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Abstract
The use of critical slowing down as an early warning indicator for regime switching in observations from noisy dynamical
systems and models has been widely studied and implemented in recent years. Some systems, however, have been shown to
avoid critical slowing down prior to a transition between equilibria (Ditlevsen and Johnsen, Geophysical Research Letters,
37(19), 2010; Hastings and Wysham, Ecol Lett 13(4):464–472, 2010). Possible explanations include a non-smooth potential
driving the dynamic (Hastings and Wysham, Ecol Lett 13(4):464–472, 2010) or large perturbations driving the system out
of the initial basin of attraction (Boettiger and Batt 2020). In this paper, we discuss a phenomenon analogous to critical
slowing down, where a slow parameter change leads to a high likelihood of a regime shift and creates signature warning
signs in the statistics of the process’s sample paths. This effect, which we dub “critical speeding up,” is demonstrated using a
simple population model exhibiting an Allee effect. In short, if a basin of attraction is compressed under a parameter change
then the potential well steepens, leading to a drop in the time series’ variance and autocorrelation; precisely the opposite
warning signs exhibited by critical slowing down. The fact that either falling or rising variance / autocorrelation can indicate
imminent state change should underline the need for reliable modeling of any empirical system where one desires to forecast
regime change.

Keywords Early warning signals · Regime change · Critical slowing down · Critical speeding up · Complex systems ·
Stability

Introduction

When studying time series data for dynamical systems
which exhibit critical transitions—that is, sudden changes in
equilibrium behavior—a widely used early warning signal
for an oncoming transition is critical slowing down (Dakos
et al. 2008, 2012; Scheffer et al. 2009). This signature
for the system being at risk of a large transition is based
on the theory of stochastic dynamical systems (Hastings
and Wysham 2010; Drake 2013; Kuehn 2013) and has
been observed in a variety of empirical tests, both in
nature and in the laboratory (e.g., Carpenter and Brock
2006; Scheffer et al. 2012; van Belzen et al. 2017; Wen
et al. 2018). At its core, critical slowing down (CSD)
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assumes that the stochastic process X experiences a smooth
potential Vt which is varying slowly in time, dXt =
−∇Vt(Xt )dt + ξt where ξ is some random process. If the
potential nears a bifurcation point, such as a pitchfork or
fold bifurcation, then the shape of V around its equilibrium
necessarily flattens out as its minimum (the stable point)
becomes a degenerate critical point. The lessening or loss of
local curvature, responsible for the mean-reverting property
within the basin of attraction, means that excursions of
X away from its stable point grow both in extent and
length of time. The concomitant increase in variance and
autocorrelation of the sample path of X when approaching
a bifurcation is what we refer to as critical slowing down.

The catalogued examples where critical slowing down is
observed are often carefully controlled laboratory settings
(Kramer and Ross 1985) or models of natural systems
subject to relatively small perturbations (Carpenter and
Brock 2006; Dakos and Bascompte 2014; Lade and Gross
2012), but many empirical observations of dynamical
systems fail to exhibit critical slowing down prior to making
a change of regime (Ditlevsen and Johnsen 2010; Hastings
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and Wysham 2010; Jessica et al. 2017). That critical
state transitions appear to commonly occur in nature away
from a bifurcation in the underlying governing dynamic
speaks to the value in devising early warning indicators for
other “high-risk” situations where a regime shift may be
becoming increasingly likely. This lack of critical slowing
down prior to transition has been discussed in the literature
recently, with explanations including large exogenous
perturbations (Boettiger and Hastings 2013; Boettiger and
Batt 2020) or the potential V lacking smoothness (Hastings
andWysham 2010); these translate, respectively, to a sudden
change in the governing equation (a fundamental change in
the statistics of ξ ) or a departure from the classical setting
of modeling the dynamics with a system of smooth partial
differential equations perturbed by a noise source ξ .

In the present paper, we study an alternative culprit which
retains both smoothness of the potential and the (quasi-)
stationarity of the system. We assume the usual setting for
critical slowing down: a dynamical system governed by
a slowly changing potential Vt , and a fixed noise term,
ξt = aBt for some a > 0 and B a brownian motion.
If V experiences a bifurcation, the degeneracy of ∇Vt

will create a slowing effect, increasing both variance and
autocorrelation. However, we consider instead potentials
where the long-term evolution of V narrows the basin
of attraction that the process is initiated within, avoiding
bifurcations. We illustrate this in Fig. 1: given a potential
well with fixed height but shrinking width leads to a rattling
effect, wherein the stronger restoring force of the gradient
punishes excursions away from the stable point (minimum
of V ), shortening their extent. This manifests itself in
decreased variance and decreased autocorrelation of the
sample path of X. We show that these signs indicate that
a critical transition is becoming more likely, for though
the excursions are smaller, they are occurring more often
in a narrow well. This gives us an early warning of a
stochastic transition, rather than a transition facilitated by
bifurcation. Note that this is not at odds with the conclusions
of Boettiger and Hastings (2013), for the transition is not
purely due to noise.

We further show that if the narrowing of the potential is
uniform (a linear rescaling of the spatial axis) then the effect
on the exit time distribution is equivalent to rescaling the
time variable. That is, in terms of the risk of escaping the
basin of attraction within the next T units of time, narrowing
the potential is the same as speeding up the process’s
evolution, and from this standpoint it is clear that such a
transformation increases the chance of regime switching.
This result is expounded in Section 1.1 below, and is the
motivation for our term “critical speeding up” (CSU), as the
time until a critical transition is shortened.

The result is particularly surprising in light of well-
known estimates for particles’ rates of escape from potential

Fig. 1 a The standard well potential diagram, where the ball identifies
the state of the system, and the valleys of the landscape identify
(multiple) basins of attraction. Here, the red line identifies the tipping
point or separatrix delineating the basins of attraction. b When
undergoing a bifurcation, a slowly changing parameter causes a
shallowing of a given basin of attraction. This leads to increasing
variance in measured variables and critical slowing down. c When
a parameter change leads to a narrowing of the occupied basin of
attraction, the variance in measured variables diminishes and there is
critical speeding up. In some cases, the separatrix is moved left. In any
case, well narrowing leads to an increased chance of stochastic regime
shift

wells, e.g., Kramer’s law or the Arrhenius equation. These
estimates, based on large deviations theory, do not apply
in the present setting as we are not operating in the
small noise regime typically considered when discussing
(meta)stability, i.e., Freidlin-Wentzell theory. See, for
example, Berglund (2011). This is expanded on in the
“Discussion” section below.
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In the next section, we give a simple mathematical
description of both critical slowing down and critical
speeding up. As an example of critical speeding up
occurring in a simple ecological model, in the following
section, we introduce a population model for a species under
limited environment size and an Allee effect. We assume
that for this species the rate of procreation is proportional to
the population densities of both male and female members;
then, under a shrinking habitat, the system begins to exhibit
critical speeding up effects as risk of extinction grows
(see Fig. 3). In the final section, we discuss the broader
implications of this effect: even if an ecological model
accurately reflects reality and slow parameter changes alter
the time series’ statistics, there is no direct mapping from
a statistical signature (decreased autocorrelation, say) to a
change in risk of transition.

Mathematical background: critical slowing
down and critical speeding up

Suppose for simplicity that we are dealing with a one-
dimensional process X = {Xt : t ≥ 0} where Xt may
be a population size, or a concentration of a chemical, or a
fraction of people who subscribe to a given belief, at time
t . The systems we are interested in allow X to be modeled
by a stochastic differential equation (SDE) as it generally
obeys some dynamical law, but is subject to exogenous
perturbations or uncertainty in measurement. We write this
equation as

dXt = b(Xt , t)dt + a(Xt , t)dBt . (1)

Here, b ∈ C∞ is the (smooth) drift function, describing the
deterministic differential equation X would obey if a ≡ 0;
the noise is modeled by the product of the coefficient a ∈
C∞ and B = {Bt : t ≥ 0}, a one-dimensional brownian
motion. Since we are working in one-dimension, a potential
function exists

V (x, t) = −
∫ x

0
b(x, t)dx (2)

so that Eq. 1 becomes dXt = −∇V (Xt , t)dt +a(Xt , t)dBt .
If the process is initiated in a basin of attraction

which, over time, is bounded on the left (right) by xl(t)

(respectively, xr(t)), i.e., X0 = x ∈ (xl(0), xr (0)), we write
T (x) for the exit time of the process from that basin:

T (x0) = inf
t≥0

{Xt �∈ (xl(t), xr (t))|X0 = x}. (3)

Define as well the cumulative distribution of the exit time,

pt (x0) := P (T (x0) < t) . (4)

In the sequel, we will use the potential

Vβ,γ (x) = γβ

(
x −

√
γ /3β2

)
− β3

(
x −

√
γ /3β2

)3

(5)

as a testbed for both phenomena. (This is just an affine trans-
formation composed with the simpler function, V (x) =
γ x − x3, the simplest polynomial with a “basin” which can
be escaped.) Note that the origin is an equilibrium point,
∇Vβ,γ (0) = 0, for all γ, β ≥ 0. See Fig. 2 for illustrations
of characteristic potential wells, their sample paths (taking
a = 2), and observed distributions of log(T (x0)) where x0
is the unique metastable state of the system.

Equivalence of well narrowing and time change

Suppose the process X = {Xt } obeys the SDE dXt =
−∇V (Xt )dt + adBt . If the spatial scale is compressed by
a factor k > 1 so that the potential defining the dynamic
becomes V̂ (x) := V (kx), then (leaving the diffusion term
unchanged) we have a second process, X̂ = {X̂t }, which
evolves under the influence of the narrowed potential V̂ , and
so experiences at point x a drift −∇V̂ (x) = −k∇V (kx):

dX̂t = −k∇V (kX̂t ) + adBt . (6)

Let us define Yt := kX̂t/k2 . Then from Eq. 6 and the
identity

√
cBt ∼ Bct , we have

kdX̂t = −k2∇V (kX̂t )dt + akdBt ,

dYk2t = −∇V (Yk2t )d(k2t) + adBk2t ,

and so taking s := k2t we find Y = {Ys : s ≥ 0} obeys
dYs = −∇V (Ys)ds + adBs , the same equation as X.

Since Y = {Ys} obeys the same dynamic as X = {Xt },
the probability of Y exiting the basin (xl, xr ) by some
time s = k2t < k2τ (when initiated from x) is equal

to pk2τ (x). Define T̂ (x) = inft≥0

{
X̂t �∈ (xl/k, xr/k)

}
=

infs≥0 {Ys �∈ (xl, xr )} and p̂τ (x) = P
(
T̂ (x) < τ

)
. Then,

finally we have the following relation between exit time
distributions:

p̂τ (x) = pk2τ (x) (7)

So we see that contracting space by a factor k > 1 leads
to the same exit time statistics (i.e., critical transition rates)
as contracting time by a factor of k2. Effectively, a uniform
narrowing of V can be interpreted as speeding up the
evolution of X, increasing the rate of extreme events.

We note that the above argument also applies for 0 <

k < 1, in which case the potential widens, and has the same
statistics as a copy of the process which evolves a factor of
k2 slower, reducing the frequency of critical transitions.

451Theor Ecol (2020) 13:449–457



Fig. 2 All simulated paths take the noise coefficient a in Eq. 1 equal
to 2. Panels in row a correspond to sample paths with parameters
(γ, β) = (3, 1). Row b takes (γ, β) = (0.9, 1), placing the system
closer to the bifurcation at γ = 0. Row c has (γ, β) = (3, 4.7), narrow-
ing the potential well. The leftmost panels plot the potential V defining
the dynamics of Xt ; note that the unique stable point has been trans-
lated to the origin, x = 0. The light blue curves display the potential

from row a for comparison. The center panels display 10 sample paths
generated from the process X governed by the corresponding poten-
tial V ; the stable (solid line) and unstable (dashed line) equilibria are
plotted in black. On the right, we plot the exit time distributions for
the sample paths. Note that the bottom two panels both experience
shorter exit times than the top panel, while their sample paths have
either higher or lower variance and autocorrelation

Critical slowing down versus speeding up

In this subsection, we discuss the fundamentals of critical
slowing down; it is not intended to be an exhaustive
treatment and readers should turn to the literature for
full details and generality (i.e., Dakos et al. 2008; Drake
2013; Kuehn 2013). As before, we assume that the process
of interest is one-dimensional and described by the SDE
dXt = −∇Vt (Xt )dt + adBt , where V is smooth, a is a
positive constant, and B is a brownian motion. As we are
not interested in deriving the explicit estimates of critical
slowing down using normal forms and slow-fast systems
theory (Berglund and Gentz 2006; Kuehn 2013), but rather
the qualitative features, we approximate the potentials with
the lowest order term in their Taylor expansions. This
simplifies the dynamics to those of the Ornstein-Uhlenbeck
processes or brownian motions with drift. We also assume
that the process originates within a basin of attraction,
X0 ∈ (xl(0), xr (0)) ⊂ R, and that the (smooth) functions
xl(t), xr (t) are defined so that the basin of attraction is given
by (xl(t), xr (t)) for all future times t that it exists.

Near the unique minimum of Vt within the basin
(xl(t), xr (t)), the second-order approximation of Vt can be
used in place of the true potential to define a process whose
dynamics are close to those of X while it remains near
equilibrium. Since we are interested in the system (5), we

consider the modified equation

dXt = −2β2
√
3γXtdt + adBt (8)

which simply follows from the Taylor expansion of V about
the stable point x0 = 0.

As mentioned above, this process is an Ornstein-
Uhlenbeck (OU) process, whose characteristics are well-
known. The definitions and formulas below can be found in
Borodin (2017). Recall that the covariance function of two
random variables X and Y is

Cov(X, Y ) := E [(X − E[X])(Y − E[Y ])] (9)

and the variance of X, when defined, can be written
Var(X) := Cov(X, X). Then the s-autocorrelation function
at time t is defined by

Cs(t) := Cov(Xt , Xt+s). (10)

In truth, the above is the autocovariance function, which is
more commonly used in the applied probability literature
than the autocorrelation function. We refer to this as the
autocorrelation in the sequel as the two functions are
proportional to one another in all of our examples and
autocorrelation is far and away the more commonly used
term in the study of early warning signals and time series
analysis.
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The autocorrelation of the Ornstein-Uhlenbeck process
dXt = −bXtdt + adBt is given by the formula

Cs(t) = a2

2b

(
e−sb − e−(2t+s)b

)
. (11)

From this, it is immediate that the variance is given by

Var(Xt ) := E

[
(Xt − E[Xt ])2

]
= a2

2b

(
1 − e−2bt

)
, (12)

and so we have for Eq. 8 that the autocorrelation with s = 1
is given by

Cov(Xt , Xt+1)= a2

4β2
√
3γ

e−2β2√3γ
(
1−exp

(
−4β2

√
3γ t

))
. (13)

Now, if we allow γ to change in time so that it slowly
approaches zero from above, a bifurcation occurs at γ = 0.
Let us define γ (t) := t−2; then, γ will approach 0 slowly
enough that critical slowing down is observable. Then, the
OU process has

bx = ∇Vβ,t−2(x) = (2β2
√
3/t)x,

so inputting b = 2β2
√
3/t in Eq. 12, we see that the

variance grows linearly in time, Var(Xt ) = mt for a
constant m depending on β and a. A similar result holds for
the autocorrelation. Compare rows (A) and (B) in Fig. 2.

On the other hand, if we do not approach the bifurcation
point, fixing γ > 0 in time, and instead take β to be
increasing in time, say β(t) = t and restrict to t ≥ 1, then
we have

∇Vt,γ (x) = 2
√
3γ t2x

= t
(
2
√
3γ tx

)

= t
[
(∇V1,γ )(tx)

]
= ∇ [

V1,γ (tx)
]

demonstrating the spatial contraction of the well. We may
again apply (11) and (12) to recover the variance and
autocorrelation. One sees that for this process b = 2

√
3γ t2,

leading to

Var(Xt ) = a2

4
√
3γ t2

(
1 − e−4

√
3γ t3

)
= O(t−2),

and the 1-step autocorrelation decays like e−Ct2 (compare
rows (A) and (C) in Fig. 2). While we have restricted
our attention to a rather specific example, the decay
of autocorrelation and variance indicating an increasing
risk of transitions, which we call critical speeding up, is
characteristic of contracting potentials.

Observing critical speeding up
in a populationmodel

Here, we introduce a population model that exhibits critical
speeding up before a stochastic state transition (population
collapse). We assume a strong Allee effect, proportional
to the territory size; this could model a species which has
displaced its competitors, benefitting from a cooperative
advantage against another species. We also assume that the
reproduction rate is a function of population density, rather
than total population. These features create an attracting
region for the fixed point at zero, so that after passing
below a critical threshold the species will become extinct
(discounting a restoring perturbation).

This deterministic model is described by the following
equation

dx

dt
= r

β2
x

(
x

βA
− 1

)(
1 − x

βC

)
, β ∈ [0, 1], (14)

where all parameters and the population size x are assumed
to be nonnegative.

We interpret C as the maximum carrying capacity of the
species, say if they control 100% of their potential territory,
while βC is the carrying capacity when a fraction β is
controlled. The product βA represents the strength of the
Allee effect; suppose for example that the population only
controls one-quarter of the contested territory (β = 0.25)
rather than half (β = 0.5), then the Allee effect is weakened
as their competitors have control of a greater swath of the
environment, reducing the degree to which the individuals
are able to benefit from cooperation. Finally, r is chosen
so that a population of size x reproduces at a rate rx when
distributed over the entire territory. When restricted to a
fraction β of the total land, the population densities of males
and females both increase by a factor of 1/β, so their rate
of “collision” is increased by a factor of β−2. Hence, the
reproductive rate is given by r

β2 x.
As a final addition, we assume the model originates

at its positive equilibrium (X0 = βC) and add the
noise term adB to model exogenous perturbations (change
in population through fatal accidents, immigration from
another distant population, twins, etc.), and write X = {Xt :
t ≥ 0} for the population process:

dXt = r

β2
Xt

(
Xt

βA
− 1

)(
1 − Xt

βC

)
dt + adBt . (15)

Notice that the drift term can be written −∇V with V a
fourth-order polynomial in x/β. Thus, as β decreases V will
be compressed by a factor of 1/β and we expect to observe
CSU.

We study this model’s vulnerability to extinction events
under the increasing stress of an encroaching competing
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species, which decreases the available territory, driving β

toward zero:

β(t) = 4

1 + 0.01t
. (16)

In Fig. 3, we see the effect of slowly decreasing β

over 10,000 independent trials; the lower panel shows the
distribution of the time of collapse, which we define as the
first time the system’s population Xt drops below β(t)A,
as this separates the two dynamical regimes (extinction and
survival). For all of these trials, we fix a = 0.22, C = 2.5,
A = 1.5, and r = 1. Also pictured in Fig. 3 are the
variance and autocorrelation functions (calculated over a
rolling window of length 10), after averaging over all sample
paths which have yet to exit the basin of attraction. The
hallmarks of critical speeding up are evident in the time
series; as β drops, the equilibrium points (Cβ(t), Aβ(t),
and 0) gather toward the origin, and both the variance
and autocorrelation of the series are reduced. Despite the
variance and autocorrelation dropping by over 50%, none of
the 10,000 trials survived past 989 units of time (surviving
sample path not pictured).

As another verification of the CSU theory, we also run
2000 repeated simulations of Xt starting from X0 = βC

for β equal to a fixed value between 0.2 and 1.2 (ten

equally distributed values were used, making for 20,000
independent trials). Statistics of the results are plotted in
Figure 4. It is shown that the time for the population Xt to
exit (βA, ∞), the basin of attraction about βC, decreases
with decreasing β as expected from the previous analysis,
i.e., the risk of a critical transition grows as the potential
narrows. However, the calculation of the covariance and
autocorrelation (see Fig. 4) show that the system becomes
more brittle as β drops toward 0.2, and critical speeding up
gives the precursor signal for population collapse. Note that
all values are plotted on a semi-log scale.

Discussion

Using stochastic differential systems theory, we have shown
that noisy dynamical systems can not only fail to exhibit
critical slowing down prior to a regime shift, they may
actually exhibit a speeding up of their dynamic, with
a decrease in both variance and autocorrelation. To a
practitioner observing a system with a narrowing potential,
a naive application of the theory of critical slowing
down would suggest the system is stabilizing, despite the
impending stochastically driven critical transition. We used
an example model of population growth to demonstrate this

Fig. 3 The top panel displays in
blue eight of the 10,000
calculated sample paths of
{Xt , 100 ≤ t ≤ 1000}, as β

decreases from 2 to roughly 1/2.
The mean variance of the
surviving sample paths,
calculated over a rolling window
of length 10 is shown in orange;
the mean autocorrelation of lag
1 for the surviving paths within
the same window is plotted in
dashed orange. NB: On the far
right of the figure the low
number of surviving samples
leads to a greater variance in
these averages, as the law of
large numbers fails to hold. The
dashed black line denotes
Aβ(t), the unstable equilibrium
point dividing the extinction
regime from the survival regime.
Below we plot the fraction of
sample paths escaping into the
basin of attraction of x = 0
(extinction regime) during a
given interval of time; this
clearly shows the increasing risk
of system collapse
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Fig. 4 Here, we give semi-log plots of the mean, 5th percentile, and
95th percentile for three statistics defining critical speeding up. Top:
exit time of Xt from the basin of attraction (Aβ, ∞). Middle: variance
of Xt over the 10 time units preceding its exit from the basin. Bottom:
1-step autocorrelation of Xt over the 10 time units preceding its exit
from the basin. One clearly observes critical speeding up in the marked
similarity of these panels

in practice, showing that a population experiencing territory
loss and an Allee effect exhibits critical speeding up prior to
collapse. We hope that this study underscores the necessity
of having high-fidelity descriptions of the system dynamics
before applying an early warning indicator such as critical
slowing down or critical speeding up, a sentiment expressed
also by others (Hastings and Wysham 2010; Boettiger and
Hastings 2012).

It is worth emphasizing the limits of CSU. If a system’s
potential well deepens while narrowing, the precursor signal
of critical speeding up will be a false positive. However,
this is analogous to observing a false positive under the
critical slowing down paradigm due to a potential well
broadening without becoming more shallow (variance and

autocorrelation increase, but the excursion size necessary to
leave the basin grows, leaving the chance of escape low).
Both signals offer an early warning under the appropriate
conditions, but neither is a panacea for predicting regime
change.

We contrast our results with the classical approach
of measuring engineering resilience, i.e., linearizing the
system about the equilibrium and observing the distance
between the eigenvalue with greatest real part, i.e., the
dominant eigenvalue, and the set Z = {z ∈ C|Re(z) >

0} of complex numbers with positive real part. The
larger the distance, the steeper the potential well at the
equilibrium point, and the greater the (local) restoring
force of the potential. This leads to shorter return times
and lower variance. This distance is often used as a
measure of the system’s stability. One can check that
by shrinking the spatial scale by a factor of k one
multiplies the dominant eigenvalue by k as well. Thus,
as the potential well narrows (k > 1), the eigenvalue is
pushed away from Z , which according to the engineering
resilience paradigm, indicates greater stability. Of course,
as mentioned in the “Introduction” section, the usual
connections between potential well shape, eigenvalues of
the linearized dynamics, and probability of escape rely on
the amplitude of the driving noise process adBt being small.
Many classical results on rates of escape hold only in the
limit of small noise (a → 0+). The present article addresses
what results from this small noise condition being violated.

There is an expansive literature on the resilience of
ecological and engineering systems, e.g., Peterson et al.
(1998), Holling (1996), and Walker et al. (2004), and
their differences. Borrowing the language of Holling in
Walker et al. (2004), resilience depends on the system’s
latitude, resistance, precariousness, and panarchy. The
effects of CSD can be thought of qualitatively as a loss
of resistance; small perturbations are not damped out, and
large excursions become more common. Critical speeding
up, on the other hand, features increased precariousness
and resistance, and possibly decreased latitude. This gives a
partial answer to when one should expect critical speeding
up to occur in nature. Systems which are designed or
managed in a way that increases resistance, but only with a
concomitant increase in precariousness, are candidates for
unwanted stochastic transitions.

As a second example of time series statistics belying
the approach of a transition, one can imagine the model
system (5) evolving such that both γ → 0+ and β →
∞. This would create both critical slowing down and
critical speeding up effects in the time series. As these
signals interfere with one another, simply observing the
autocorrelation and variance of the time series may fail
to display either a slowing down or a speeding up effect
in the time series, yet the system would quickly become
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unstable. This is another example of abrupt transitions
occurring without a precursor slowing down and may be
responsible for some of the examples in the literature
of critical transitions without critical slowing down (such
as the regime switching in Ditlevsen and Johnsen 2010;
Hastings and Wysham 2010). This should stress that the
use of critical slowing down as an early warning indicator
may face more obstacles than previously imagined. This
strengthens the findings of the metastudy (Litzow and
Hunsicker 2016), which suggested that CSD may require
nonlinear dynamics to be observable in nature; here, we see
that nonlinearity is certainly an insufficient condition for
CSD to provide an early indicator of transition.

In spite of the preceding discussion, there are several
reasons that we expect to find systems in nature that exhibit
critical speeding up. First, the model above describes a
population governed by three simple rules, so it would be
no surprise to find such a population within the earth’s
ecology. Further, suppose a sequence of failures must occur
for a complex system to experience catastrophe, such as
in a collection of power grids servicing a region. In this
example, we consider the system state to be described by
the percentage of demand being met. If the grid is initiated
at normal operating conditions, we have X0 = 1, and this
is a stable point: when a light is turned on or a generator
is shut down, it will cause a fluctuation, but the system
soon recovers to a stable operating position. The system
is considered to have failed if Xt = 0, i.e., a blackout
occurs. If two power subsystems become connected, their
probability of failing may be lowered due to the subgrids’
pooled resilience (resistance has increased). However, if a
failure does occur in one subsystem, it will cascade to the
other, eventually effecting a larger portion of the system.
Thus, the number of failures required to reach a blackout is
lowered as well (precariousness has increased). In this case,
the probability of an excursion of the state from stability
(X0 = 1) to instability (Xt = XT (1)) may decrease, but
the number of events necessary has been reduced. This
sort of thresholding between stability and instability is not
uncommon in man-made systems (see, for example, Reason
(1995)) and leads to the qualitative ingredients for CSU
discussed in the second paragraph of this section.

As a third example, there are many examples of
ecological models that exhibit two equilibrium states—e.g.,
algae-dominated or coral-dominated reef systems, barren
desert vs. forest systems, and so on. General models can
be fit to a variety of different systems, for example, in
May (1977), there is a simple model of a constant density
herbivore population feeding on a vegetative resource of
biomass V . The biomass dynamic is given by V̇ = G(V ) −
Hc(V ) where G is the growth rate function, c is the per
capita feeding rate, and H is the density of herbivores
present. Simple choices for the functions c and G lead to a

dual-well potential for a range of H values (see the figure
on page 472 of May (1977)). By considering a sequence of
herbivore-resource pairs or by observing a system respond
to evolutionary or seasonal pressures, one expects to see the
features of the potential well shift, and of course a narrowing
of the potential is a feasible result (specifically, by lowering
the carrying capacity of the vegetation and decreasing c(V )

at an appropriate rate), which we would expect to exhibit
CSU. As the dual-well model is very common, one can
similarly conjecture other scenarios where signs of CSU
may be observed in empirical systems.

In sum, when studying a complex system with a variety
of possible stable states, the notion of critical speeding
up may be useful in determining the likelihood of the
system occupying a given equilibrium. Despite stabilizing
drift that may be quite strong, if the basin of attraction
about the stable point is prone to narrowing, the system
may not inhabit the basin for long periods of time. This
principle may be useful in studying the time-dynamics and
evolution of protein folding, food webs, and ecosystems,
coupled social-ecological systems or entirely social systems
for example (Zwanzig 1997; Dakos et al. 2008; Guttal and
Jayaprakash 2008; Wang et al. 2012; Lade et al. 2013; Ma
et al. 2017; Nekovee et al. 2007).

Acknowledgments The authors would like to acknowledge support
from the DARPAYFA project N66001-17-1-4038 and to thank George
Hagstrom for helpful conversations that led to the population model
above. The authors are also happy to recognize the contributions of
the anonymous reviewers in catching our mistakes and making helpful
suggestions improving the presentation of the paper.

References

Berglund N (2011) Kramers’ law: validity derivations and generalisa-
tions

Berglund N, Gentz B (2006) Noise-induced phenomena in slow-fast
dynamical systems: a sample-paths approach. Springer Science &
Business Media, Berlin

Boettiger C, Hastings A (2012) Quantifying limits to detection of
early warning for critical transitions. Journal of the Royal Society
Interface, page rsif20120125

Boettiger C, Hastings A (2013) No early warning signals for stochastic
transitions: insights from large deviation theory. Proc R Soc B:
Biol Sci 280(1766):20131372

Boettiger C, Batt R (2020) Bifurcation or state tipping: assessing
transition type in a model trophic cascade. J Math Biol 80
(143–155). https://doi.org/10.1007/s00285-019-01358-z

Borodin AN (2017) Diffusion processes. In: Stochastic processes.
Cham, Birkhäuser
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