
Theoretical Ecology (2019) 12:155–163
https://doi.org/10.1007/s12080-019-0412-9

ORIGINAL PAPER

Spatial sorting as the spatial analogue of natural selection

Ben L. Phillips1 · T. Alex Perkins2

Received: 19 July 2018 / Accepted: 5 February 2019 / Published online: 4 March 2019
© Springer Nature B.V. 2019

Abstract
Considerable research effort has been spent to understand why most organisms disperse despite the clear costs of doing
so. One aspect of dispersal evolution that has received recent attention is a process known as spatial sorting, which has
been referred to as the “shy younger sibling” of natural selection. Spatial sorting is the process, whereby variation in
dispersal ability is sorted along density clines and will, in nature, often be a transient phenomenon. Despite this transience,
spatial sorting is likely a general mechanism behind the evolution of nonzero dispersal rates in spatiotemporally varying
environments. While most often transient, spatial sorting is persistent on invasion fronts, where its effect cannot be ignored,
causing rapid evolution of traits related to dispersal. Spatial sorting is captured in several elegant models, yet these models
require a high level of mathematical sophistication and are not accessible to most evolutionary biologists or their students.
Here, we frame spatial sorting in terms of the classic haploid and diploid models of natural selection. We show that, on an
invasion front, spatial sorting can be conceptualised precisely as selection operating through space rather than (as with natural
selection) time, and that genotypes can be viewed as having both spatial and temporal aspects of fitness. Viewing fitness in
this way shows that, on invasion fronts, organisms maximise spatiotemporal fitness, rather than traditional (temporal) fitness.
The resultant model is strikingly similar to classic models of natural selection under gene flow. This similarity renders the
model easy to understand (and to teach), but also suggests that many established theoretical results around natural selection
could apply equally to spatial sorting.
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Introduction

Natural selection, the primary driver of evolutionary change,
operates to maximise fitness. Because natural selection is
such a powerful force, it is noteworthy when processes
are unearthed that operate to displace a population from
its fitness optimum. We are well aware of stochastic
processes that undermine natural selection (mutation, drift,
and its spatial analogue, the founder effect; Slatkin and
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Excoffier 2012), but deterministic processes that act to
reduce fitness are unusual. One such process is gene flow,
in which maladapted alleles are continually introduced
to a population by dispersing organisms (Lenormand
2002; Ronce 2007). However, dispersal is an interesting
trait beyond simply causing gene flow. Models in which
dispersal itself evolves often result in populations that are
displaced from their fitness optimum; fitness is sacrificed to
maintain dispersal.

The author of one of the earliest models of dispersal
evolution was so struck by the fact that dispersal might
evolve against natural selection that he invoked group
selection as a potential explanatory mechanism (Van Valen
1971). It is now well accepted that kin selection—the
avoidance of kin competition—can drive dispersal evolution
(e.g., Gandon 1999), but it is also clear that dispersal
evolves even in unrelated groups. Early models of dispersal
evolution showed that, where demes differed in carrying
capacity, dispersal should evolve to be zero because the
majority of dispersing individuals end up moving to less
favourable habitat (Balkau and Feldman 1973; Hastings
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1983; Holt 1985). This ubiquitous cost of dispersing in
a spatially heterogeneous landscape must be mitigated
for dispersal to evolve beyond zero. While avoidance of
kin competition is one mitigating benefit, it was also
shown that dispersal is beneficial when temporal variation
in habitat quality is present (e.g., Levin et al. 1984;
Moody 1988; McPeek and Holt 1992). Thus, while spatial
heterogeneity alone would drive dispersal rates down,
temporal heterogeneity drives dispersal rates upwards.

A nice example of spatiotemporal variation in habitat is
the metapopulation, in which demes experience stochastic
extinction. Because empty patches can only be colonised
by dispersers, not dispersing will eventually result in
extinction, and so we expect nonzero dispersal rates to
evolve despite costs to individual fitness. The observation
that evolutionary pressures on dispersal might maintain
fitness costs against natural selection was sufficiently
noteworthy that the effect was named “the metapopulation
effect” (Olivieri et al. 1995).

The discovery of spatial sorting

Since work on the metapopulation effect, an even more
striking case of dispersal evolution has become apparent: the
evolution of dispersal on invasion fronts. In this situation,
a population is spreading into uncolonised habitat, and
the individuals on the very edge of this invasion can
only be there because they have dispersed further than
their conspecifics. This sets up conditions for assortative
mating by dispersal ability each generation, leading to
the runaway evolution of dispersal on an invasion front.
Thus, on invasion fronts, we see directional evolution of
traits related to dispersal, but the mechanism by which this
occurs is not natural selection; directional evolution occurs
in the absence of a fitness differential. These observations
suggest that natural selection may have a “shy younger
sibling”—dubbed “spatial sorting”—and that spatial sorting
may be a spatial analogue of natural selection (Shine
et al. 2011). Spatial sorting arises when there is a cline in
density and variation for dispersal ability. If true, this would
make spatial sorting an important mechanism by which
dispersal evolves in temporally heterogeneous populations
and the primary cause of the metapopulation effect. The
idea of spatial sorting was first adumbrated by Cwynar and
MacDonald (1987) and has been rediscovered and refined
by various authors since (e.g., Travis and Dytham 2002;
Hughes et al. 2003; Phillips et al. 2008; Burton et al. 2010;
Shine et al. 2011).

In many contexts, spatial sorting is likely so fleetingly
transient as to be easily missed. In the context of spatially
expanding populations, however, spatial sorting is persistent
on the invasion front for the duration of spread and for
some time after (Perkins et al. 2016). In this situation, the

invasion front colonises unoccupied space every generation,
spatial sorting is sustained over time on the invasion front,
and its effects are difficult to ignore. The clearest natural
example of this comes from the spread of cane toads across
northern Australia. Here, evolved shifts in dispersal ability
contributed to a fivefold increase in invasion speed over
70 generations (Phillips et al. 2008, 2010; Perkins et al.
2013). Numerous other natural examples have come to light,
ranging across taxa from insects to plants (e.g., Cwynar and
MacDonald 1987; Simmons and Thomas 2004; Lombaert
et al. 2014). More compelling still, are a growing list of
laboratory studies showing repeatable evolutionary shifts
in dispersal on invasion fronts (e.g., van Ditmarsch et al.
2013; Fronhofer and Altermatt 2015). Two recent laboratory
studies on beetles also unequivocally demonstrate that these
evolutionary shifts are due to spatial sorting (Ochocki and
Miller 2017; Weiss-Lehman et al. 2017).

The theory of spatial sorting

The original theoretical arguments behind spatial sorting
on invasion fronts were illustrated with individual-based
simulation models (e.g., Travis and Dytham 2002; Hughes
et al. 2003; Phillips et al. 2008; Burton et al. 2010; Shine
et al. 2011). While these painted a convincing picture and
pointed to an interesting range of theoretical possibilities
(including the possibility that spatial sorting could act
aginst natural selection, causing a reduction in fitness),
those findings are difficult to generalise. More recently,
theoreticians have worked to integrate variation in dispersal
into equation-based models of biological spread. Although
mathematically challenging, these equation-based models
have the potential to generate cleaner notions of how
certain biological factors modulate the dynamics of spatial
sorting. These models treat dispersal as a quantitative trait
embedded within an integral projection (e.g., Ellner and
Schreiber 2012), integro-difference (e.g., Perkins et al.
2013), or partial differential (e.g., Perkins et al. 2016)
model. Additionally, an important generalisation of Fisher’s
(Fisher 1937) reaction-diffusion model has been conceived
that elegantly encapsulates the process of spatial sorting
by allowing the model’s “diffusion coefficient”, D, to
evolve (Benichou et al. 2012; Bouin et al. 2012; Bouin
and Calvez 2014). This new class of reaction-diffusion
model is currently the focus of intense and productive
theoretical work, much of which necessarily involves
advanced mathematics and is beyond the grasp of many
biologists.

Because spatial sorting was first discovered in the context
of invading populations, the mathematical treatment of
this process has utilised the tools of that field, primarily
reaction-diffusion equations and integro-difference models.
Likewise, much focus has been placed on the emergent
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property that dispersal evolution leads to accelerating
invasion fronts. In this context, the primary focus of
has been on the evolution of equilibrium states of
dispersal traits. Substantially, less attention has been paid
to the mechanism itself—spatial sorting—how it might
be described, and the conditions under which it operates.
This is an omission, because precise articulation of the
mechanism sharpens our intuition about the process and
enables deeper theoretical work, such as that which has
been built on formal mathematical descriptions of natural
selection. Here, we focus exclusively on the mechanism of
spatial sorting, and we explore how it might be expressed in
terms of classical population genetic models.

A theoretical reorientation

We start with the basic haploid and diploid models of natural
selection (Crow and Kimura 1970). Thesemodels, originally
conceived free of population dynamics and expressed as
either a change in allele ratios or allele frequencies over time
(Haldane 1924; Wright 1931), have become the standard
models by which students are introduced to the theory of
natural selection (e.g., Hartl et al. 1997) and over the years
have become more explicitly linked to population dynamics
(e.g., Crow and Kimura 1970). A particularly thorough and
lucid derivation is given in Otto and Day (2007), in which
we see the frequency of the A allele, p, following births and
deaths given by the following:

p(t + 1) = WAp(t)

WAp(t) + Wa(1 − p(t))
(1)

for a haploid system, and is shown as follows:

p(t+1)= WAAp2(t)+WAap(t)(1−p(t))

WAAp2(t)+2WAap(t)(1−p(t))+Waa(1−p(t))2

(2)

for a diploid system. In these models, the W terms represent
the fitnesses (per capita balance of births and deaths) of
individuals carrying each genotype, and the denominator in
each case is the mean fitness of the population.

In this paper, we introduce a simple conceptual
arrangement that allows us to introduce spatial sorting
into these foundational models of evolutionary biology. We
demonstrate that, on an invasion front, spatial sorting can
be conceptualised precisely as selection operating through
space, rather than time, and that this conceptualisation
leads to a simple generalisation of the haploid and diploid
selection models. This generalisation recognises that fitness
can have both temporal and spatial aspects, and it is this
spatiotemporal fitness that is maximised on an invasion
front. The maximisation of spatiotemporal fitness, rather
than classical temporal fitness, explains why dispersal rate
evolves upwards on invasion fronts, but also explains why
this can come at a cost to classical fitness. Our simple
models are easy to understand and, like the classic models
of natural selection, will provide a launching pad for many
theoretical forays in population genetics.

The conceptual arrangement

Space and time are discrete. We imagine a one-dimensional
spatial lattice of large size, with position on the lattice
denoted by x (see, Fig. 1). At a given time t , birth,
death, and dispersal occur, in this order. Although moti-
vated by simplicity, and by the assumptions of many clas-
sic models, we note that there are many organisms that
exhibit approximately discrete generations and reproduc-
tion/dispersal phases (e.g., Krug and Zimmer 2004).

At t = 0, we imagine that only the left-most patch
in our lattice, at x = 0, is occupied, containing a large
number of individuals, n. All other patches are empty. We

Fig. 1 The spatiotemporal arrangment of the model. Left panel: filled
black circles show space being occupied as time progresses. The model
tracks the dynamics of the foremost patch at x = t , shown by the large

outer circles and the diagonal arrows. Right panel: the cycle of births,
deaths, and dispersal, and where each aspect of fitness comes into play.
The population is censused (at t + 1, x + 1) after dispersal
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assume nearest-neighbour dispersal, which implies that if
the dispersal rate is not zero, patch 1 will be occupied at
time 1, patch 2 at time 2, and so on. The model tracks the
dynamics of this vanguard population as it moves through
space, at x = t (Fig. 1). As long as the product of the mean
population growth rate and mean dispersal rate is greater
than 1, then this frontal deme will increase in size over time.

Haploid dynamics

In a haploid model with discrete generations, we imagine
two alleles, A and a. Each allele has both a spatial and
temporal aspect to its fitness. Wi denotes temporal fitness
of allele i ∈ {A, a}: the per capita number of surviving
offspring at t + 1, such that Wi = (1 + bi)(1 − di), where
bi is the expected net replacement per capita (through births
and survival of parents) in each time interval, and di is the
probability of death in each time interval. Vi denotes spatial
fitness of allele i, which we define as the probability of
dispersal to x + 1. The fraction 1 − Vi that do not disperse
might either stay at location x or move to location x − 1,
but these outcomes do not affect the dynamics at the range
front.

Following reproduction but before dispersal, the number
of individuals of each genotype at time t and vanguard patch
x is as follows:

n′
A(t, x) = WAnA(t, x) (3)

n′
a(t, x) = Wana(t, x). (4)

Following dispersal, the number of individuals of each
genotype at time t + 1 and newly occupied patch x + 1 is as
follows:

nA(t + 1, x + 1) = VAWAnA(t, x) (5)

na(t + 1, x + 1) = VaWana(t, x). (6)

If we let p(t, x) = nA(t,x)
nA(t,x)+na(t,x)

, then

p(t +1, x +1) = VAWAp(t, x)

VAWAp(t, x) + VaWa(1 − p(t, x))
, (7)

which is similar to the standard haploid model of
selection (1), except that we have explicitly incorporated
spatiotemporal fitness via VAWA and VaWa . In the event

that temporal aspects of fitness are identical across the
two alleles (that is, the two alleles have equal reproductive
fitness), spatial fitness drives any evolutionary changes that
occur; in the event that spatial fitness is identical between
the two alleles (that is, the two alleles have equal dispersal
tendency), we recover the standard haploid model of natural
selection.

Similar to the standard model, Eq. 7 has two equilibria:
at p = 0 (stable when VAWA

VaWa
< 1) and p = 1 (stable

when VAWA

VaWa
> 1). These stability criteria point to the

strong interaction between temporal and spatial aspects
of fitness, because we can think of them as products of
two relative fitnesses, one spatial and one temporal. The
implication of this result is that the vanguard will eventually
be dominated by one genotype or the other, provided that
spatial expansion continues for long enough.

Another clear implication of the stability criteria,
however, is that spatial sorting can drive populations on
the invasion front to lower fitness. Allele A will move to
fixation as long as VAWA

VaWa
> 1. If the spatial fitness of A is

sufficient to offset a temporal fitness cost, the invasion front
evolves towards lower temporal fitness (see, Fig. 2). It is
clear that, on an invasion front, it is not temporal fitness that
is being maximised, but spatiotemporal fitness.

Diploid dynamics

In a diploid model, we have three genotypes, AA, Aa, and
aa, and a total population size n(t, x) = nAA(t, x) +
nAa(t, x) + naa(t, x). Following birth, death, and dispersal,
the numbers of the three genotypes at time t + 1 and patch
x + 1 follow:

nAA(t + 1, x + 1) = VAAWAAnAA(t, x) (8)

nAa(t + 1, x + 1) = VAaWAanAa(t, x) (9)

naa(t + 1, x + 1) = VaaWaanaa(t, x). (10)

Again, we focus on the proportion, p, of A alleles in the
population, which is defined as follows:

p(t, x) = nAA(t, x) + 1
2nAa(t, x)

n(t, x)
(11)

and at time t + 1 and patch x + 1 follows:

p(t + 1, x + 1) = VAAWAAnAA(t, x) + 1
2VAaWAanAa(t, x)

VAAWAAnAA(t, x) + VAaWAanAa(t, x) + VaaWaanaa(t, x)
. (12)

If we assume Hardy-Weinberg equilibrium and define q =
1 − p, then nAA = np2, nAa = 2npq, and naa =
nq2. Many well-known departures from this assumption are
possible, with the magnitude of these departures influenced

by the magnitude of differences among genotypes with
respect to V and W . Nonetheless, these departures are, in
practice, often small and have a tendency to vanish as time
progresses. Assuming that departures from Hardy-Weinberg
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Fig. 2 Haploid evolutionary
dynamics on an invasion front.
Here, the frequency of allele A

increases because it has the
higher spatial fitness, and this
occurs despite it having
substantially lower (temporal)
fitness. The invasion front
evolves to maximise
spatiotemporal fitness rather
than traditional fitness as
measured by reproductive rate.
Parameters are as follows:
WA = 1, Wa = 1.4, VA =
1, Va = 0.5
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equilibrium are modest, we can approximate the dynamics
of p recursively according to the following:

p(t+1, x+1)≈ VAAWAAp2(t, x)+VAaWAap(t, x)q(t, x)

V W
,

(13)

where V W = VAAWAAp2(t, x) +
2VAaWAap(t, x)q(t, x) + VaaWaaq

2(t, x) is the mean
spatiotemporal fitness of the population. Again, this model
is similar to the standard diploid model of selection (2),
except that fitness is now explicitly spatiotemporal. Also, as
before, in the event that there is no spatial fitness differen-
tial (VAA = VAa = Vaa), the model reduces to the standard
diploid model (2).

Fig. 3 Diploid evolutionary
dynamics on an invasion front,
as described by Eqs. 8–11. Here,
the A allele shows a dominant
expression pattern. The
frequency of A increases
because it has the higher spatial
fitness, and this occurs despite it
having lower (temporal) fitness
than allele a. The invasion front
evolves to maximise
spatiotemporal fitness rather
than traditional fitness as
measured by reproductive rate.
Parameters are as follows:
WAA = 1, WAa = 1, Waa =
1.4, VAA = 1, VAa =
1, Vaa = 0.5
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This model has three equilibria. The equilibria at p = 0
and p = 1 are stable when Vaa

VAa
>

WAa

Waa
and VAA

VAa
>

WAa

WAA
,

respectively. An equilibrium allowing for coexistence of the
two alleles occurs at p = VAaWAa−VaaWaa

2VAaWAa−VAAWAA−VaaWaa
and is

stable when both VAaWAa > VAAWAA and VAaWAa >

VaaWaa . It is noteworthy that, unlike the haploid case, the
vanguard can be populated by a stable mixture of A and
a alleles but that this requires some manner of trade-off
between the life history and dispersal traits of AA and aa

genotypes that result in the Aa genotype having the highest
spatiotemporal fitness.

As with the haploid model, conditions on the invasion
front maximise spatiotemporal fitness rather than traditional
fitness as measured solely by the balance of births and
deaths. Figure 3 gives an example of these dynamics,
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showing a situation in which the A allele shows a dominant
pattern of expression, and has higher spatial, but lower
temporal fitness than the a allele.

R code implementing numerical examples of these
recursions is available at https://github.com/benflips/
spatSortNumerical.

The effects of gene flow on the response to
selection

It is well established that gene flow can undermine selection
by contributing maladapted genes into a population. Spatial
fitness only makes sense in models in which gene flow is a
fundamental force. Because of this, it is worth considering
how gene flow influences the response to spatial sorting,
and comparing this to the classic result in which gene flow
influences the response to natural selection. One way of
conceptualising this is to use our moving frame of reference
(as per the above model), but now imagine that the next
patch (at x = 1) is already occupied by a population with
given density, n1, and allele frequency, p1. In this frame of
reference, we track the gene frequencies of our immigrants
and consider “gene flow” to be effected by the resident
population into which our immigrants arrive.

Haploid occupied-patchmodel

In this situation, following reproduction and dispersal, the
composition of individuals leaving patch 0 is identical to
that given in Eq. 7, and the total number of these individuals
is n0V W 0. For simplicity, we ignore evolutionary and
dispersal dynamics in patch 1 and simply allow it to be
occupied by n1(t) individuals, with the frequency of A

alleles in this patch given by p1(t). In this scenario,

p1(t + 1) = n1p1 + n0p0VAWA

n1 + n0V W 0
, (14)

and the change in allele frequency in our moving window
between (t = 0, x = 0) and (t = 1, x = 1) is as follows:

�p =
n1
n0

(p1 − p0) + sp0(1 − p0)

n1/n0 + V W 0
(15)

where s = VAWA − VaWa is the spatiotemporal selection
differential.

This equation is similar to that generated under classic
selection-migration balance (Wright 1931, 1940): certainly,
the equilibrium conditions are identical to the classic
case (with our n1

n0
taking the place of Wright’s m in the

classic model). Here, however, we have a moving frame
of reference; we consider immigrants as our reference
population, with the disruptive effect of “gene flow”
provided by the resident population at x = 1. This is

an unusual perspective to take but is consistent with the
previous model. It also allows us to group spatial and
temporal fitness effects as the sum of changes due to gene
flow (first term in the numerator of Eq. 15) versus natural
selection and spatial sorting (second term in the numerator
of Eq. 15).

As with classic selection-migration balance, the effect of
gene flow in this scenario depends on the relative number
of residents versus migrants, and the difference in allele
frequencies between our two populations (Crow and Kimura
1970).

Diploid occupied-patchmodel

Similar reasoning can be applied to derive a map for a
diploid occupied-patch model, but here we have as follows:

�p =
n1
n0

(p1 − p0) + (p0sAA − (1 − p0)saa)p0(1 − p0)

n1/n0 + V W 0
,

(16)

where sAA and saa represent the difference in spatiotem-
poral fitness between each of the homozygotes and the
heterozygote: VAAWAA −VAaWAa and VAaWAa −VaaWaa ,
respectively.

Discussion

By focusing only on the evolutionary dynamics of an
invasion front, the invasion front model developed here
gives natural selection’s shy younger sibling, spatial sorting,
nowhere to hide (Shine et al. 2011). In the special
context of the invasion front, spatial sorting is no longer
a transient phenomenon—it is persistent through time as
long as the front is expanding—and this allows us to see
that spatial sorting is akin to natural selection. Whereas,
natural selection operates to filter genotypes through time,
spatial sorting operates to filter genotypes through space.
Whereas, natural selection filters genotypes on the basis
of reproductive rate, spatial sorting filters genotypes on
the basis of dispersal rate. As a result, we are justified
in thinking of genotypes having both temporal and spatial
aspects to their fitness.

In the special case of an invasion front, spatial sorting
happens every generation and so exerts influence similar
to that exerted by traditional natural selection. On invasion
fronts, it is clear that natural selection and spatial sorting
interact strongly; a situation most clearly seen in the
stability criteria of the models here. The stability criteria in
all cases express an imbalance between relative spatial and
temporal aspects of fitness. If the relative spatial fitness of
allele A is greater than the relative temporal fitness of allele

https://github.com/benflips/spatSortNumerical
https://github.com/benflips/spatSortNumerical
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a, then A will increase in frequency, even if this entails
a reduction in traditional (temporal) fitness. Conditions on
the invasion front clearly maximise spatiotemporal fitness
rather than traditional fitness based only on reproduction
and survival. On the invasion front, we can see with unusual
clarity why dispersal might evolve at the expense of fitness,
and the mechanism is a spatial analogue of natural selection.

Because dispersal is a necessary condition for gene
flow to occur, most models of dispersal evolution must
account for gene flow. By taking a moving frame of
reference, our invasion front model experiences none of
the homogenising influence of gene flow. On the invasion
front, we can simplify the spatial problem by making it
unidirectional, like time. This approach allows us to observe
spatial sorting at play because it eradicates gene flow.
In this frame of reference, gene flow is provided by the
population resident inside a patch prior to the arrival of our
focal population. This perspective preserves the process of
spatial sorting, but shows that spatial sorting is undermined
by gene flow in precisely the same manner as natural
selection.

Models that examine the evolution of dispersal typically
focus on the evolutionary optima that emerge under various
spatiotemporal scenarios. It is regularly observed that
dispersal evolves, despite evident costs to mean fitness
(Johnson and Gaines 1990). While kin competition is
one mechanism that explains this (that is, the loss of
individual fitness is mitigated by a gain in inclusive fitness,
e.g., Hamilton and May 1977), there is clearly a spatial
mechanism at play also (e.g., Olivieri et al. 1995). Spatial
sorting is almost certainly that mechanism, and so it is
important that we develop models that describe and isolate
it. To this end, invasion fronts make a powerful study
system. But perhaps because spatial sorting has come to
prominence in the context of biological invasions, the
development of mathematical theory of spatial sorting has
mostly bypassed simple mechanism-focussed models such
as ours in favour of complex models that predict outcomes
across all space (e.g., Benichou et al. 2012; Perkins et al.
2016). The intent of the formulation developed here is
to go back to basics, focus carefully on the mechanism,
and show how spatial sorting relates to basic evolutionary
theory. The simple theoretical tools that we make use of are
not new, of course. Population genetic models accounting
for interactions between natural selection and gene flow,
for example, go back decades (e.g., Nagylaki 1992). Such
models have, however, yielded great theoretical insight and
are also useful for applied topics, such as adaptation in
response to a shifting environment (e.g., Case and Taper
2000). Thus, linking spatial sorting to basic population
genetics connects it to a literature that is already rich in
biological detail and steeped in demonstration of applied
value.

While our model very simply captures the process of
spatial sorting, it is limited. One clear limitation is that
we are not focussed on invasion fronts as a phenomenon,
necessarily. Models of invasion fronts are often concerned
with estimating spread rate, for example, and this requires
tracking the rate at which a threshold density moves
through space. Our frame of reference is not defined by
a particular population density, so our model cannot track
spread velocity in this way. Despite this limitation, our
finding that the product of spatial and temporal fitnesses
is maximised has intriguing links to spread theory. Classic
spread theory (in continuous space and time) shows that
spread rate, c = 2

√
rD, where r is the rate of increase of

the population, and D is the diffusion coefficient, defining
the dispersal rate (Fisher 1937; Skellam 1951). To the extent
that our W maps to r and our V maps to D, our result
suggests that conditions on the invasion front select for
whatever increases invasion speed. A similar argument has
recently been made by Deforet et al. (2017) using a reaction-
diffusion framework with competing clonal lines. Thus,
while the link between selection, sorting, and spread rate
is an aspect requiring further theoretical development, there
is a strong hint from both of these results that evolution
maximises the spread rate of an expanding population by
maximising spatiotemporal fitness on the invasion front.

Importantly, this maximisation of spatiotemporal fitness
will occur even if this comes at a cost to traditional
fitness (the balance of births and deaths). Thus, spatial
sorting is a directed evolutionary process that, in particular
circumstances, can act to reduce the traditional, temporal
fitness of a population. On invasion fronts, it is now well
established theoretically that fitness will often be reduced
by the serial foundering that occurs as a population spreads
(Slatkin and Excoffier 2012; Peischl et al. 2013) and this
“expansion load” can slow invasions (Peischl et al. 2015;
Phillips 2015). Our results show a deterministic process
that can also erode fitness—spatial sorting—but unlike
the stochastic case, our deterministic process can only
erode fitness if doing so increases spatiotemporal fitness.
Thus, the deterministic process we describe can only cause
invasions to accelerate. The tight interaction between spatial
and temporal fitness in our model also has implications
for how covariation between dispersal and fitness will
constrain trait evolution on invasion fronts. For example,
in our model, if a mutant allele confers an increase in
fitness but also causes a proportional reduction in dispersal,
spatiotemporal fitness remains unchanged, and we would
expect this mutant to have identical spatiotemporal fitness
to the wild-type. Thus, the scaling between spatial and
temporal aspects of fitness has important implications for
how evolution might proceed on invasion fronts; an area
worthy of further exploration. Under more complicated
models, interactions between the temporal and spatial
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components of fitness can become even richer, as revealed
in a model of cane toad spread that pointed to increased
temporal fitness giving rise to a larger spatiotemporal fitness
differential under density dependence (Perkins et al. 2013).

More generally, assuming that a gene has the potential
to jointly affect both spatial and temporal aspects of fitness
may well prove useful. In many real cases, the same
trait can affect both dispersal and survival/reproduction
(Burgess et al. 2016). These dual purposes cause substantial
ambiguity as to why a trait may have evolved: was
it for dispersal or fitness? If we accept the view that
spatiotemporal fitness is a useful concept (if for no
other reason than obviating this duality), then the moving
frame of reference approach we use here might profitably
be applied elsewhere. Classical population genetics very
sensibly focusses on a population at a particular location.
In this setting, immigration (from another location) acts
to disrupt the process of adaptation and push populations
away from their local optimum, contributing a “migrant
load” of nonlocally adapted alleles to the population. In a
moving frame of reference, we instead focus on the migrant
population, and treat the resident population as the agent of
gene flow. The classic view is often simplified by assuming
that migration (and selection) are small forces; a view that
is well justified in populations close to some demographic
and evolutionary equilibrium (Crow and Kimura 1970). In
cases where migrants are actually the bulk of a population,
however, the moving frame of reference approach makes
more sense: we can again assume that gene flow (effected
by residents in this case) is a small force. The fact that we
can (with the moving frame of reference) derive essentially
the same equations for migration-selection balance as the
classic case (Wright 1931) suggests that there may be much
theoretical symmetry between these two alternate views of
the population.

On the whole, our results speak to the striking similarity
of action between natural selection and spatial sorting
on an invasion front. The analogy we strike is similar
to that of Slatkin and Excoffier (2012), who show that
serial founder events on an invasion front are the spatial
analogue of genetic drift. In both cases, we see space
playing the role of time in classic evolutionary models.
This similarity hints that many theoretical results—built
off the analogous standard models that underlie much of
evolutionary theory—may also apply on invasion fronts
subject to spatial sorting alone. That is, if there is no
difference between alleles in aspects of temporal fitness (W
terms are all equal), then the equations become identical
to the standard haploid and diploid models, but they refer
to spatial sorting rather than natural selection. Thus, we
might expect that many theoretical results extending the
basic model—exploring issues of dominance, frequency
dependence, sexual conflict, drift vs. selection, and so

on—can be rederived for spatial sorting. Indeed, by
combining Slatkin and Excoffier’s (Slatkin and Excoffier
2012) approach to serial foundering with our notion of
spatial sorting, it has already proved possible to capture the
drift/selection dynamics of dispersal-modifying alleles on
invasion fronts (Peischl and Gilbert 2018). Through this or
other avenues, our simple formulation has the potential to
provide a useful entry point into fertile theoretical ground
for some years to come.
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