look for when these two terms are equal and match a 
detection threshold N . This occurs when all three quantities 
are equal,

Here x and t indicate the spatial position and time at which 
the regime shift occurs. Figure 10 shows how the equations 
are satisfied by the two approximations and the detection 
threshold in a fat-tailed invasion.

In general, solving for x and t in system (34) is not pos-
sible analytically, but can be done numerically. t may be 
non-integer, in which case the largest integer that is smaller 
than t will provide a more conservative estimate for the 
time at which the regime shift occurs. Furthermore, these 
approximations were derived under the linear integrodiffer-
ence model (2). Assuming that the growth function f(n) has 
no Allee effect, the linear and nonlinear models will have 
the same asymptotic spreading speeds, but the two models 
generally have different transient dynamics. The nonlinear 
model typically lags behind the linear model.

Examples of this approximation are shown in Fig. 7. Red 
crosses indicate the time t and position x of the phase transition. 
While the transition between phases of spread is not sharp, t pre-
cedes the onset of acceleration in all cases where a demarcation 
is evident.

(32)nt(x) ≈
Rt
0√

2�t�2
S

exp

(
−x2

2t�2
S

)
.

(33)nt(x) ∼ Rt
0
tk(x), x → ∞.

(34a)
Rt
0√

2�t�2
S

e−x
2
∕(2t�2

S
) =N,

(34b)Rt
0
tk(x) =N.
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Although system (34) cannot be solved in general, we can 
make some broad inferences. First, the time t of the phase tran-
sition increases as R0 is decreased. This is because in equa-
tion, R0 must be raised to the power of t for the left-hand side 
to be of sufficient magnitude; that is, the compounding geo-
metric growth at rate R0 must counteract the small probability 
k(x) ≪ 1 in order to reach the threshold of detection. Second, 
all things being equal, larger values of � indicate more rapidly 
decaying tails; t correspondingly increases as � is increased, 
at least within a parameterized family of kernels such as the 
t-distribution. (See Fig. 10)

Mixed dispersal

Thin-tailed mixed-dispersal kernels do not possess the 
asymptotic tail additivity properties of fat-tailed ker-
nels that I used in tail approximation (34). Instead, for a 
mixed kernel with k(x) = (1 − p)kS(x) + pkL(x) , I derive the 
approximation

Details of this derivation are in appendix Approximation 
of point-release invasions with mixed dispersal. The key 
assumptions are (1) that long-distance dispersal events 
are rare, so p ≪ 1 , (2) that kS(x) has finite variance �2

S
 , so 

that the self-convolution k∗t
S
(x) can be approximated with 

a Gaussian distribution, and (3) that kS(x) disperses very 
narrowly compared to kL(x) , with 𝜎2

S
≪ 𝜎2

L
 . Under these 

assumptions, equation (36) provides a good approximation 
for nt(x) in a spatial domain that encompasses the transition 
point between spread governed by short- and long-distance 
dispersal.

I now proceed similarly to how I found the transition time 
for fat-tailed kernels. The first term in equation (36) approxi-
mates the central bulk of nt(x) , while the second term is a 
first-order approximation of the tails of nt(x) . I equate these 
terms to N , and look for the time t and position x that solve 
this system,

This system is nearly identical to system (34), with the 
major difference that pkL(x) replaces k(x) in the second 
equation. Figure 10 shows how these two terms relate to 
and approximate the population density in a mixed-dispersal 
invasion.

Figure 3 shows how this approximation applies to mixed-
dispersal invasions. In these invasions, dispersal is Gauss-
ian–Gaussian mixed, with kS(x) having variance �2

S
= 1 and 

kL(x) with variance �2
L
= 400 . Each red cross in the figure 

marks the time t and position x of the phase transition, as 
calculated by system (36).

System (36) is very similar to system (34), with the differ-
ence that kL(x) is thin-tailed. This important distinction can, 
in some cases, result in the system having no solution. This 
can happen if, for example, kL(x) is a Gaussian kernel; in this 
case, the approximation for the central bulk (36a) will eventu-
ally become heavier-tailed than kL(x) , and the two approxima-
tions may never intersect at a value matching the detection 
threshold N . This only occurs when kL(x) is as thin-tailed or 
thinner tailed than a Gaussian kernel. If kL(x) is heavier-tailed 
than any Gaussian distribution (e.g. a Laplace kernel) then a 
solution is guaranteed.

(35)nt(x) ≈
Rt
0√

2�t�2
S

exp

(
−x2

2t�2
S

)
+ Rt

0
tpkL(x).

(36a)
Rt
0√

2�t�2
S

exp

(
−x

2

2t�2
S

)
=N,

(36b)Rt
0
tpkL(x) =N.

Fig. 10  Population densities at phase transition. The population density 
nt(x) (thick gray curves) according to the linear model (2) follows a Gauss-
ian-like profile (black dashed curves) in a central region. Top A fat-tailed 
invasion transitions between being dominated by short- to long-distance 
dispersal at time t = 35 . The tails are approximated by equation (33) using 
tail additivity (solid black curve). The central and tail approximations inter-
sect and both equal a detection threshold N = 0.1 (black dotted curve) 
at the position indicated by the cross. Dispersal is governed by the t-dis-
tribution with � = 5 . Growth is linear with R0 = 1.4 . Bottom The phase 
transition of a mixed-dispersal invasion. Similar to the fat-tailed invasion, 
approximations for the central bulk (black dashed curve) and tail (solid 
black curve) of the invasion meet at the detection threshold. Both short- 
and long-distance dispersal are Gaussian, with �S = 1 and �L = 20 . Figure 
shows nt(x) at time t = 24
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Discussion

In this paper, I analyzed two approaches for modeling spread 
with long-distance dispersal: mixed-dispersal kernels and 
fat-tailed dispersal kernels. Both approaches are commonly 
used in the modeling and study of dispersal data, and can 
be incorporated into integrodifference-equation models of 
spread. My results contribute to our developing understand-
ing of two aspects of spread and invasions: long-distance 
dispersal and transient phenomena.

There are several common patterns that emerge from both 
approaches. First and foremost, range expansions with LDD 
can be biphasic; invasions with short- and long-distance dis-
persal may progress at slow constant speeds before accel-
erating or switching to faster speeds. For both mixed and 
fat-tailed dispersal, short-distance dispersal determines the 
speed during the initial phase, while long-distance dispersal 
boosts the ultimate speed. Rarity of long-distance dispersal 
and the net reproductive rate control the time of transition 
between phases of spread; rarer long-distance dispersal and 
a lower value of R0 increases the delay.

For mixed-dispersal invasions, both phases of spread 
are at constant speeds. The speed during the second phase 
of spread is boosted by long-distance dispersal, and the 
speedup can be significant. For some combinations of ker-
nels, I found that even exceedingly rare LDD (of arbitrarily 
small probability) can boost the speed significantly. In these 
cases, reducing the probability of LDD delays the onset of 
the second phase of spread, and has an essentially fixed 
effect on the ultimate spreading speed. For this to occur, 
the net reproductive rate must be sufficiently large; if R0 is 
close to one, long-distance dispersal no longer overshadows 
short-distance dispersal.

Mixed dispersal has been studied as a means of producing 
biphasic range expansions by Ramanantoanina et al. (2014) 
in a similar model. In their study, dispersal ability is herit-
able, and the population consists of two or more distinct 
types of individuals with different dispersal abilities. Short-
dispersing individuals disperse according to a dispersal ker-
nel with variance smaller than that of long-dispersing indi-
viduals. With suitable initial conditions, the resulting range 
expansion is biphasic with two linear phases. Although these 
results are similar to those I have presented in Invasions with 
mixed thin-tailed dispersal, there are some key differences. 
First, in my model, every propagule is equally likely to dis-
perse according to the long-distance dispersal kernel. Long-
distance dispersal is rare, and occurs with probability p for 
each dispersing propagule. In contrast, the longer dispersal 
ability of individuals in the model of Ramanantoanina et al. 
(2014) is a genetic trait, and is only initially rare due to their 
initially small number; after a number of generations, the 
longer dispersing individuals are in the majority. Second, 

Ramanantoanina et al. (2014) found that long-dispersing 
individuals eventually dominate the invasion front, with 
short-dispersing individuals persisting only in the initial core 
of invaded territory. In my model, there is a single combined 
population, demonstrating that a bias in the spatial distribu-
tion of short- and long-distance dispersers is not necessary 
to produce biphasic range expansions.

Fat-tailed kernels are popular for modeling dispersal data, 
but are less often used in conjunction with IDE models. With 
new analytic techniques, a focus on their behavior over eco-
logically relevant timescales rather than their asymptotic 
dynamics, and an improved understanding of their effect on 
range expansion, it is possible to incorporate them in models 
of spread.

Invasions with fat-tailed dispersal can have biphasic 
range expansions similar to those of mixed-dispersal inva-
sions; however their ultimate phase of spread consists of con-
tinuous acceleration. During the initial phase of spread, the 
invasion speed is nearly constant. Fat-tailed kernels have no 
separate mechanisms for short- and long-distance dispersal, 
making estimation of this initial speed difficult. I reviewed 
two known approaches for approximating the speed of inva-
sion and introduced a new approach based on speed rarefac-
tion curves (Kot and Neubert 2008) for finding the speed of 
spread of truncated fat-tailed kernels; I found this method 
best predicted the speed of spread.

Speed rarefaction curves also provide a way of delineat-
ing short- and long-distance dispersal for fat-tailed kernels. 
By truncating the tails of a fat-tailed kernel, it becomes thin-
tailed and gains a finite spreading speed. Plotting spreading 
speed versus truncation distance generates an increasing 
curve of speed versus distance that indicates how different 
parts of the kernel contribute to the spreading speed. Speed 
rarefaction curves enable us to define a “shoulder” of a dis-
persal kernel as a part of the kernel between the peak and 
the tail that contributes minimally to the speed of spread.

Many types of range-expansion curves are now known 
to be possible under IDE model (1). Following the classi-
fication scheme of Shigesada et al. (1995), type 1 or linear 
expansion occurs under many common thin-tailed kernels, 
type 2 or linear biphasic emerges under certain mixed-
dispersal kernels, and type 3 or continuously accelerating 
range-expansions can be generated from fat-tailed kernels 
(Liu and Kot 2019). In addition to these types, fat-tailed ker-
nels can generate a biphasic linear–accelerating range expan-
sion absent in the original classification; we might think of 
this as a type 2.5 range expansion, with behavior somewhere 
between the classic linear biphasic and continuously accel-
erating types. These results demonstrate the capability of a 
simple, single-population model to produce a great variety 
of types of range expansion, driven purely by different forms 
of dispersal kernel.
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All of the biphasic range expansions I have shown, where 
spread initially follows a regime that differs from its ultimate 
or asymptotic dynamics, are ultimately transient phenomena. 
It is important to remember that these rapid shifts in speed 
and dynamics arise solely as a result of the dispersal kernel, 
rather than through a change in a parameter value or transi-
tion across a heterogeneous landscape. No outside influence 
or environmental change is necessary for a regime shift to 
occur in the case of transient dynamics Hastings et al. (2018). 
An invasion that has progressed at a slow pace may acceler-
ate with little warning; its apparent steady progress may in 
actuality be a long, transient phase of spread. Depending on 
the rarity and form of long-distance dispersal, the ultimate 
rate of spread of an invasion may be vastly different than its 
initial speed.

Researchers should note the causal connection between 
long-distance dispersal and transient dynamics in range 
expansion. Specifically, the study of LDD necessitates con-
sideration of transient timescales and use of non-asymptotic 
analytic techniques. As long-distance dispersal is incorpo-
rated into models of spread, transient behavior will neces-
sarily arise. A focus on spreading speed, for instance, may 
be misleading, if the effects of long-distance dispersal are 
not felt for many generations or only beyond ecologically 
relevant timescales.

Appendix

Approximation of point‑release invasions 
with mixed dispersal

Since k(x) = (1 − p)kS(x) + pkL(x) , I will first establish 
the form of the convolution power of a sum of functions. 
Because convolution is a linear operation, the form of 
the convolution power closely follows that of a binomial 
expansion,

where the last equality comes from the fact that convolution 
is commutative. Similarly,

Hence, for the mixture model,

the convolution power becomes

(37)
(g + h) ∗ (g + h) = g ∗ g + g ∗ h + h ∗ g + h ∗ h

= g ∗ g + 2g ∗ h + h ∗ h,

(38)

(g + h)∗t =

(
t

0

)
g∗t +

(
t

1

)
g∗(t−1) ∗ h +⋯ +

(
t

t

)
h∗t.

(39)k(x) = (1 − p)kS(x) + pkL(x),

Since we are considering 0 < p ≪ 1 , we have 1 − p ≈ 1 , and 
replace (1 − p) by unity.

I am ultimately interested in using this approximation to 
determine the time of phase transition in mixed-dispersal 
invasions. This transition occurs when the first and second 
terms in the sum are of equal magnitude. I therefore truncate 
the sum to two terms, giving

This approximation holds in an interval containing the ori-
gin and the intersection of the first and second terms. For 
larger values of x, the third and higher terms can become 
significant if kL(x) decays rapidly in space (e.g. the Gauss-
ian kernel).

Assuming that kS(x) has finite variance and zero mean, 
then a local limit theorem gives the approximation

To approximate beyond this central region, further into 
the tail, I turn to the second term in equation (35). Assum-
ing that kS(x) disperses much more narrowly than kL(x) , 
we may approximate it with the Dirac delta function, �(x) . 
The Dirac delta function can be thought of as the limit of 
increasingly narrow Gaussian distributions, and satisfies the 
sifting property, that (� ∗ g)(x) = g(x) for any function g(x) 
(Bracewell 1986). Thus,

Inserting Eqs. (42) and (43) into the expansion of the convo-
lution of a mixed kernel (41), we multiply by Rt

0
 and obtain 

an approximation for the formal solution (3),

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12080- 021- 00505-x.

(40)k∗t(x) =

⎧
⎪⎪⎨⎪⎪⎩

(1 − p)tk∗t
S
(x)

+ t(1 − p)t−1p
�
k
∗(t−1)

S
∗ kL

�
(x)

+⋯ + ptk∗t
L
(x).

(41)k∗t(x) = k∗t
S
(x) + pt

(
k
∗(t−1)

S
∗ kL

)
(x) +O(p2).

(42)k∗t
S
(x) ≈

1√
2�t�2

S

exp

(
−x2

2t�2
S

)
.

(43)pt
(
k
∗(t−1)

S
∗ kL

)
(x) ≈ tpkL(x).

(44)nt(x) ≈ Rt
0

⎡⎢⎢⎢⎣
1�
2�t�2

S

exp

�
−x2

2t�2
S

�
+ tpkL(x)

⎤⎥⎥⎥⎦
.
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