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Abstract
Many demographic and other factors are sex-specific. To assess their impacts on population dynamics, we need sex-
structured models. Such models have been shown to produce results different from those predicted by asexual models, yet
need to explicitly consider mating dynamics. Modeling mating is challenging and no generally accepted formulation exists.
Mating is often impaired at low densities due to difficulties of individuals in locating mates, a phenomenon termed a mate-
finding Allee effect. Widely applied models of this Allee effect assume either that only male density determines the rate
at which females mate or that male and female densities are equal. Contrarily, when detailed models of mating dynamics
are sometimes developed, the female mating rate is rarely reported, making quantification of the mate-finding Allee effect
difficult. Here, we develop an individual-based model of mating dynamics that accounts for spatial search of one sex for
another, and quantify the rate at which females mate, depending on male and female densities and under a number of
reasonable mating scenarios. We find that this rate increases with male and female densities (hence observing a mate-finding
Allee effect), in a decelerating or sigmoid way, that mating can be most efficient at either low or high female densities, and
that the mate search rate may undergo density-dependent selection. We also show that mate search trajectories evolve to be
as straight as possible when targets are sedentary, yet that when targets move the search can be less straight without seriously
affecting the female mating rate. Some recommendations for modeling two-sex population dynamics are also provided.

Keywords Allee effect · Correlated random walk · Density-dependent selection · Evolution · Mating behavior · Two-sex
population model

Introduction

By far, the majority of published population models are un-
structuredwith respect to sex, even though their aim is inmost
cases to studydynamics of sexually reproducing populations.
For example, as of 15 December 2016, the Web of Science
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� Luděk Berec
berec@entu.cas.cz

1 Biology Centre of the Czech Academy of Sciences, Institute
of Entomology, Department of Ecology, Branišovská 31,
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database returned 60,341 results for the “population dynam-
ics AND model” query, with only 2095 of them when “sex”
was added, 60 if alternatively “two-sex” was added, 116
when “sex-structured” was added, and 109 if “sexually
structured” was added. Also, it is virtually impossible to
find an account on sex-structured population models in any
standard book on mathematical ecology. Exceptions in this
respect are the books by Caswell (2001) and Kot (2001),
but even there the respective sections on sex-structured
models cover only 22 out of 652 and 12 out of 424 pages.
Nevertheless, albeit quite technical, a monography on
sex-structured modeling exists (Iannelli et al. 2005).

A common yet tacit assumption behind most of the sex-
ually unstructured models aimed to examine dynamics of
sexually reproducing populations is that females dominate
population dynamics while males do not matter. An under-
lying rationale here is that there are always enough males
or that males and/or females have efficient mate-finding
strategies for all females to mate. To avoid complexities
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associated with an explicit consideration of sex, in many
other modeling studies males and females share an iden-
tical life history so that what actually matters is the total
population density. Both these approaches have been ques-
tioned repeatedly, pointing to a frequent observation that
male densities can be low and limit the female mating rate
(Dennis 1989; Boukal and Berec 2002; Berec et al. 2018)
or that many demographic and other factors are sex-specific
(Møller 2003; Rankin and Kokko 2007; Rankin et al. 2011).

Relevance of any such simplifying assumption is rarely
discussed, and its impacts on the obtained results relative to
when an explicit sex-structured model is used are virtually
unknown. However, sex-structured population models have
been shown repeatedly to produce results different from
predictions of population models not accounting for sex,
quantitatively (Berec and Maxin 2014) but also qualitatively
(Boukal et al. 2008). This points to a need to consider
males and females explicitly, at least as an initial step in
model development, followed, e.g., by an assumption that
male and female life histories are identical. Such a two-step
procedure of generality and simplification may allow one
to reveal any effects sex may have on population dynamics,
but also to provide a justified form of any resulting sexually
unstructured population model (Berec and Maxin 2013;
2014; Berec et al. 2017b).

The obvious cost of developing sex-structured population
models is a need to model mating dynamics and thus
reduced analytical tractability of such models. Indeed, the
rate at which any particular female mates (or the probability
that it mates per a time period), depending on male and
female densities, is a core element of any sex-structured
population model (Caswell and Weeks 1986; Kot 2001;
Iannelli et al. 2005; Bessa-Gomes et al. 2010; Berec
and Maxin 2014; Snyder et al. 2017). Since males and
females need to find each other to mate, mating is by
definition a non-linear process. On the other hand, the
encounter process does not differ much from encounters
found in other contexts, such as between predators and
prey, susceptible and infected individuals in epidemiology
or enzyme-substrate encounters in chemical kinetics, an
analogy which we also exploit in this article.

Mating functions commonly used to describe the rate
at which females mate (i.e. the number of females mated
that occur per unit time) are degree-one homogeneous
mating functions (Caswell and Weeks 1986; Hadeler et al.
1988; Iannelli et al. 2005; Bessa-Gomes et al. 2010). These
functions, exemplified, e.g., by the harmonic mean

M(m, f ) = 2
mf

m + f
, (1)

where m and f denote male and female density, respec-
tively, have the defining property that oncem and f increase

or decrease by a common factor α > 0, the mating rate
increases or decreases by the same factor:

M(αm, αf ) = αM(m, f ). (2)

Since this property implies that

M(αm, αf )

αf
= M(m, f )

f
, (3)

the female mating rate (i.e., the probability that any
particular female mates per unit time) does not change with
male and female densities as soon as they are changed by the
same factor. This rarely discussed property of the degree-
one homogeneous mating functions may be an issue when
population densities become low, since finding mates is
often more difficult as male density declines (Courchamp
et al. 2008; Gascoigne et al. 2009).

Difficulty of females in finding mates at low male
densities is commonly referred to as a mate-finding Allee
effect (Courchamp et al. 2008; Gascoigne et al. 2009;
Kramer et al. 2009; Fauvergue 2013). Allee effects are a
density-dependent phenomenon which occurs when the per
capita population growth rate or a component of fitness
increase as population size or density increase. Mating
functions accounting for the mate-finding Allee effect,
exemplified, e.g., by the hyperbolic function

M(m, f ) = mf

m + θ
(4)

with a positive parameter θ , are an alternative class of mating
functions used in sex-structured population models (Boukal
and Berec 2002; Courchamp et al. 2008; Shaw et al. 2018).
The characteristic property of this class of functions is that
at low densities, increasing male and female densities by the
same factor should increase the female mating rate, too:

M(αm, αf )

αf
>

M(m, f )

f
or M(αm, αf ) > αM(m, f ),

(5)

for some small m and f and α > 1 (Shaw et al. 2018). No
degree-one homogeneous mating function thus represents
a mate-finding Allee effect, and vice versa. In addition,
the property (5) implies that once we can factorize the
mating function as M(m, f ) = P(m)f for some function
P(m), the mate-finding Allee effect occurs once P(m) is an
increasing function of male density m, at least at low male
densities (Boukal and Berec 2002; Courchamp et al. 2008).

Unfortunately, the commonly used Allee-effect-related
mating functions such as Eq. 4 do not account for many
details of mating dynamics, and assume either that only
male density determines a rate at which each female mates
or that male and female densities are equal (Dennis 1989;
Boukal and Berec 2009; Terry 2015). On the other hand,
limited male mating capacity (Wells et al. 1990), refractory
time after each mating (Molnár et al. 2008), inter-individual
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heterogeneity (Dennis 1989), and many other factors such as
protandry (Robinet et al. 2007) and patchiness in individual
distribution (Shaw and Kokko 2014) are all drivers of
mating dynamics.

In this article, we use an individual-based simulation
model, as well as an analytic approach, to study how various
characteristics of the mate-finding process (rate and direc-
tionality of movement, limitations of male mating potential,
length of refractory period after mating, learning, inter-
individual heterogeneity, and evolution of rate and direction-
ality ofmovement)mayaffect the probability of femalesmat-
ing within a mating season, depending on male and female
densities. These explorations are motivated by the need
to represent mating rates or probabilities correctly in sex-
structured population models, and in particular, the need to
account for mate-finding Allee effects. Many of the under-
lying determinants of mating success mentioned above have
been studied in various publications, but to our knowledge,
there is no study that merges and rigorously compares the
respective influence of each of these. Seeing the effects
of these different drivers of mating dynamics side-by-side
and contrasted could help unravel commonalities and
differences between mating systems, and how these char-
acteristics affect vulnerability of a species to mate-finding
Allee effects. In particular, some explicit recommendations
are provided for researchers who want to model two-sex (or
even one-sex) population dynamics without including the
level of detail required by an individual-based model.

Model description

Here, we develop a spatially explicit, individual-based
model of seasonal mating dynamics. The population is
structured by sex, with males and females initially randomly
distributed over a square habitat of area H 2 (we set H = 20
in simulations). For simplicity, in our main simulations, we
consider one sex to be the searching (and hence moving) sex
(the searcher) while the other to be sedentary (the target),
yet we also test for robustness of our results by assuming
that the targets may also move. Each searcher has a random
initial movement direction and is characterized by a mate
search rate q and a mate detection distance δ within which
it detects a target. The mating season has length φ. When at
any moment during a searcher’s movement step (see below)
a target occurs in the searcher’s detection neighborhood,
those two individuals mate. We assume periodic boundary
conditions such that individuals stepping off the habitat on
one side appear on the other side. To test for robustness of
our results, we also consider a kind of reflecting boundary
conditions such that when an individual would step off
the habitat, it does not move and randomly reassigns its
movement direction. While females are assumed to mate at

most once, males can mate up to several times; see below
for more details. When the targets move, too, they are
characterized by a movement rate qt and move before the
searchers do. We note that movement and mate search have
the same meaning in this article if movement is related to the
searchers. Targets may move but do not search in the sense
that they do not have the mate detection neighborhood. No
mortality is assumed to occur during the mating season.

The core element of our model is how the searchers
(and moving targets) actually move. A commonly used
approximation of animal movement is a connected series
of straight lines that define individual movement steps
(Hutchinson and Waser 2007). This allows movement
to be characterized by just two variables: lengths of
movement steps (or move lengths) and turning angles
between successive movement steps. We let movement be
continuous in both space and time which means that all
locations during the movement step are visited, and choose
a correlated random walk (CRW) as our model of individual
movement (Kareiva and Shigesada 1983; Bartumeus et al.
2005, 2008). The CRW model combines a distribution
of move lengths with a non-uniform angular distribution
of turning angles. We assume a fixed time interval Δt

(Hutchinson and Waser 2007) which when multiplied by
an individual’s mate search rate q (or target movement rate
qt ) determines a move length of that individual (we set
Δt = 0.01 in simulations). The angular distribution of
turning angles (i.e., relative angles between two successive
movement directions) is usually symmetric and peaked
around zero, which introduces a directional persistence or
degree of correlation in the random walk. We choose a
wrapped Cauchy distribution (WCD) of turning angles,
in which directional persistence is controlled by a shape
parameter ρ (Bartumeus et al. 2005). Whereas ρ = 0 gives a
uniform distribution with no correlation between successive
movement directions, ρ = 1 represents full correlation and
straight search (Bartumeus et al. 2005). Several examples
of the WCD are provided in Fig. 1a. Clearly, the mean
displacement of an individual during the mating season of
length φ increases with increasing the parameter ρ which
we refer to as the search straightness from here on (Fig. 1b).

Specific mating scenarios that we consider in this arti-
cle are summarized in Table 1. Naturally, we start with
the scenario most commonly used in the literature: all
individuals of each sex are the same and males have an
unlimited mating potential, meaning that the density of
males available to mating does not change during the mat-
ing season. The other scenarios then in one way or another
deviate from this baseline scenario. The particular devia-
tions we adopt appear to represent the most simple and
likely also quite common mating-related characteristics
that one may think of, and this is exactly why we select
them here. Two scenarios consider limitations in the male
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Fig. 1 a A wrapped Cauchy
distribution for different values
of ρ. For ρ = 1, corresponding
to straight search, the
distribution has a singular peak
at zero angle. b The mean
displacement during the mating
season for different values of ρ;
mean ± one standard deviation
over 160 searchers are given. All
searchers move at the rate q = 3
for the mating season of length
φ = 4
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mating potential. We first define the male mating poten-
tial directly as the maximum number of matings nm a male
can accomplish within the mating season. Alternatively, the
male mating potential may be limited indirectly by a need
of males to enter a refractory period T upon mating.
For example, following copulation, males of the gypsy moth
Lymantria dispar typically rest for an entire day prior to mat-
ing again (Blackwood et al. 2012). In principle, the refrac-
tory period may represent time a male spends coupled with
a female when mating, caring for the mated female or their
offspring (mate guarding, paternal care) or time a male
needs to recover and replenish resources (e.g., nuptial gift
or simply energy) to be ready for another mating. In this
way, the refractory time is somewhat akin to the time preda-
tors need to handle its prey (Jeschke et al. 2002). We then
assume that the searchers may learn to mate more effec-
tively as a result of previous encounters with their targets, a
scenario that we are not aware of from the literature. Since
no two individuals are exactly the same, in the final scenario
we allow for heterogeneity among searchers in the two con-
stituent quantities of each movement step: the mate search
rate q and the search straightness ρ.

Clearly, there are many other drivers of mating dynamics,
including protandry (Robinet et al. 2007) and patchiness
in individual distribution (Shaw and Kokko 2014), and
actually any combination of those and the ones we consider
can be imagined. We reiterate that we select here some
of the scenarios that likely represent the most simple and
widespread mating-related deviations from the commonly
considered, yet idealized baseline scenario. For each mating

scenario, we examine the probability that a female mates
within the mating season, depending on male and female
densities, since this relationship helps reveal any possible
mate-finding Allee effect in mating dynamics (Dennis 1989;
Boukal and Berec 2002; Shaw et al. 2018). In line with our
definition of the mate-finding Allee effect this means that
at low densities, increasing male and female densities by
the same factor should lead to an increase in the female
mating probability. To assess variability in the proportion
of females that succeed to mate, we replicate each scenario
100 times. When consideration of either males or females
as the searching sex gives the same results, results only for
the case of male searchers are presented.

Also, we consider some evolutionary scenarios, follow-
ing a constant population composed of M males and F

females over ng generations. This may represent a situation
where the offspring production is always large enough and
the excess offspring die due to density dependence, a com-
mon assumption in eco-genetic models (Howard and Lively
2003; Pound et al. 2004). At the end of each generation, all
adults die yet the search strategies of the successfully mated
searchers are stored. The new generation of searchers is then
created such that each searcher is assigned a search strategy
(the mate search rate q or the search straightness ρ) equally
from those successfully mated searchers. Mutations in the
search strategies are allowed such that small deviations from
the assigned values of q or ρ occur with a low probabil-
ity pm, following a normal distribution with zero mean and
given variance σ 2

m. If the search rate or search straightness
are to become negative, they are set to 0. If ρ is to become

Table 1 Mating scenarios we
consider in this paper Number Label Short description

1 Baseline Unlimited male polygyny, most common in theory

2 Limited Finite male mating potential

3 Refractory Refractory period of males after each mating

4 Learning Searchers learn to mate more efficiently

5 Heterogeneity Individual heterogeneity in movement steps
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larger than 1 it is set to 1. We track mean and variance of
the distribution of q or ρ over the searchers that succeed to
mate, and replicate each evolutionary scenario 10 times.

Faster search requires more resources that could oth-
erwise be used elsewhere. Therefore, in some evolution-
ary scenarios, the mate search rate q is traded off with
another life history trait. There are several well-documented
examples of such trade-offs. For example, faster searchers
may have reduced reproductive capacity (Zera and Denno
1997). Here we assume that faster searchers have reduced
endurance (Levitan 2000). In particular, as the mating sea-
son proceeds the mate search rate q deteriorates. We con-
sider a sigmoid drop in the mate search rate with time t ,
using the formula

q(t) = q0
ak

ak + tk
, k > 1. (6)

Here, q0 is the mate search rate at the beginning of the
mating season, a is time at which the mate search rate drops
to half its initial value, and k > 1 is the degree of sigmoidity.
If a is a searcher’s characteristic that is negatively related
to its initial mate search rate q0 (i.e., if the mate search rate
deteriorates faster in initially faster searchers) then initially
faster searchers may turn out to be less mobile in a later part
of the mating season. We assume an inversely proportional
relationship a = φμq/q0 for a population mean of q equal
to μq . This implies that individuals with the initial mate
search rate q0 = μq have q = q0/2 at t = φ, that is, at the
end of the mating season. When k is low the decrease in q

is relatively steady. On the other hand, for large enough k, q
stays close to q0 for some time, but quickly falls to almost
zero around time t = a. Hence, large values of k may also
model a situation when individuals die during the mating
season such that those with larger q0 die sooner.

Results

Mating dynamics

Scenario 1: Baseline Let all individuals of each sex be iden-
tical andmales have an unlimitedmating potential, so that no
mating removes males from the pool of available mates. Let
there be F sedentary females and M searching males such
that by time t eachmale accomplishes searching an areaA(t).
If females are randomly positioned over the habitat of area
H 2, then the probability that a female mates by time t is

P(t; M) = 1 −
(
1 − A(t)

H 2

)M

= 1 −
(
1 − A(t)

H 2

)mH 2

≈ 1 − exp(−A(t)m) =: P(t; m), (7)

where m = M/H 2 is male density and the approximation
holds for H 2 large enough relative to A(t).

Disregarding for a moment female removal due to
successful mating, the mean number of encounters a female
makes with males in a time interval since t to t + dt is
[A(t + dt) − A(t)]m. Hence, the female’s encounter rate
with males is

lim
dt→0

[A(t + dt) − A(t)]m
dt

= A′(t)m, (8)

where A′(t) denotes derivative of A(t). Most published
encounter models assume that A(t) = βt for a positive
constant β, meaning that the searchers scan a new area β

each time unit (Hutchinson and Waser 2007). The female’s
encounter rate then equals βm. As a consequence, the rate
at which females mate equals βmf and follows the mass
action law. In addition, P(t; m) = 1 − exp(−βmt) and
the encounter process is a homogeneous Poisson process.
A straightforward example here is a situation where the
searchers are moving independently at a constant rate q

along straight trajectories (ρ = 1) (Hutchinson and Waser
2007; Snyder et al. 2017). For this situation, we have β =
2δq and the probability that a female mates (i.e., meets at
least one male) during the mating season of length φ is

P(φ; m) = 1 − exp(−2δqmφ). (9)

The female mating probability (9) is independent of female
density and increases with male density m. Therefore, this
scenario implies a mate-finding Allee effect. Equation 9
also appears as a solution of an analytical model of seasonal
mating dynamics. With βmf as the rate at which females
mate, the appropriate analytical model of seasonal mating
dynamics is (see also Appendix A)

dm

dt
= 0,

df

dt
= −βmf . (10)

Since due to the unlimited male mating potential the male
density m stays constant, the density of unmated females
declines exponentially as f (t) = f0 exp(−βmt) for an
initial female density f0. The proportion of females mated
at the end of the mating season of length φ thus is

P(φ; m) = 1 − exp(−βmφ). (11)

Assuming straight search (ρ = 1), our individual-based
simulations confirm that the female mating probability is
independent of female density and follows the theoretical
prediction (9) (Fig. 2a). The female densities 0.02, 0.08, and
0.19 selected for this and all the other scenarios that follow
correspond to the respective female mating probabilities 0.2,
0.6, and 0.9 under the baseline scenario.

While individuals searching at a constant rate q always
scan a constant area 2δq per unit time, when search
trajectories are not straight the areas searched in any
two subsequent time steps overlap. Moreover, this overlap
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Fig. 2 The baseline scenario, with males as the searching sex. a
Female mating probability with straight search (ρ = 1), b female mat-
ing probability for search with ρ = 0.8, c male density at which 50%
females mate as a function of the search straightness ρ, d estimate of
the factor c scaling the area searched per unit time as a function of the
search straightness ρ. Common parameters: mate detection distance
δ = 0.5, mate search rate q = 3, mating season length φ = 4. e–
f Effect of changing φ and q such that their product stays the same
(=12) as in panel b, with ρ = 0.8 and δ = 0.5; e φ = 6, q = 2; f

φ = 12, q = 1. The solid black lines in panels a, b, e, f are plots of the
form 1− exp(−2δqmφc), where m is male density and c = 1 in panel
(a) and c = 0.44 in panels (b, e, f). The dashed black lines in panels a,
e, f are identical to the solid line in panel a, to indicate deviations from
when search is straight (ρ = 1). The shaded regions in panels (a, b, e,
f) and in all figures that follow correspond to ± one standard deviation
of the female mating probability, calculated from simulating 100 mat-
ing seasons. When females are the searchers and males are sedentary
and randomly positioned over the habitat the results are the same

depends on an angle between two successive movement
directions, with the angle following the WCD and hence
determined by the search straightness ρ < 1. As a
consequence, the new area searched per movement step
is lower than 2δqΔt (and moreover varies from one time
step to another). As a result (which actually holds for
any other scenario that follows), for any male density m

the female mating probability declines with decreasing the
search straightness ρ (Fig. 2b–c).

It is unclear whether any of the female mating probability
curves for ρ < 1 can be approximated by the formula
(9), or rather by its straightforward modification 1 −

exp(−2δqmφc), with a scaling factor 0 < c < 1 that
may depend on all of the search-area-affecting quantities:
search straightness ρ, mate detection distance δ, mate
search rate q, and mating season length φ. Fitting this
function to data combining the results obtained for all three
examined female densities (like all data in panels a or b of
Fig. 2) demonstrates that the scaling factor c declines with
decreasing ρ, and declines in a non-linear way (Fig. 2d).
Moreover, exploring an effect of varying the parameters
q and φ such that their product is fixed, lower female
mating probabilities are observed for lower mate search
rates or longer mating seasons (Fig. 2e–f). All this suggests
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that although the formula P(φ; m) = 1 − exp(−βmφ)

apparently provides a reasonable and easy fit of the observed
simulation results under the baseline scenario, the parameter
β = 2δqc is not any simple function of ρ, δ, q, and φ.

We now explore how the female mating probability
changes when some of the assumptions behind the baseline
scenario are not met. Assuming that the female’s encounter
rate with males equals βm for a positive constant β, we
also derive for each scenario an analytical model of seasonal
mating dynamics that allows tracking densities of mated
females over time (Appendix A).

Scenario 2: Limited Males often have a seriously limited
mating potential. Therefore, we examine an effect of limited
male polygyny, assuming that males can mate once or twice;
note that mating once corresponds to male monogamy.
When males have a limited mating potential, the female
mating probability depends on the female density, too. In
particular, the mating probability declines as the female
density grows, since females compete for males that are
the limiting resource (Fig. 3). This dependence is strongest
when males are monogamous (nm = 1) and the search

is straight (ρ = 1; Fig. 3a), but quickly weakens as
male mating potential increases (Fig. 3b) or the search
straightness ρ declines (Fig. 3c).

Since the female mating probability is an increasing
function of male and female densities kept at a constant
ratio (Fig. 3d), a mate-finding Allee effect occurs also
here. In Appendix A, we develop an analytical model
of seasonal mating dynamics when males have a limited
mating potential and the male-female encounters follow the
mass action law. For the case of male monogamy (nm =
1) that model can be solved analytically and is a good
approximation of our individual-based simulations when the
search is straight (ρ = 1; Fig. 3d).

Scenario 3: Refractory Upon mating, males often need some
time before resuming mate search. We assume there is a
refractory period T such that upon mating, males are for
this period temporarily unavailable to females and stop
moving. Any finite value of T actually limits the number
of matings each male may have within the mating season.
Hence, higher refractory periods imply lower female mating
probabilities (Fig. 4). Actually, as T goes from zero to the

Fig. 3 The limited scenario, with males as the searching sex. a Female
mating probability with straight search (ρ = 1) and up to one mat-
ing allowed for each male (nm = 1), b female mating probability with
straight search (ρ = 1) and up to two matings allowed for each male
(nm = 2), c less straight search with ρ = 0.8 and nm = 1, d initial
male and female densities are varying and equal, and the female mat-
ing probability as depending on the search straightness (ρ) and number
of matings allowed for each male (nm) is plotted. Other parameters
and legend are as in Fig. 2. The solid black lines are plots of the form

1 − exp(−2δqmφc), where m is male density and c = 1 in panels (a,
b) and c = 0.44 in panel (c). The dashed black line in panel c is iden-
tical to the solid lines in panels a, b, to indicate deviations from when
search is straight (ρ = 1). Panel d the solid black line is the theoreti-
cal prediction of the form 2δqmφ/(1 + 2δqmφ), where m is male (=
female) density (see model (15) in Appendix A); the dashed black line
is a plot of the form 1 − exp(−2δqmφ), where m is male (= female)
density. When females are the searchers and males are sedentary and
randomly positioned over the habitat the results are the same
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Fig. 4 The refractory scenario,
with males as the searching sex.
Left column: ρ = 1. Right
column: ρ = 0.8. Top row:
refractory period T = 1. Middle
row: refractory period T = 3.
Other parameters and legend are
as in Fig. 2. The solid black
lines are plots of the form
1 − exp(−2δqmφc), where m is
male density and c = 1
(c = 0.44) in the left (right)
column. The dashed black lines
in panels (b, d, f) are identical to
the solid lines in panels (a, c, e),
to indicate deviations from when
search is straight (ρ = 1). When
females are the searchers and
males are sedentary and
randomly positioned over the
habitat the results are the same

mating season length φ we effectively have a transition from
unlimited male polygyny (scenario 1) to male monogamy
(nm = 1 in scenario 2). As a consequence, as T approaches
φ, the female mating probability becomes more and more
female-density-dependent (Fig. 4). The actual difference
between the refractory and limited scenarios lies in that here
the number of matings each male may have is limited from
above by φ/T , but the actual number can be lower. This
is confirmed in Appendix A where the analytical model of
seasonal mating dynamics corresponding to the refractory
scenario with T = 2 gives female mating probabilities
slightly but consistently lower than the model for the limited
scenario with nm = 2. Again, since the female mating
probability is an increasing function of male and female
densities kept at a constant ratio (Fig. 4e–f), a mate-finding
Allee effect occurs also here.

Scenario 4: Learning A feature common to all of the above
scenarios is that the female mating probability increases

with the male and female densities in a decelerating way.
In predator-prey systems, a commonly found Holling type
II functional response quantifying the rate at which a
predator consumes prey as a function of prey density
has an analogous form (Jeschke et al. 2002). Likewise,
the Michaelis-Menten kinetics producing a decelerating
shape of the reaction rate as a function of substrate
concentration is one of the fundamental models of enzyme
kinetics (Klipp et al. 2005). However, a sigmoid response
function is also known from these fields. In particular,
a sigmoid Holling type III functional response is known
to emerge from the assumption that predators learn to
catch prey more effectively from their previous attempts
(Real 1977). Similarly, in cooperative enzyme kinetics,
binding of a substrate to an enzyme may increase binding
affinity of another substrate to the same enzyme which
produces a sigmoid reaction rate as a function of substrate
concentration (Klipp et al. 2005). However, we know neither
of any data that would support a sigmoid form of the female
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mating probability, nor of any model of mating dynamics
that would produce such a form.

By analogy with the latter functional forms and their
underlying mechanisms, we assume that males are able
of some learning from their previous mating attempts. In
particular, males are initially inexperienced and become
experienced only after they encounter nt females. Moreover,
inexperienced males mate with a female upon encounter
with a probability p0, while experienced males mate with
an enhanced probability p1 > p0 (more generally, we
may think of the probability of mating upon encounter as a
non-decreasing function of the number of females already
encountered). To see whether a sigmoid form occurs at all
and to allow for comparison with the other scenarios we
consider, we examine the most extreme case with p0 = 0
and p1 = 1.

An analytical model (18) we develop in Appendix A
for this scenario suggests that a sigmoid female mating
probability relationship to male and female densities may

indeed occur (Fig. 12 in Appendix A), and our individual-
based simulations confirm that. While no clear relationship
results when female density is kept constant and only male
density varies (Fig. 5a–d), a sigmoid relationship appears
when the ratio of male and female densities stays constant
(Fig. 5e–f). Here, the relationship is the more sigmoid
the more encounters with females are needed for males
to become experienced (Fig. 5e–f) and also the larger is
difference between the probabilities p0 and p1 (results not
shown).

In predator-prey systems, a sigmoid Holling type III
functional response can also arise if prey can utilize refuge
sites with lessened risk of predation or predators forage
optimally on several prey types (Křivan 2013). We leave for
“Discussion” the question of whether a similar analogy can
be imagined also for mating systems.

Scenario 5: Heterogeneity Real searchers are certainly
heterogeneous in many ways. Here, we return to the baseline

Fig. 5 The learning scenario,
with males as the searching sex.
Males have unlimited mating
potential. Left column: ρ = 1.
Right column: ρ = 0.8. Top
row: one encounter with a
female is needed for a male to
become experienced (nt = 1).
Middle row: two encounters
with females are needed for a
male to become experienced
(nt = 2). Common parameters:
p0 = 0 (inexperienced males do
not mate), p1 = 1 (experienced
males mate with certainty).
Other parameters and legend are
as in Fig. 2. The solid black
lines are plots of the form
1 − exp(−2δqmφc), where m is
male density and c = 1
(c = 0.44) in the left (right)
column. When females are the
searchers and males are
sedentary and randomly
positioned over the habitat the
results are the same
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scenario and assume there is inter-individual variability in
the movement step characteristics: the mate search rate
q or the search straightness ρ. We initially assume q to
be Gamma-distributed, with mean μq and variance var q.
Surprisingly, variance in the female mating probability does
not appear to respond to changes in variance in the mate
search rate, at least within the inspected range (Fig. 6). On
the other hand, the mean female mating probability differs
for when males or females are the searching sex and is
higher when males are the searchers (Fig. 6). Moreover, this
difference increases with increasing variance var q in the
mate search rate q (Fig. 6). We discuss on why this happens
in the “Discussion” section.

Alternatively, we assume that the mate search rate q

is constant but allow the search straightness ρ to vary
among the individual searchers, using a Beta distribution
to describe variability in ρ (Fig. 7a). As variability in the
search straightness grows there is a tendency for a higher
proportion of individuals to have ρ closer to 1 (Fig. 7a).

The associated simulation results are then in line with this:
the female mating probability increases with increasing
variance in ρ (Fig. 7b–d).

Evolution

Regardless of the mating and evolutionary scenario (males
or females searching, mate search rate q evolving or not,
mate search costs present or not, any male mating potential),
evolution takes the search straightness ρ sooner or later
to the value of 1, i.e., search eventually becomes straight
(Fig. 8a). In reality, even when information about targets
is poor or lacking, search is rarely straight, with the
turning angle distribution determined by fine-grained spatial
inhomogeneities or perceived risk of predation (Bartumeus
et al. 2008). Nevertheless, given an upper bound on the
search straightness ρ, evolution in our model takes all
individuals to this upper bound (with some small variation
around it due to mutations and stochasticity). As we already

Fig. 6 The heterogeneity
scenario. Males are polygynous.
a–b Gamma distributions of the
mate search rate q with μq = 3
and a var q = 2, and b
var q = 5. c–dMales are the
searching sex. e–f Females are
the searching sex. c, e var q = 2.
d, f var q = 5. Solid black lines
in panels (c–d) and dashed black
lines in panels (e–f) are male
approximations (22). Solid
black lines in panels (e–f) and
dashed black lines in panels
(c–d) are female approximations
(23). Other parameters and
legend are as in Fig. 2; ρ = 0.9

0 2 3 4 6 8
0

0.1

0.2

0.3

0.4

0.5

μ
q

Mate search rate

P
ro

ba
bi

lit
y 

de
ns

ity

0 2 3 4 6 8
0

0.1

0.2

0.3

0.4

0.5

μ
q

Mate search rate

P
ro

ba
bi

lit
y 

de
ns

ity

(a) (b)

(c) (d)

(e) (f)



Theor Ecol (2018) 11:225–244 235

Fig. 7 Effect of individual
heterogeneity in the straightness
of search ρ, with males as the
searching sex. Males are
polygynous. Panel a shows how
the Beta distribution used to
generate individual values of ρ

looks like for the selected
parameter values. b–d Female
mating probability under
μρ = 0.8 and a var ρ = 0.003, b
var ρ = 0.01, and c
var ρ = 0.05. Other parameters
and legend are as in Fig. 2. The
solid and dashed lines
correspond to the baseline
model with ρ = 0.8 (i.e.
c = 0.44) and ρ = 1 (i.e.
c = 1), respectively. When
females are the searching sex an
increase in the female mating
probability with increasing var ρ
is slower (results not shown)
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know, all else being equal, lower values of ρ generally result
in lower female mating probabilities, because of smaller
new areas searched through per time step, and this is most
likely the reason for evolution to reach as highest value of
ρ as possible. In the following, we therefore focus just on
evolution of the mate search rate q, for males or females
searching, for population densities m = f = 0.1 or m =
f = 0.2, for two levels of mate search costs (k = 4 and
k = 20 in the formula (6)), and for the search straightness
ρ = 0.9 (as we emphasize earlier, search in nature is rarely
straight, but other values of ρ produced analogous results).

When no costs are imposed on mate search then the
mate search rate q evolves to ever higher values in runaway

selection which in turn means ever higher female mating
probability (Fig. 9). Interestingly, while there is no effect of
density when females search, the mate search rate evolves
faster at higher density when males are the searching sex
(Fig. 9). The presence of the mate search costs, in the form
of the initially higher mate search rates deteriorating faster
as mating season proceeds, prevents runaway selection to
ever higher values of q (Figs. 10 and 11). Density appears
to play a role when any sex is searching: larger values of q

evolve in denser populations (Figs. 10 and 11). Moreover,
the difference in q between populations of higher and lower
densities is larger when males are the searching sex and
when the mate search costs are larger (Figs. 10 and 11).

Fig. 8 Evolution of the search straightness ρ. Males are the searching
sex and have an unlimited mating potential. a Sedentary females. b
Females moving at rate qt = 6 and having the movement straightness

ρt = 0.9. Males and females are kept at densities m = f = 0.2 (blue;
M = F = 80). Parameters: q = 3, δ = 0.5, φ = 4, var ρ = 0.01,
mutation probability pm = 0.05, mutation variance σ 2

m = 0.2
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Fig. 9 Evolution of the mate
search rate q when there are no
costs on mate search. a Males
are the searching sex. b Females
are the searching sex. Males are
polygynous. Males and females
are kept at densities
m = f = 0.1 (red;
M = F = 40) or m = f = 0.2
(blue; M = F = 80).
Parameters: δ = 0.5, φ = 4,
ρ = 0.9, var q = 1, mutation
probability pm = 0.05, mutation
variance σ 2

m = 0.5

Robustness of simulation results

We have tested for robustness of our simulation results
in three different ways. First, throughout the “Results”
section, we have compared our simulation results to those
produced by the analytical models developed in Appendix A
and found qualitative and also reasonable quantitative
agreement, provided the appropriate factors were used

to scale non-straight search scenarios. Here, we discuss
the effects of reflecting rather than periodic boundary
conditions and of moving rather than sedentary targets.

Results with reflecting boundary conditions stay qual-
itatively the same compared with those due to periodic
boundary conditions and there is also close quantitative
agreement. In particular, the female mating probabilities
under the reflecting boundary conditions are consistently

Fig. 10 Evolution of the mate
search rate q when costs on
mate search are relatively low. a
Males are the searching sex. b
Females are the searching sex.
Males are polygynous. Males
and females are kept at densities
m = f = 0.1 (red;
M = F = 40) or m = f = 0.2
(blue; M = F = 80).
Parameters: δ = 0.5, φ = 4,
ρ = 0.9, var q = 1,
a = φμq/q0, k = 4, mutation
probability pm = 0.05, mutation
variance σ 2

m = 0.5
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Fig. 11 Evolution of the mate
search rate q when costs on
mate search are relatively high.
a Males are the searching sex. b
Females are the searching sex.
Males are polygynous. Males
and females are kept at densities
m = f = 0.1 (red;
M = F = 40) or m = f = 0.2
(blue; M = F = 80).
Parameters: δ = 0.5, φ = 4,
ρ = 0.9, var q = 1,
a = φμq/q0, k = 20, mutation
probability pm = 0.05, mutation
variance σ 2

m = 0.5

slightly lower than under the periodic ones (Figs. S1 and
S2 in Appendix S1 in Electronic Supplementary Material).
This is apparently because in the former case it takes some
time to individuals getting close to the boundary to rebound
back into the habitat.

In non-evolutionary scenarios, moving targets increase
the chance of the searchers to meet them and the female
mating probabilities are thus consistently higher than
when targets are sedentary (Figs. S3 and S4 in Appendix
S2 in Electronic Supplementary Material). Indeed, larger
areas than only the newly searched ones are relevant
here, as targets may move to the areas already searched.
Unfortunately, there is no closed form relationship for the
encounter rate when both the searchers and the targets move,
even in for the baseline scenario (Hutchinson and Waser
2007).

With moving targets, evolution does not always lead
to the straight search. In particular, when targets move
at higher rates and population densities are not extremely
low, the female mating probability is close to 1. In such
cases, the selective pressure on straighter search is lower.
However, since we do not consider any costs related
to search straightness then unless the targets move very
quickly (and hence much faster than the searchers), it is
advantageous to move along straighter trajectories. In any
case, with increasing the movement rate of targets, evolution
to higher values of ρ is slower and the attained evolutionary
equilibrium need to reach the value of 1 (Fig. 8b). Moreover,
qualitative results of evolution of the mate search rate q stay
unchanged when the targets move. Quantitatively, as one

would perhaps expect, lower values of the mate search rate
q evolve (results not shown).

Discussion

One of the most important elements of sex-structured
population models is a description of mating rate or
number of pairs that are formed during a time period
(Caswell and Weeks 1986; Dennis 1989; Lindström and
Kokko 1998; Boukal and Berec 2002; Iannelli et al. 2005;
Miller and Inouye 2011). A number of models of mating
have been proposed, adopting diverse assumptions on the
mating process that include a limited male mating potential
(Wells et al. 1990), changes in searching efficiency during
the mating season (Berec et al. 2018), or inter-individual
heterogeneity in mate search features such as the search
rate (Dennis 1989) or the search trajectory (Bartumeus et al.
2008). Mate-finding Allee effects, acknowledging that low
population densities are inhibitors of mating, have become
a standard output of such models (Dennis 1989; Boukal and
Berec 2002; Courchamp et al. 2008; Gascoigne et al. 2009).
Here, we explore and compare the respective influence of
many of the underlying determinants of mating success,
trying to unravel their commonalities and differences, and
how they make a species vulnerable to mate-finding Allee
effects. Through developing an individual-based model of
mating dynamics that explicitly accounted for spatial search
of one sex for the other, we quantified the probability with
which a female mated during its mating season, depending
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on male and female densities and under a number of relevant
mating scenarios. We found that the proportion of females
that successfully mated during the mating season increased
with male and female densities (hence observing a mate-
finding Allee effect), in a decelerating or sigmoid way,
that mating could be most efficient at either low or high
female densities, that mate search trajectories evolved to be
as straight as possible when targets were sedentary, and that
the mate search rate underwent density-dependent selection.

Many studies that modeled mating dynamics used an
analytical approach. This approach, based on ordinary
differential equations and exemplified by the models we
develop in Appendix A, assumes that the rate at which
males and females meet follows the mass action low.
Moreover, depending on the modeled mating characteristics
it considers transitions of different types of males and
females between various behavioral classes. Thus, males
may be always ready to mate in a system with unlimited
male polygyny (Dennis 1989), males and females cease
to mate after the first mating in monogamous systems
(Wells et al. 1990; Veit and Lewis 1996), males may
be temporarily or permanently unavailable upon mating
(Molnár et al. 2008, this model is a combination of our
limited and refractory scenarios), females may enter a
gestation period (Ashih and Wilson 2001; Berec et al.
2017a), or emergence of males and females during during
the mating season need not be synchronized (Blackwood
et al. 2012). Because of the mass action contact rate, all
the implied female mating probabilities demonstrate a mate-
finding Allee effect. Moreover, all increase in a decelerating
way as male density or both male and female densities
grow large. We use this analytical approach to compare
the effects of different mating system characteristics on
mating success, demonstrating that this is indeed a valid and
flexible way of modeling mating dynamics (see also below).

On the other hand, an extensive literature exists on the
types of movement (move length and movement angle
distributions) and how encounter rate between different
types of individuals are affected by these. For example,
Viswanathan et al. (1999) looked for an optimal search
strategy, in terms of a move length distribution, of predators
that follow Lévy flight motion in search of their prey.
Similarly, Bartumeus et al. (2005) examined efficiency of
searchers following either Lévy or correlated random walks
in locating destructive and non-destructive targets, and
Bartumeus et al. (2008) explored how various turning angle
distributions influenced encounter success in homogeneous
vs. patchy target environments. Last but not least, Gurarie
and Ovaskainen (2013) presented a framework aimed at
investigating how encounter rates were affected by such
properties of the encounter process as the encounter kernel,
spatial distribution and birth–death dynamics of targets
and whether encounters are destructive or not. All these

and many similar studies aim at providing some general
predictions regarding the effects of search strategies,
irrespective of a specific encounter context (e.g., mating,
predation or infection). As a consequence, they leave many
details of specific encounter contexts out. In this respect,
they are complementary to our approach of selecting a
single search strategy (or rather a family of strategies
distinguished by the mate search rate q and the search
straightness ρ within the correlated random walk modeled
via the wrapped Cauchy distribution) and varying details
of mating behavior. As a future work, it is certainly worth
combining these two topics and examine optimality of mate
search under a number of selected mating systems.

Gurarie and Ovaskainen (2013) found that (in the case
of hard encounters) the (first) encounter rate was generally
proportional to the movement rate, density of targets,
and the encounter radius (see also Hutchinson and Waser
2007). Moreover, when holding these variables constant,
the (first) encounter rate was found to increase with higher
directional persistence of the searchers (that is, straighter
movement trajectory). What we reveal in our study is
that the corresponding proportionality constant (our scaling
factor c) may depend on specific values of these elements,
even when their product remains constant. Quantification
of this proportionality constant in a scenario akin to our
baseline one was attempted by Snyder et al. (2017). Using
a truncated uniform distribution of movement angles they
showed that this constant did not depend on directional
persistence of the searcher’s movement, which is in a stark
contrast with one of our main results: the factor c scaling the
male-female encounter rate in the baseline scenario declines
in a non-linear way as the directional persistence of the
searcher’s movement decreases (Fig. 2d). The exact reason
for this and dependence of the scaling factor on search
straightness under other movement strategies such as Lévy
walks is to be explored.

Intriguingly, although theoretically plausible, we know of
no model or mating dynamics that would produce a sigmoid
form of the female mating probability as a function of male
and female densities, that is, a disproportionately low/high
mating probability at low/high densities. Neither we are
aware of any data that would support such a form. Except
for a short note that the female mating probability cannot
be sigmoid unless inter-individual heterogeneity in the area
searched per unit time depends on male density (Dennis
1989), literature is silent about this issue. We have therefore
attempted to bring in a possible mechanism, building on
analogy with predator-prey systems in which predators
learn how to catch prey (Real 1977) and with substrate-
enzyme interactions in which binding of a substrate to
an enzyme increases binding affinity of another substrate
to the same enzyme (Klipp et al. 2005). We found that
a sigmoid form of the female mating probability as a
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function of male and female densities might arise when
males learned to search more effectively as a result of
previously unsuccessful encounters. We showed this in
both the individual-based model and the analytical model,
further demonstrating flexibility of the latter approach, and,
more importantly, plausibility of the sigmoid form as such.
Whether models of two-sex population dynamics produce
different results depending on whether the female mating
probability is decelerating or sigmoid with increasing male
and female densities is certainly a valid query that remains
to be explored.

In predator-prey systems, a sigmoid Holling type III
functional response can also arise if prey can utilize refuge
sites with lessened risk of predation or predators forage
optimally on several prey types (Křivan 2013). Can a
similar analogy be imagined also for mating systems? In
predator-prey systems, there is an absolute prey density
around which either prey (by exploiting refuge sites) or
predators (by switching prey) modify their behavior, which
in turn generates a sigmoid Holling type III functional
response. As regards mating, males correspond to prey
since the mate-finding Allee effect primarily arises as a
response of the female mating rate to male density. To get
a sigmoid female mating rate would thus mean that there
is an absolute male density around which a male or female
behavior changes. Since it is in the interests of both males and
females to mate during the mating season, we cannot make
out any specific mechanism for such a behavioral change.

Only when the mate search rate was heterogeneous
among the searchers did the female mating probability differ
depending on whether males or females were the searching
sex. Whereas the mean female mating probability does not
deviate from when searchers are homogeneous with respect
to the mate search rate when males are the searching sex,
a difference arises when females are the searching sex.
Moreover, the mating probability is always lower when
females search as opposed to when males search, and the
difference increases as the variance in the mate search rate
grows. The apparent reason for this difference, elaborated
in Appendix A, is that contributions to the mean female
mating probability by males and females differ when one
or the other sex is searching. Specifically, when females
are the searching sex the mean female mating probability is
a mean of individual mating probabilities over all females
(Eq. 19 in Appendix A). On the other hand, when males are
the searching sex it is the mean of areas searched per unit
time over all males that plays the role, since all females now
have the same mating probability (Eq. 20 in Appendix A).
This distinction has not to have been made in literature
so far. Although the form (19) is not new and has been
derived by Dennis (1989), he had not assign it clearly to the
female search that he had supposed and had not contrasted
it to the case when males are the searching sex. In any

case, the observation that under individual heterogeneity
in the mate search rate the female mating probability is
consistently lower when females search as opposed to when
males search may add to the discussion on why male search
is the more prevalent pattern in nature (McCartney et al.
2012; Fromhage et al. 2016).

Search straightness is an important mate search trait
and we find that evolution always goes to maximize it.
When search is straight the area newly scanned through per
unit time is maximized and the chance to find a sedentary
mate randomly distributed in the habitat is the highest.
Conversely, the more curved is the movement trajectory, the
larger is the overlap between the area searched previously
and now. A valid question is what happens when the targets
are not sedentary (and/or are not distributed randomly;
exploration of effects of non-random target distributions
is beyond the scope of this study). Consider an extreme
case in which males are the searching sex and females
are randomly reshuffled at each time step. Then the area
searched previously and not containing any female may now
contain a female. As a consequence, it is not the newly
searched area per unit time that matters in this case but
rather the total area searched per unit time, irrespectively of
the search straightness. Hence, in this extreme case, there
is no need for search straightness to change as a result of
evolution. On the other hand, we do not impose any costs on
the degree of search straightness. Hence, unless the targets
will move very quickly, it may always be advantageous to
move along straighter trajectories. Of course, as the target
movement rate will increase, the returns from increasing
search straightness will diminish and the evolution to
straighter search will be slower, as our simulations confirm.
On the other hand, if the target moves much faster than
the searcher, there may be likely that the search-target roles
would be switched.

The mate search rate q is subject to runaway selection
to ever higher values if no costs are imposed on mate
search. On the other hand, density-dependent selection
occurs, with evolution at higher densities leading to higher
initial mate search rates when the search rate decreases
as the mating season proceeds and decreases faster in
initially faster searchers (i.e., higher initial mate search
rate implies lower individual endurance). This selection is
stronger when males are the searching sex and when the
costs are more step-like such that search effectively ceases
at some time. Also, although variance in the proportion of
mated females declines with increasing density, variance in
the evolutionary trajectories appears to be higher at higher
densities. Surprisingly, using an alternative framework to
mate search rate evolution, Berec et al. (2018) observed
quite opposite results. In particular, they found that even
under no mate search costs evolution stabilized when
females were the searching sex, that density-dependent
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selection did not occur when analogous costs were applied
to the searching males, and that variance in the evolutionary
trajectories was lower at higher densities. Although the
two studies examine the same issue, the respective models
differ in many respects. It is hard to suggest why those
differences arose, but we hazard to guess that an explicit
spatial search and sigmoid trade-off between the initial mate
search rate and search endurance considered here, versus
an implicit spatial search and exponentially decaying trade-
off assumed in Berec et al. (2018) might be promising
candidates. In any case, a message from this is that under
similar ecological and behavioral scenarios, we can get
different evolutionary outcomes if the other model elements
differ. In any particular evolutionary study, all elements of
the adopted model should thus be specified in detail.

Although individual-based models are a powerful tool
to examine how many interacting mating dynamics char-
acteristics may influence the female mating rate, many
researchers want to model two-sex (or even one-sex) pop-
ulation dynamics without including the level of detail
required by an individual-based model. What explicit rec-
ommendations can we give based on our results? And what
do our results imply for modeling two-sex dynamics? The
two most commonly used “generic” formulations of the
female mating rate in presence of the mate-finding Allee
effect are the exponential form 1 − exp(−βm) for a posi-
tive parameter β that has an advantage of being easily fitted
to data, and the hyperbolic form m/(θ + m) for a positive
parameter θ that has an appeal from a mathematical analy-
sis perspective (Dennis 1989; Boukal and Berec 2002) but
can also naturally arise under some circumstances (Dennis
1989; Berec et al. 2017a). Both these forms are decelerat-
ing as male density increases and are independent of female
density.

We find that many of our scenarios result in the
female mating probability curves that are concave functions
of male density and are nearly independent of female
density. Hence, those two “generic” formulations can be
used as their phenomenological description, especially in
populations models where details of mating dynamics are
not of the primary interest, such as for example in a
predator-prey model with a mate-finding Allee effect in
predators (Terry 2015). Based on our results, we add to this
a “generic” form mk/(θk +mk) that for some k > 1 may be
thought of as a phenomenological description of scenarios
giving rise to sigmoid female mating rates. Ability of all
these functions to fit results of many of our mating scenarios
thus lends them a credit for continuing use in many strategic
population models, including the sexually unstructured ones
in which an assumption that males and females share equal
life histories is made. Indeed, mating dynamics needs to
be considered also in such cases or if the population is
composed just of simultaneous hermaphrodites.

If a more detailed, mechanistic mating model is required
then a continuous-time model of seasonal mating dynamics
following philosophy outlined in Appendix A can be used.
Parameters driving an inspected mating behavior are then
directly available, including the rate at which males and
female encounter and mate. These analytical models can
also easily be generalized to situations where the processes
of mating, reproduction and mortality are supposed to
mix, as we exemplify in Appendix B, further extending
their utility for modeling two-sex population dynamics.
What we emphasize here is that the parameter scaling
the mass action mating rate in these models (named β

in our case) is a complex function of search strategy: it
increases with increasing mate search rate but declines with
decreasing search straightness. Sensitivity of results of these
analytical models to this parameter should thus always be
examined. Needless to say, individual-based models provide
the highest flexibility in describing mating dynamics, but
suffer from a couple of well-known issues, including often
long computation time, necessity to run multiple simulation
replicates to unravel expected dynamics, need to set values
and explore sensitivity to many parameters, and lack of
general insight into model behavior. In any case, we believe
that the current study provides a useful insight into modeling
mating in two-sex (but also one-sex) population models.
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Appendix A: Continuous-timemodels
of mating dynamics

Let each female encounter males at rate βm, for a positive
constant β. This means that individual searchers scan a new
area β each time unit. Moreover, the rate at which females
mate equals βmf and thus follows the mass action law.

Scenario 1: Baseline When males are not limited in their
mating potential, the corresponding model of seasonal
mating dynamics, assuming a large enough habitat area
H 2, is

dm

dt
= 0,

df

dt
= −βmf . (12)



Theor Ecol (2018) 11:225–244 241

Since male density m is constant, the density of unmated
females declines exponentially as f (t) = f0 exp(−βmt)

for an initial female density f0. Therefore, the proportion of
females mated at the end of the mating season of length φ is

P(φ; m) = 1 − exp(−βmφ). (13)

Scenario 2: Limited Denoting by nm the male mating
potential (i.e., the maximum number of matings any male
may have during the mating season) and by mi, i =
1, . . . , nm, the densities of males that have already mated
i times, then males of class i go to class i + 1 at rate
βmif , and become unavailable for mating after making nm

transitions (i.e., after mating nm times). Therefore, under a
limited male mating potential the baseline continuous-time
model of mating dynamics (12) changes to

dm

dt
= −βmf,

df

dt
= −βmf − βm1f − βm2f − . . . − βmnm−1f,

dm1

dt
= βmf − βm1f,

dm2

dt
= βm1f − βm2f,

. . .
dmnm−1

dt
= βmnm−2f − βmnm−1f . (14)

We note that nm = ∞ corresponds to unlimited polygyny
(scenario 1). On the other hand, nm = 1 corresponds to male
monogamy and the model (14) then reduces to

dm

dt
= −βmf,

df

dt
= −βmf . (15)

This model can be solved analytically. Indeed, Wells
et al. (1990) showed that the female mating probability P

depends on both male and female densities as

P(φ; m) =

⎧⎪⎪⎨
⎪⎪⎩

m exp[(m − f )βφ] − m

m exp[(m − f )βφ] − f
if m �= f,

βmφ

1 + βmφ
if m = f .

(16)

Scenario 3: Refractory Denoting by ms and mr the densities
of searching males and males currently in the refractory
state, respectively, searching males enter the refractory class
at the rate βmsf and leave it at the rate mr/T , where

T is the (mean) length of refractory period. Therefore,
modification of the baseline model (12) that accounts for the
refractory period of males after each mating is

dms

dt
= −βmsf + 1

T
mr,

df

dt
= −βmsf,

dmr

dt
= βmsf − 1

T
mr . (17)

Scenario 4: Learning Denote by mi and me the densities
of inexperienced and experienced males, respectively. Both
types of males search for females at rate β. Moreover,
inexperienced and experienced males mate with probability
p0 and p1 upon encounter, respectively. After nt encounters
with females, inexperienced males become experienced.
With these assumptions, the baseline model (12) can be
extended as

dm1
i

dt
= −βm1

i f,

dmk
i

dt
= βmk−1

i f − βmk
i f, k = 2, . . . , nt

df

dt
= −p0β

(
nt∑

k=1

mk
i

)
f − p1βmef,

dme

dt
= βm

nt

i f . (18)

By analogy with predator-prey theory and cooperative
enzyme dynamics (see the main text), this learning scenario
is expected to produce a sigmoid form of the female mating
probability. While a sigmoid form is hardly seen to non-
existent when only the male density m varies (Fig. 12a), it
is clearly seen when both male and female densities change
and are kept at a constant ratio (Fig. 12b).

Scenario 5: Heterogeneity The searchers may be hetero-
geneous in various ways. We return here to the baseline
scenario and assume that males are not limited in their mat-
ing potential. Hence, each female’s mating probability at
time t is P(t; m) = 1 − exp(−βmt). However, we let the
parameter β differ among individual searchers, due to vary-
ing mate search rate. When females are the searching sex
then the female mating probability becomes

PF (t; m) =
∫ ∞

0
(1 − exp(−βmt))f (β)dβ, (19)
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Fig. 12 The mate-finding Allee
effect for the learning scenario
model (18) and for parameters
β = 3, p0 = 0, and p1 = 1; the
length of mating period φ = 4.
Initial female density f = 0.08
in panel (a)
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where f (β) is a probability density function on β. On
the other hand, when males are the searching sex then the
female mating probability is

PM(t; m) = 1−exp

(
−mt

∫ ∞

0
βf (β)dβ

)
= 1−exp(−μβmt),

(20)

where μβ is the mean value of β.
Assuming a Gamma-distributed search area β per unit

time,

f (β) = θτβτ−1

Γ (τ)
exp(−θβ), 0 < β < ∞, (21)

and we get

PM(t; m) = 1 − exp
(
−τ

θ
mt

)
(22)

and (Dennis 1989)

PF (t; m) = (θ + mt)τ − θτ

(θ + mt)τ
. (23)

Here, τ is a shape parameter and θ is a rate parameter of
the Gamma distribution which are related to mean μβ and
variance varβ as τ = (μβ)2/varβ and θ = μβ/varβ. For
τ = 1, the Gamma distribution becomes an exponential

distribution and PF (t; m) = m/(θ + m), one of the forms
most commonly used to describe the female mating rate
in population models accounting for a mate-finding Allee
effect (Dennis 1989; Boukal and Berec 2002; Terry 2015).
On the other hand, letting τ → ∞ and θ → ∞ such that
τ/θ → β the baseline model P(t; m) = 1 − exp(−βmt) is
recovered (Dennis 1989).

Summary of Scenarios 1–5 Figure 13 summarizes how
density of mated females increases in time or with male
and female densities for the five examined mating scenarios.
The monogamy scenario (i.e., the limited scenario with
nm = 1) is the worst scenario when the mating season is
relatively long as the other scenarios allow males to mate
multiply and hence increase the chance of females to meet
at least one male. On the other hand, the learning scenario
is the worst scenario if the mating season is relatively
short as it catches up with male polygyny only when a
majority of males are experienced. As we know from above,
small refractory period and large male mating potential
behave similarly to the baseline scenario with unlimited
male polygyny. We also know from our individual-based
simulations that heterogeneity in the mate search rate when
females are the searching sex produces consistently lower
female mating probabilities relative to the baseline scenario,
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Fig. 13 Dynamics of analytical models of mating dynamics corre-
sponding to Scenarios 1–5. The heterogeneity scenario here considers
mate search rate heterogeneity in females; mate search rate hetero-
geneity in males would give results identical to the baseline scenario.

The female mating probability is plotted as a function of a time, with
m0 = f0 = 0.2, and b male and female density, with φ = 4, for
parameters β = 3, nm = 2, T = 2, p0 = 0, p1 = 1, nt = 2, and
varβ = 5
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while the results under heterogeneity in the mate search rate
when males are the searching sex coincide with those for the
baseline scenario.

Appendix B: Derivation of a simple
continuous-time two-sexmodel

Here, we exemplify a sex-structured population model in
which the processes of mating, reproduction, and mortality
occur simultaneously. We assume that when a male and a
female encounter one another they mate. Upon mating, the
female enters a gestation period of length tF after which it
gives birth to b offspring following a 1:1 sex ratio and then
resumes mate search. Mated males are assumed to enter a
refractory period of length T . Moreover, males and females
die at rates mM and mF , respectively. We distinguish four
state variables: searching males Ms and females Fs , and
resting males Mr and females Fr . A continuous-time two-
sex model may then be as follows:

dMs

dt
= −βMsFs − mMMs + 1

T
Mr + b

2

1

tF
Fr ,

dFs

dt
= −βMsFs − mF Fs + 1

tF
Fr + b

2

1

tF
Fr ,

dMr

dt
= βMsFs − 1

T
Mr − mMMr,

dFr

dt
= βMsFs − 1

tF
Fr − mF Fr . (24)
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