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Abstract Allee effects, or positive functional relationships
between a population’s density (or size) and its per unit abun-
dance growth rate, are now considered to be a widespread if
not common influence on the growth of ecological popula-
tions. Here we analyze how stochasticity and Allee effects
combine to impact population persistence. We compare the
deterministic and stochastic properties of four models: a logis-
tic model (without Allee effects), and three versions of the
original model of Allee effects proposed by Vito Volterra
representing a weak Allee effect, a strong Allee effect, and a
strong Allee effect with immigration.We employ the diffusion
process approach for modeling single-species populations,
and we focus on the properties of stationary distributions
and of the mean first passage times.We show that stochasticity
amplifies the risks arising from Allee effects, mainly by
prolonging the amount of time a population spends at low
abundance levels. Even weak Allee effects become conse-
quential when the ubiquitous stochastic forces affecting natu-
ral populations are accounted for in population models.
Although current concepts of ecological resilience are bound
up in the properties of deterministic basins of attraction, a
complete understanding of alternative stable states in ecolog-
ical systems must include stochasticity.
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Introduction

In population ecology, an Allee effect was traditionally
viewed as a positive functional relationship between a popu-
lation’s density (or size) and its per unit abundance growth rate
(Allee 1931, 1938; Odum and Allee 1954; Philip 1957;
Dennis 1989). The concept of an Allee effect, also known as
positive density dependence, inverse density dependence, un-
der-crowding, or depensation, arose as a qualifier to the pop-
ulation regulation and density dependence (meaning negative
density dependence) concepts that preoccupied ecology for
many decades (Allee et al. 1949; Andrewartha and Birch
1954). A variety of possible biological mechanisms can cause
Allee effects, among them increased mating encounters (as
population abundance increases), increased reproduction due
to physiological or social facilitation, decreased mortality due
to group protection from predators, increased predation suc-
cess in groups of cooperative predators, or resistance afforded
by increased density to competition or invasion from other
species (see recent reviews by Courchamp et al. 2008;
Kramer et al. 2009).

In light of the different mechanisms, present-day investiga-
tors often define a Bcomponent Allee effect^ as a positive
relationship between any measurable component of individual
fitness and population size or density (Stephens et al. 1999;
Berec et al. 2007; Courchamp et al. 2008). These investigators
rightly point out that a component Allee effect might be
overshadowed by other density-dependent forces affecting
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net fitness. However, the term Bdemographic Allee effect^ has
been suggested to replace BAllee effect^ for the characteristic
positive density dependence in net fitness, but the term risks
confusion with demographic variability, another potentially
important force in small populations. Moreover, demographic
stochastic variability in sex ratio can cause an Allee effect in
mean reproduction (Engen et al. 2003). a phenomenon per-
haps more deserving of the term demographic Allee effect. In
what follows, we will simply retain the earlier usage of Allee
effect as the overall term for net positive density dependence
in the mean per unit abundance growth rate.

Allee effects are now considered to be a widespread if not
common influence on the growth of ecological populations.
Early on, Allee et al. (1949) and Andrewartha and Birch
(1954) marshaled experimental and field studies that
confirmed the presence of Allee effects among various
species. In the three decades subsequent to the Allee et al.
(1949) and Andrewartha and Birch (1954) volumes, the study
of the effects of crowding and negative density dependence
resumed center stage in population ecology, and research into
effects of under-population languished (see Lidicker 2010).
The dawn of conservation biology as a scientific discipline
inspired renewed interest in Allee effects (Dennis 1989;
Courchamp et al. 1999; Stephens and Sutherland 1999). and
empirical and theoretical research in the topic has
mushroomed. Recent reviews by Courchamp et al. (2008)
and Kramer et al. (2009) assembled numerous examples of
Allee effects in many plant, animal, and microbial species.

The first mathematical model of population growth with an
Allee effect was actually contributed and analyzed by Volterra
(1938), independent of, and uninformed by, Allee’s (1931,
1938) more qualitative work during those same years.
Positive density dependence (specifically in the form of rare
matings) evidently was another question posed to the great
Italian mathematician by his biologist nephewD'Ancona, sim-
ilar to the earlier questions that inspired Volterra’s better-
known work on competition and predation (Kingsland
1985). Volterra’s model takes the per unit abundance growth
rate to be a concave-down quadratic equation, one of the sim-
plest expressions having an increasing portion for low popu-
lation abundance and a decreasing portion for high abun-
dance. Multiplying by abundance gives a cubic equation for
the population growth rate, with a root at zero abundance and
the potential for two positive roots representing a lower unsta-
ble equilibrium and an upper stable equilibrium. The cubic
model of Allee effects has been rediscovered and republished
various times.

Missing in the vast majority of theoretical as well as em-
pirical studies of Allee effects is consideration of stochasticity.
Early in the conservation biology literature, stochasticity (spe-
cifically, demographic stochasticity) was recognized as part of
the Bextinction vortex^ of forces contributing to the extinction
of rare populations (Gilpin and Soulé 1986), with Allee effects

oddly omitted from the list of vortex forces. Lande (1988) and
Dennis (1989) raised dire warnings that stochasticity as well
as Allee effects should be considered for determining mini-
mum viable population sizes for species conservation.
However, since then, the burgeoning literature on modeling
single-species Allee effects (reviewed by Boukal and Berec
2002; Courchamp et al. 2008) has primarily been in the deter-
ministic tradition established in ecology by Volterra. The the-
oretical interest has often employed deterministic discrete time
maps and centered on whether Allee effects stabilize or further
destabilize the oscillations and chaos arising from overcom-
pensation or multiple species interactions (e.g., Scheuring
1999; Fowler and Ruxton 2002; Zhou et al. 2005; Çelik and
Duman 2009; Elaydi and Sacker 2009; Wang et al. 2013).

Scattered recent exceptions to the deterministic tradition
feature stochasticity (e.g., Møller and Legendre 2001;
Dennis 2002; Liebhold and Bascompte 2003; Engen et al.
2003; Bessa-Gomes et al. 2004; Drake 2004; Drake and
Lodge 2006; Lee et al. 2011). Taylor and Hastings (2005)
provide an excellent review of Allee effects in the context of
biological invasions and discuss stochastic as well as
deterministic models available at the time. In particular,
Dennis (2002) studied the combination of Allee effects and
stochasticity using diffusion processes for a single species, a
type of general stochastic population model that accommo-
dates both demographic and environmental stochastic fluctu-
ations. He showed that if a deterministic model has a lower
critical density, or an unstable equilibrium, the stochastic ver-
sion would have an inflection point in the probability of
attaining a lower abundance a before an upper abundance b
(probability of quasi-extinction). The inflection point predic-
tion, along with a statistical analysis method suggested by
Dennis (2002) for detecting such inflection, was used in em-
pirical studies of propagule pressure in establishment of bio-
logical invasives by Leung et al. (2004) and Brockerhoff et al.
(2014). Because the inflection corresponds exactly to the
underlying deterministic critical Allee point, Boukal and
Berec (2002) suggested that stochasticity only Bblurs^ the
step-like character of Allee effect extinction into a sigmoidal
form. The question arises as to what if any emergent dynamic
properties are produced by stochasticity in a population sub-
jected to Allee effects.

Here we extend the analysis of how stochasticity and Allee
effects combine to impact population persistence. We revisit
Volterra’s (1938) original model, constructing a stochastic ver-
sion in which the growth rate is perturbed by environmental
noise. We employ the diffusion process approach for model-
ing single-species populations. To the probability of attaining
a before b (as in Dennis 2002), we add consideration of the
mean times to attain a or b as well as the existence and prop-
erties of stationary distributions of population abundance. We
show that the resulting mean attainment times in the stochastic
models provide an analogue to the attainment times (solution
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trajectories) in deterministic models. Stationary distributions
of population abundance, when they exist (weak Allee effect
or immigration), provide insights into the abundance levels at
which a population is expected to persist. The stochastic ver-
sions of models with Allee effects collectively predict that
even weak Allee effects can become consequential when the
ubiquitous stochastic forces affecting natural populations are
accounted for in population models. Although current con-
cepts of ecological resilience are bound up in the properties
of deterministic potential functions (Ludwig et al. 1997). a
complete understanding of alternative stable states in ecolog-
ical systems must include stochasticity.

Deterministic models

A general form for a deterministic model of singles-species
population in continuous time is the following differential
equation (DE):

dNt

dt
¼ m Ntð Þ ð1Þ

Here Nt is population abundance at time t, and m(Nt) is a
function specifying the form of any density dependence. Four
examples constitute the focus of this paper.

Model 1

The first model, the logistic model of Verhulst (1838), takes
the function m(Nt) to be a quadratic concave-down function:

m Ntð Þ ¼ rN t 1−
Nt

k

� �
ð2Þ

Here r and k are positive constants. The lower root of the
quadratic function is zero (formally, an unstable equilibrium),
and k is the positive upper root representing a stable equilib-
rium abundance (carrying capacity). The per unit abundance
growth rate given by

m Ntð Þ
Nt

¼ r−
r

k
Nt ð3Þ

is a linear function with negative slope and positive vertical
axis intercept given by r (maximum per unit abundance
growth rate, Fig. 1a) and as such is one of the simplest models
of negative density dependence.

Models 2 and 3 (below) are special cases of Volterra’s
model of Allee effects. Volterra’s model takes the population
growth rate m(Nt) to be a third-degree polynomial function of
population abundance:

m Ntð Þ ¼ b−aNtð ÞN 2
t −sNt ð4Þ

Here a and b are positive constants, and s in Volterra’s orig-
inal formulation is positive as well. Volterra reasoned that the
number of births in a population might be taken as proportional
to Nt

2, or the number of meetings between the sexes envisioned
asmolecules colliding, but also that the proportionality constant
itself is not constant but rather is a decreasing linear function of
Nt due to negative density dependence. Also, a simple linear
death rate, sNt, is subtracted from the growth rate. In this fash-
ion, Volterra obtains a cubic polynomial function with a nega-
tive coefficient for the cubic term and a root (and vertical axis
intercept) of 0. The model can be built by formulating the per
unit abundance growth rate (which Volterra called the Bincrease
coefficient^) as a concave-down quadratic function:

m Ntð Þ
Nt

¼ −sþ bNt−aN2
t ð5Þ

Written in terms of two real-valued roots k1 and k2 (when
they exist), the model becomes

m Ntð Þ
Nt

¼ s 1−
Nt

k2

� �
Nt

k1
−1

� �
ð6Þ

Here k2= [b+(b
2−4as)1/2]/(2a), and k1= [b− (b2−4as)1/2]/

(2a). The constant k2 is an upper stable equilibrium, and when
k1 is positive, it represents a lower unstable equilibrium, a
critical abundance below which extinction is assured. The
Volterra model is often cast in the form of Eq. 6 in its later

0 50 100 150

−
0
.2

0
.2

0
.6

n

m
(
n
)
/n

a

0 20 40 60 80 100

−
1
.5

−
0
.5

0
.5

1
.5

n

m
(
n
)
/n

b

0 20 40 60 80 100

−
0
.8

−
0
.4

0
.0

0
.4

n

m
(
n
)
/n

c

0 20 40 60 80 100

−
0
.4

0
.0

0
.4

0
.8

n

m
(
n
)
/n

d

Fig. 1 Solid curves depict per unit abundance growth rates (m(n)/n) for
four deterministic population models: a logistic (m nð Þ ¼ rn− r

k n
2, using

r=.58, k= 100), b Volterra model with weak Allee effect (m nð Þ ¼ sn

1− n
k2

� �
n
k1
−1

� �
, with s=−.1, k1 =− 10, k2 = 80), c Volterra model with

strongAllee effect (m nð Þ ¼ sn 1− n
k2

� �
n
k1
−1

� �
, with s=.8, k1=20, k2=80),

anddVolterramodelwith strongAllee effect and immigration (m nð Þ ¼ hþ s

n 1− n
k2

� �
n
k1
−1

� �
, with s=.8, k1 = 30, k2 =80, h=3). Intersections with

dashed lines represent equilibria. Here m(n) denotes the population growth
rate at abundance n
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appearances in the ecological literature, in order to emphasize
the new unstable equilibrium and to retain a similarity in nota-
tion and form to the logistic model. It should be borne in mind
that both k1 and k2 are functions of s and the other underlying
demographic parameters. An increase in mortality, for instance,
would not only increase k1 but would also reduce k2 as well. As
one of the simplest models with an Allee effect combined with
negative density dependence, the Volterra model can capture
basic dynamical features (such as a lower unstable equilibrium
and an upper stable equilibrium) present in other deterministic
models, such as those of Philip (1957) and Dennis (1989) that
incorporate mechanistic mating encounter functions.

Model 2 (weak Allee effect)

If s is allowed to be negative in Volterra’s quadratic per unit
abundance rate (Eq. 5), then the root k1 (Eq. 6) is negative. The
number -s then represents a positive intercept for the per unit
abundance rate (Fig. 1b). The rate starts positive and increases
at first in a show of positive density dependence before turning
and decreasing through zero in response to negative density
dependence. The positive density dependence without a criti-
cal unstable equilibrium is the hallmark of the so-called Bweak
Allee effect^ (Stephens et al. 1999; Courchamp et al. 2008).
Population growth at low densities would be positive but slow
in comparison to intermediate densities.

Model 3 (strong Allee effect)

Volterra’s model in its original formulation with s>0 repre-
sents a strong Allee effect. When 0< s<b2/(4a), there are two
positive real roots k1 and k2 to the per unit abundance growth
rate (Eqs. 5 and 6), representing the traditional case of a lower
unstable critical equilibrium and an upper stable equilibrium
(Fig. 1c). However, when s>b2/(4a), the roots vanish into the
complex plane and the per unit abundance growth rate is ev-
erywhere negative. Population decline to extinction from all
initial abundances would be the outcome. That the critical size
k1 increases and the stable size k2 decreases when a death rate
(i.e., s) increases or some other demographic parameter is
degraded (Dennis 1989) is an underappreciated theoretical
property of Allee effects. Harvesting, for instance, could make
Allee effects much worse.

Model 4 (Allee effect with immigration)

The fourth model adds immigration to the Volterra model; it is
in the form

m Ntð Þ ¼ hþ b−aNtð ÞN2
t −sNt ð7Þ

Here h is a positive constant, representing a constant rate of
immigration into the population from a source elsewhere. The
growth rate m(Nt) is still a cubic polynomial, but zero and the
values k1 and k2 from Eq. 6 are no longer roots. Instead, the
growth rate m(Nt) has the positive value h when Nt is zero, so
that population increase occurs even from an initial abundance
of zero. If h is being added to a growth rate with a strong Allee
effect, the Allee critical equilibrium becomes smaller, and the
upper stable equilibrium becomes larger, as h increases. As
well, a third positive root appears, below the Allee critical
equilibrium, representing a new locally stable equilibrium.
The new stable equilibrium is very low, representing, for in-
stance, an endemic abundance in an unfavorable area for net
biological growth maintained by immigration from other
regions.

The per unit abundance growth rate given by

m Ntð Þ
Nt

¼ h

Nt
þ b−aNtð ÞNt−s ð8Þ

has a pole at zero and three positive roots (the two stable
equilibria separated by the unstable equilibrium, Fig. 1d), pro-
vided h is small. Large values of h would cause the two lower
equilibria to merge and would result in positive growth for all
low abundances and just one upper globally stable
equilibrium.

Potential functions for deterministic systems

A potential function u(Nt) for the generic deterministic popu-
lation model (Eq. 1) is defined by

dNt

dt
¼ m Ntð Þ ¼ −u′ Ntð Þ ð9Þ

In physics, u(Nt) can represent potential energy levels
of some object at position Nt, but ecologists’ use of the
words Bforces,^ Bpotential,^ Bresistance,^ and other
physics-like terms to describe population growth tenden-
cies (as in Chapman 1928) is mostly metaphorical.
Instead, an intuitive ecological interpretation of a poten-
tial function involves the amount of time necessary for
a population at some initial abundance to reach another
abundance. Specifically, the waiting time t(n) needed to
reach abundance n from initial abundance x is given by

t nð Þ ¼
Z n

x

dy

m yð Þ ¼
Z n

x

dy

−u0 yð Þ ð10Þ

provided the integrand is finite between x and n and the
integral is positive. If an equilibrium n exists between x

and n, defined by m nð Þ ¼ u
0
nð Þ ¼ 0, then n cannot be

attained from x. If the integral is negative, n is Buphill^
from x on the potential function and is unattainable.
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The potential function u(n) is the bowl in the familiar
Bmarble in a bowl^ analogy (Case 2000), in which the
bottom of the bowl represents equilibrium. The slope of
the potential function at an abundance y gives the speed
with which the abundance is passing through the value
y. When the slope is steep, the amount of time being
accumulated in the waiting time (Eq. 10) at that point is
small. For a given dynamic model, the potential func-
tion is an antiderivative and hence is known only up to
an arbitrary constant. The initial abundance x fixes the
constant (the vertical location of the function), but the
dynamic properties of the model (i.e., the hills and val-
leys of u(n)) depend functionally on n.

The logistic model (model 1) has the following potential
function:

u nð Þ ¼ r

3k
n3−

r

2
n2 ð11Þ

Note that peaks of m(n) correspond to inflection points of
u(n), and zeros of m(n) correspond to peaks or valleys of u(n)
(Fig. 2a, b). The logistic potential function has a local maxi-
mum at 0 (unstable equilibrium), a local minimum at k (stable
equilibrium), and an inflection point at k/2 (maximum positive
growth rate).

The potential function for the Volterra model is given by

u nð Þ ¼ a

4
n4−

b

3
n3 þ s

2
n2 ð12Þ

Under a weak Allee effect (model 2), the growth rate
m(n) is positive everywhere below an upper stable equi-
librium but is low for small abundances (Fig. 2c). The
resulting potential function for model 2 resembles that
of the logistic, except that it is much less steep for
small population abundances (Fig. 2d). The growth rate
m(n) under a strong Allee effect (model 3) has three
equilibria (0, k1, k2; Fig. 3a). The resulting potential
function under model 3 has local minima at 0 and k2
(stable equilibria) and a local maximum at k1 (Fig. 3b).

The potential function for the Volterra model with immi-
gration (model 4) is given by

u nð Þ ¼ a

4
n4−

b

3
n3 þ s

2
n2−hn ð13Þ

With immigration added to the Volterra model (model
4), the growth rate m(n) has as many as three equilibria
(k0, k1, k2) and is positive at population abundances near

zero, producing a stable equilibrium k0 below a critical
unstable equilibrium k1 (Fig. 3c). The resulting potential
function under model 4 shows a small shallow basin
around the lower stable equilibrium and a deeper, wider
basin around the upper stable equilibrium k2 (Fig. 3d).
The configuration represents a classic bistable system
with two stable equilibria separated by an unstable
equilibrium.

The deterministic waiting times arising from the po-
tential functions Eq. 11 through Eq. 13 can be written
in terms of equilibria, when they exist. The waiting time
for model 1 becomes

t nð Þ ¼ 1

r
log

n

x

� �
−log

n−k
x−k

� �� �
ð14Þ

while the Volterra models (models 2 and 3) produce

t nð Þ ¼ 1

s

k2
k2−k1

� �
log

n−k1
x−k1

� �
−

k1
k2−k1

� �
log

n−k2
x−k2

� �
−log

n

x

� �� �

ð15Þ

and model 4 yields

t nð Þ ¼ 1

h

k0k1k2
k1−k0ð Þ k2−k1ð Þ

� �
log

n−k1
x−k1

� �
−

k0k1k2
k1−k0ð Þ k2−k0ð Þ

� �
log

n−k0
x−k0

� �
−

k0k1k2
k2−k0ð Þ k2−k0ð Þ

� �
log

n−k2
x−k2

� �� �
ð16Þ
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Fig. 2 Population growth rate (a) and potential function (b) for
the logistic model (r=.58, k = 100), and population growth rate (c)
and potential function (d) for the Volterra model with weak Allee
effect (s =−.58, k1 = − 10, k2 = 80). Here m(n) denotes the
population growth rate, with functional forms given in Fig. 1a,
b, and u(n) denotes the potential function defined by u'
(n) = −m(n), at abundance n
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Calculating t(n) for a range of n values starting at an initial
size x basically produces a solution trajectory for the corre-
sponding differential equation model, provided the range of n
values does not cross an equilibrium (Fig. 4). With the excep-
tion of the logistic waiting time (Eq. 14), the expressions can-
not be algebraically inverted to give n as a function of t.

Stochastic models

The potential functions (Eqs. 11, 12, and 13) and the waiting
times (Eqs. 14, 15, and 16) provide underlying dynamic
tendencies but by themselves fail to capture how density-
dependent forces are manifested in ecological populations.
Ecological populations are buffeted by stochastic forces
(Dennis and Taper 1994). even in the laboratory
(Costantino et al. 2005). Density dependence, whether neg-
ative or positive, exists as an underlying mean tendency that
combines with random forces to yield fluctuating popula-
tion abundances through time. As a result, concepts of eco-
logical dynamics based on deterministic models such as
stable and unstable equilibria, potential functions, and
waiting times must take on new meanings for stochastic
populations.

Diffusion processes as a class of stochastic processes
offer a wide range of models for studying the interplay
of stochastic and deterministic forces in population
ecology. Diffusion processes spring naturally from
continuous time models in the form of Eq. 1, but they
also arise as probabilistic approximations to many

discrete time models. Karlin and Taylor (1981) develop
various examples in which time and state space in
discrete time models are rescaled so as to yield
workable diffusion process approximations. As well,
Allen et al. (2005) show that diffusion processes can
closely approximate Markov models with integer state
spaces, such as the discrete birth–death processes fre-
quently used for modeling rare species.

A diffusion process can be written in the form of a stochas-
tic differential equation (SDE):

dNt ¼ m Ntð Þdt þ
ffiffiffiffiffiffiffiffiffiffi
v Ntð Þ

p
dBt ð17Þ

Here v(n) is nonnegative for n≥0, and dBt (an increment of
a Brownian motion process) has a normal distribution with
mean 0 and variance dt, with dBs and dBt uncorrelated if
s≠ t. The SDE (Eq. 17) defines Nt as a diffusion process, a
continuous time stochastic process with the Markov property
(Karlin and Taylor 1981). The SDE as written invites easy
simulation of population trajectories, with each Euler incre-
ment m(Nt)dt in population abundance perturbed by an inde-
pendent, normally distributed random punch that has a mean
of 0 and a variance of v(Nt)dt. The function m(n) is the
Binfinitesimal mean^ representing underlying deterministic
forces. The function v(n) is the Binfinitesimal variance^ that
scales the stochastic noise fluctuations. Different forms for
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Fig. 4 Deterministic waiting times (t(n)) as functions of population
abundance n for four deterministic population growth models: a logistic
model (r=.58, k=100, x=5, x=120), b Volterra model with weak Allee
effect (s=−.1, k1 =− 10, k2 = 80, x= 5, x= 100), c Volterra model with
strong Allee effect (s=.3, k1 = 20, k2 = 80, x=15, x=25, x=100), and d
Volterra model with strong Allee effect and immigration
(h=2, s=.525, k1 = 26.9, k2 = 78.1, corresponding to model equilibria at 5,
20, and 80, with initial abundances x=1, x=15, x=25, x=99). Thewaiting
times are solution trajectories of differential equation models of the form dn

dt¼ m nð Þ, with population abundance n on the horizontal axis.Dashed lines
represent deterministic equilibria. Functional forms of m(n) are as in
Fig. 1a–d
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Fig. 3 Population growth rate (a) and potential function (b) for the Volterra
model with strong Allee effect (s=.8, k1 = 30, k2 = 80), and population
growth rate (c) and potential function (d) for the Volterra model with
strong Allee effect and immigration (s=.8, k1 = 30, k2 = 80, h= 3 where
k1 and k2 represent equilibria under conditions of no immigration). Here
m(n) denotes the population growth rate, with functional forms given in
Fig. 1c, d, and u(n) denotes the potential function defined by u' (n) =m(n),
at abundance n
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v(n) arise from different types of stochastic mechanisms. The
commonly used form given by

v nð Þ ¼ σ2n2 ð18Þ
(with σ2 >0) is a general model of the effect of environmental
fluctuations on population growth, while the form given by

v nð Þ ¼ ϕn ð19Þ
(with ϕ>0) is a general model of demographic fluctuations
(Tier and Hanson 1981; Engen et al. 1998).

A stochastic logistic model with environmental noise (sto-
chastic version of model 1) is defined by Eq. 2 in conjunction
with Eq. 18. A stochastic Volterra model with environmental
noise (stochastic version of models 2 and 3) is defined by
Eq. 4 in conjunction with Eq. 18. A stochastic Volterra model
with immigration and environmental noise (stochastic version
of model 4) is defined by Eq. 7 in conjunction with Eq. 18. In
each stochastic model, the stochastic and deterministic forces
blend to produce emergent dynamic properties.

For diffusion processes with just one state variable, many
formulas for stochastic properties have been derived (Goel
and Richter-Dyn 1974; Karlin and Taylor 1981; Gardiner
1983). We find two properties in particular to be helpful for
studying how Allee effects and stochastic forces combine:
stationary distributions and mean attainment time.

Stationary distributions

If a stationary distribution for Nt exists, it has probability den-
sity function (pdf) given by (Karlin and Taylor 1981):

p nð Þ ¼ C

v nð Þ exp 2

Z
m nð Þ
v nð Þ dn

� �
ð20Þ

Here C is a constant that renders the area under p(n) over
the range of Nt equal to 1 (frequently called a Bnormalization
constant,^ a term not meant to imply anything related to a
normal distribution). The integral in the exponent is an anti-
derivative, and any constant of integration produced is
absorbed into C. If p(n) does not have finite area, then a sta-
tionary distribution does not exist (Tanaka 1957). Typically, in
population models when a stationary distribution does not
exist, then the population goes extinct or goes infinite with
probability 1, such as with some stochastic exponential
growth models. If the stationary distribution exists, then the
area under p(n) between a and b gives the long-run proportion
of time that the process Ntwill spend in the interval (a, b). The
stationary distribution is the Bequilibrium^ of stochastic pop-
ulationmodels (Dennis and Patil 1984; Dennis and Costantino
1988). In some models, p(n) will not exist as a stationary
distribution but some truncated portion of it will represent a
Bquasistationary^ distribution describing the behavior of the

process for a long but transient period of time (for instance,
fluctuating around a locally stable equilibrium before
ultimately going extinct; see Allen 2010). The function p(n),
even if it does not represent a stationary distribution, appears
in formulas for other properties of diffusion processes.

The stationary distribution for the stochastic logistic model
(model 1 with environmental noise) is given by

p nð Þ ¼ βα

Γ αð Þ n
α−1e−βn ð21Þ

Here α= (2r/σ2)−1, and β=2r/(kσ2). The stationary dis-
tribution is a gamma distribution (Dennis and Patil 1984;
Dennis and Costantino 1988), of which the chi-square distri-
bution is a special case, and the stationary distribution exists
provided α>0 (or 2r>σ2). The gamma stationary distribution
when it exists is unimodal for low noise intensity (low σ2;
Fig. 5a, solid curve) and J-shaped for higher noise intensity
(Fig. 5a, dashed curve). The gamma stationary distribution
accurately described numerous laboratory population experi-
ments with many hundreds of observations (Dennis and
Costantino 1988). In the experiments, populations fluctuated
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Fig. 5 Probability density functions for stationary distributions arising
from various stochastic population models. a Gamma stationary
distributions for the stochastic logistic model with environmental noise
(r=.58, k= 100). Solid curve: low noise intensity (σ2=.19333). Dashed
curve: intermediate noise intensity (σ2=.58). b Stationary distribution for
the stochastic Volterra model with weak Allee effect and environmental
noise (s =−.1, k1 = − 10, k2 = 80). Solid curve: low noise intensity
(σ2=.08). Dashed curve: intermediate noise intensity (σ2=.18). c
Stationary distribution for the stochastic Volterra model with strong
A l l e e e f f e c t , imm i g r a t i o n , a n d e n v i r o nmen t a l n o i s e
(h = 10, s = 2, k1 = 3.5425, k2 = 56.458), under low noise intensity
(σ2 = 4). d Stationary distribution for the stochastic Volterra model with
strong Allee effect, immigration, and environmental noise
(h = 10, s = 2, k1 = 3.5425, k2 = 56.458), under high noise intensity
(σ2 = 5.76). The stationary densities are given by p nð Þ ¼ C

v nð Þexp
2∫m
	 nð Þ

v nð Þdn� where v(n) =σ2n2 and functional forms of m(n) are as
in Fig. 1a, b, d, d
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over several orders of magnitude, leading to the conclusion that
Bcarrying capacity^ is a probability distribution, not a point.

The stationary distribution does not exist for the stochastic
logistic model if the noise intensity is too high (2r≤σ2). Under
high noise intensity, as time gets large, the probability distri-
bution for Nt becomes concentrated within an arbitrarily small
distance of 0. Although trajectories in these environmental
noise models cannot mathematically attain 0, here under the
high noise condition a population trajectory is ultimately
doomed to linger forever within epsilon of 0, meaning extinc-
tion in practicality.

The function p(n) for the stochastic Volterra models
(models 2 and 3 with environmental noise) is given by

p nð Þ ¼ Cnα−1eγn−θn
2 ð22Þ

Here θ= a/σ2= s/(k1k2σ
2), γ =2b/σ2= 2s[(1/k1)+ (1/k2)]/σ

2,
and α = − (2s/σ2)−1. A stationary distribution exists for the
weak Allee effect model (model 2 with environmental noise)
provided α>0 (or σ2<−2s). The constant C has to be obtained
with numerical integration. For low noise intensity (σ2<− s),
the stationary distribution is unimodal (Fig. 5b, solid curve).
Interestingly, for intermediate noise (− s<σ2<−2s), the distri-
bution has an upper mode (local maximum) and a lower
antimode (local minimum; Fig. 5b, dashed curve). The higher
noise intensity returns the population to low abundances
where sluggish growth predominates, so that the population
spends a large proportion of time at low abundances. The
antimode is a stochastic version of a critical Allee point, and
here it occurs even if the deterministic Allee effect is weak.

If the noise level is too high (σ2≥−2s), the stationary dis-
tribution does not exist for model 2, because the expression
p(n) is not integrable near 0 when α≤0, which is implied by
σ2≥−2s. Eventual extinction is the result, similar to the high
noise situation under the stochastic logistic model.

A stationary distribution does not exist at all for the strong
Allee effect model (model 3). The condition α≤0 is implied by
s≥0, and so p(n) is not integrable near 0. As a quasistationary
distribution, p(n) has an upper mode (local maximum), a lower
antimode (local minimum), and a pole at 0.

A stationary distribution exists for the stochastic version of
the Volterra model with immigration (model 4 with environ-
mental noise):

p nð Þ ¼ Cnα−1e−ψn
−1þγn−θn2 ð23Þ

Here θ= a/σ2, γ =2b/σ2, α = − (2s/σ2)−1, and ψ= 2h/σ2.
When α ≤ 0 (− 2s ≤ σ2), the exponential term given by
exp(−ψn− 1) defeats the reciprocal term nα − 1 near zero and
thereby assures integrability of p(n) near zero. Long-term per-
sistence of the population with an Allee effect, strong or weak,
is rendered possible with immigration. For small noise inten-
sity (small σ2), the stationary distribution has two modes sep-
arated by an antimode (Figs. 5c, d). The lower mode when it

exists can be small (Fig. 5c) or large (Fig. 5d) depending on
parameter values. When the lower mode is large, the popula-
tion will spend a large proportion of time at low abundance
levels. Trajectories of the model would exhibit basin-hopping,
alternately fluctuating around the upper equilibrium or lower
equilibrium for varying times, with relatively rapid shifts be-
tween basins.

Mean first passage times

Let T denote the random amount of time necessary for the
process Nt to attain abundance level n, starting from abun-
dance level x. There are actually two different random vari-
ables, say T1 and T2, corresponding respectively to x<n and
n< x, that is, to the increasing or decreasing directions. The
expected values of these random variables are the Bmean first
passage times^ and are given by (Gardiner 1983)

τ1 nð Þ ¼ E T 1ð Þ ¼ 2

Z n

x

Z y

0
p zð Þdz

v nð Þp yð Þ dy x < nð Þ ð24Þ

τ2 nð Þ ¼ E T 2ð Þ ¼ 2

Z x

n

Z ∞

y
p zð Þdz

v yð Þp yð Þ dy x > nð Þ ð25Þ

One or both of thesemeansmight not exist (i.e., have infinite
value). If a stationary distribution does not exist, then some
values of nmight never be attained. Lack of a stationary distri-
bution typically results from some sort of absorbing boundary.
For example, if abundance 0 acts like an absorbing value, a low
population could go extinct before reaching a higher value n,
that is, T1 can take an infinite value with positive probability. In
such a case, the function p(n) is not integrable near 0 and the
numerator in the integrand expression in Eq. 24 will be infinite.
In some models, as in some stochastic exponential growth
models, ∞ can act as an absorbing boundary, in that the prob-
ability that the process exceeds any finite value approaches 1 as
time becomes large. With an upper absorbing boundary, T2 has
positive probability of being infinite. The right tail of p(n) is
then not integrable, and numerator in the integrand expression
in Eq. 25 will be infinite. Evaluation of Eqs. 24 and 25 requires
evaluating double integrals which seldom have closed forms
and frequently are difficult to calculate numerically. However,
the random variables T1 and T2 can be routinely simulated any
number of times using simulations of diffusion process trajec-
tories, and thus good approximations to their means τ1(n) and
τ1(n) are easily obtained.

In the stochastic logistic model (model 1 with environ-
mental noise), a stationary distribution does not exist
when σ2 ≥ 2r, that is, when the noise level drowns out,
so to speak, the deterministic signal. In the stochastic
logistic example with σ2≥ 2r, as well as in the stochastic
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τ1 nð Þ ¼ E T 1ð Þ ¼ 2

Z n

x

P yð Þ
v yð Þp yð Þ dy x < nð Þ ð26Þ

τ2 nð Þ ¼ E T 2ð Þ ¼ 2

Z x

n

1−P yð Þ
v yð Þp yð Þ dy x > nð Þ ð27Þ

Here P(n) is the cumulative distribution function (cdf) for
the stationary distribution (i.e., p (n) =P'(n)):

P nð Þ ¼
Z n

0
p zð Þdz ð28Þ

1−P nð Þ ¼
Z ∞

n
p zð Þdz ð29Þ

The expression in the integrand of Eq. 27 given by [1
−P(n)]/p(n) is known in the statistics literature as Mills’ ratio
(the reciprocal of the hazard rate function) for the distribution
with pdf p(n).

Two mean first passage times for the stochastic logistic
model (model 1) are illustrated (solid curves, Fig. 6a). One
is in the increasing direction (Eq. 26) commencing at initial
size x= 5, and it passes through the deterministic equilib-
rium at k = 100. The other, in the decreasing direction
(Eq. 27) and commencing at initial size x= 120, also passes
through the deterministic equilibrium. Inflection points in
each mean first passage time occur near the deterministic
equilibrium. Deterministic waiting times from Fig. 4a are
superimposed for comparison (dashed curves, Fig. 6a). The
deterministic waiting times do not cross the equilibrium
but rather approach it asymptotically.

The sluggishness of growth at low abundances under a
weak Allee effect (model 2) with environmental noise is
reflected in the mean first passage times (solid curves,
Fig. 6b). The mean first passage time from initial size x=5
rises steeply at first, indicating that such a population would
experience a prolonged slow start at establishment or recov-
ery. We reemphasize that when abundance lingers at low

levels, the population is exposed to additional forces not in-
cluded in the model that magnify extinction risks, such as
demographic stochasticity. The mean first passage times in
Fig. 6b along with those in Fig. 6c, d were simulated, as the
double integrals in Eqs. 26 and 27 for these models are nu-
merically troublesome.

Under a strong Allee effect (model 3) with environ-
mental noise, the mean time to reach any higher popula-
tion abundance n (Eq. 26) is infinite, due to the mathe-
matical possibility of extinction from any abundance
without first attaining n. Only the mean first passage time
to a lower abundance (Eq. 27) exists (solid curve,
Fig. 6c). For a population at or above recovery levels
(i.e., near k2), the mean waiting time to attain abundance
n increases rapidly as n decreases toward the unstable
threshold k2. Near k2, however, the mean first passage
time inflects, and attaining even lower abundance levels
requires hardly any extra time.

Chances of a recovery are better under a strong Allee effect
with immigration (model 4) and environmental noise. The
mean first passage time to a higher abundance (Eq. 26) is finite
(Fig. 6d). For a small population below the Allee threshold k1,
recovery is a steep uphill battle. The sluggishness of recovery
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Fig. 6 Solid curves: mean time τ(n) to attain population abundance n,
starting from an initial abundance x, calculated or simulated for various
models. a Stochastic logistic model with environmental noise
(r=.58, k = 100, σ2=.19333), with x = 5 and x = 120. b Stochastic
Volterra model with weak Allee effect and environmental noise
(s =−.1, k1 = − 10, k2 = 80, σ2=.08), with x = 5. c Stochastic Volterra
model with strong Allee effect and environmental noise
(s=.3, k1 = 20, k2 = 80, σ

2=.08), with x = 100. d Stochastic Volterra
model with strong Allee effect, immigration, and environmental noise
(h= 2, s=.525, k1 = 26.9, k2 = 78.1, σ

2=.08), with x= 1. Dashed curves
are corresponding deterministic waiting times t(n) from Fig. 4. Here τ

nð Þ ¼ 2∫
n

x
∫y0p zð Þ dz

v nð Þ p yð Þdy if x< n, or τ nð Þ ¼ 2∫
x

n
∫∞y p zð Þ dz

v yð Þ p yð Þdy
if x > n, where p nð Þ ¼ C

v nð Þexp 2∫m
	 nð Þ

v nð Þdn�, v(n) = σ2n2, and
functional forms of m(n) are as in Fig. 1a, b, c, d
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weak Allee effect model with σ2≥− 2s and the stochastic
strong Allee effect model with any positive value of σ2,
the boundary at 0 has properties similar to an absorbing
boundary, even though the value 0 cannot actually be
attained by the process. The time-dependent probability
distribution for Nt piles up within an arbitrarily small dis-
tance from 0: the probability that 0 <Nt< ϵ approaches 1
as time becomes large. Near or at an absorbing boundary,
probability Bleaks^ from the rest of the range of the pro-
cess. Thus, in the case of the stochastic logistic with large
noise, as well as in the above indicated cases of the sto-
chastic Volterra models, τ2(n) (Eq. 25) exists, while τ1(n)
(Eq. 24) does not exist.

If a stationary distribution exists, the process Nt is ergodic:
Any value of n in the interior of the range ofNtwill eventually
be attained in finite time from any interior value x. The mean
first passage times (Eqs. 24 and 25) can be rewritten as



even with immigration is consistent with the common experi-
ence of conservation agencies that successful species translo-
cation or recovery often requires repeated propagule addi-
tions. Once the Allee threshold is passed, however, the mean
first passage time increases only slowly, inflecting somewhere
near the upper stable equilibrium and indicating rapid recov-
ery or establishment. However, stochastic return to the abun-
dance levels near the lower stable equilibrium is always a
possibility. In fact, under a high noise level such as that cor-
responding to the stationary distribution in Fig. 5d, basin-
hopping between low and high abundances would be frequent
(Fig. 7). The population depicted in Fig. 7 would spend a lot of
time rare, in spite of substantial replenishment.

Discussion

While ecologists widely acknowledge that stochastic forces
are ubiquitous in ecological systems, the deterministic ecolog-
ical modeling tradition obscures emergent dynamic behavior
caused by stochasticity. Environmental stochasticity has ef-
fects similar to harvesting (Dennis and Patil 1984; Dennis
1989) and can produce dynamics that are not present in the
deterministic versions of models (Horsthemke and Lefever
1984; Dennis et al. 2003). In virtually all stochastic population

models containing population regulation at high abundances,
the population trajectories will eventually flirt with or even
attain 0. Population extinction is always a lurking possibility.

Commencing with Holling (1973), ecologists have drawn a
distinction between stability and resilience in ecological sys-
tems (Gunderson 2000). Ecological stability has been seen as
the tendency of a system to return to a stable attractor after a
perturbation (Holling 1973; May 1973). Normally, the stable
attractor of interest is a point equilibrium, although other
attractors (such as cycles, loops, chaos) have a demonstrable
presence in some systems (Dennis et al. 2001). May (1973)
popularized Blocal stability analysis^ in ecological modeling,
in which the signs, magnitudes, and natures of eigenvalues of
a linearized model reveal the system dynamics near a point
equilibrium. In particular, the principal eigenvalue was iden-
tified as quantifying the return time of the system to the equi-
librium after a perturbation. The Bcommunity matrix^ of spe-
cies interactions (coefficients of the species abundances in the
linearized models) became a cornerstone of ecological theory
in the 1970s and 1980s (Case 2000). The advent of longer
time series of abundances in ecological communities allowed
the estimation of community matrices and various stability
measures using stochastic versions of the species interaction
models (Ives et al. 2003).

Ecological resilience, by contrast, usually refers to a sys-
tem’s resistance to being perturbed into a basin of attraction
belonging to an alternative stable state. The presumed requi-
site to the concept of resilience is the presence of one or more
alternative stable states (Holling 1973; Ludwig et al. 1997;
Gunderson 2000). Associated with each locally stable equilib-
rium would be a basin of attraction, or a set of initial system
states from which the system trajectories would be drawn to
the attractor.

We have seen here that in a system with one state variable,
the basin landscape is conveniently captured by the determin-
istic potential function. The width of a basin has been com-
monly offered as a measure of resilience (Holling 1973;
Ludwig et al. 1997; Gunderson 2000), in that it defines the
magnitude of disturbance that would be required to knock the
system out of the basin and into a neighboring state. Although
potential functions as such do not generally exist for models
with multiple state variables, basins of attraction certainly ex-
ist and some kind of measurement of their breadths could
likely be devised.

The definition of resilience as the width of a basin of at-
traction, however, is incomplete. Stochastic forces are present
in ecological systems (e.g., Sibly et al. 2005; Brook and
Bradshaw 2006). Stochastic forces provide a means, absent
human intervention, whereby a multistable system could jump
basins. The persistence of a system within any given basin is
diminished if the intensity of stochasticity is increased. In
systems with multiple stable attractors, one finds that the per-
sistence times can vary dramatically within a given basin as
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Fig. 7 Trajectory of the stochastic Volterra model with strong
A l l e e e f f e c t , immig r a t i on , and env i r onmen t a l no i s e
(h = 2, s=.525, k1 = 26.9, k2 = 78.1, σ2=.18), with init ial
population abundance of 1, corresponding to the stationary
distribution in Fig. 5d. Model is in the form dNt ¼ m Ntð Þ dt
þ ffiffiffi

v
p

Ntð ÞdBt , where Nt is population abundance at time t, m nð Þ
¼ hþ sn 1− n

k2

� �
n
k1
−1

� �
, v(n) = σ2n2, and dBt (an increment of a

Brownian motion process) has a normal distribution with mean 0
and variance dt, with dBs and dBt uncorrelated if s ≠ t
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well as between the different basins (Henson et al. 1999,
2002). Persistence time in a basin is a random variable, with
a probability distribution that depends on both the determin-
istic and the stochastic forces. Mathematically, the determin-
istic portion of a model represents the resistance of the fluctu-
ating quantity to stochastic forces. For a given level of
stochasticity, a deeper but narrower deterministic basin might
produce greater persistence times on average than a wide shal-
low basin. Thus, incorporation of stochasticity is needed to
complete the concept of ecological resilience.

Resilience depends not only on the presence and inten-
sity of stochasticity but also on the type of stochasticity as
well. Different types of stochastic forces act in different,
density-dependent ways (Tier and Hanson 1981).
Demographic stochasticity as commonly formulated
(Engen et al. 1998; Engen and Sæther 1998) predicts
near-determinism at large population sizes (Desharnais
et al. 2006). By contrast, environmental stochasticity as
commonly formulated (Engen et al. 1998; Engen and
Sæther 1998) predicts substantial stochastic fluctuations
at all population sizes (Dennis and Costantino 1988).
Other types of stochasticity are possible. Examples are
(a) demographically stochastic survival (like a binomial
distribution) with a survival rate dependent on density
(Dennis et al. 2001), and (b) rare but catastrophic envi-
ronmental shocks (Lande 1993). The point is, the risk of
stochastic exit from a basin of attraction depends on the
type(s) of stochasticity prevailing during a population’s
sojourn in the basin.

A mean attainment time function (Eqs. 24 or 25) combines
deterministic tendencies and stochastic forces together into an
overall measure of ecological resilience. The width, depth,
and steepness of the deterministic basin along with the type
and intensity of stochasticity all influence how long a system
will persist in a particular basin, and such influences are quan-
tified in a mean attainment time function. The mean attain-
ment time function changes when its components change and
can be used to study losses or gains in resilience in response to
environmental change or management intervention.

We have shown here that a population experiencing Allee
effects can be expected to have long run problems with per-
sistence. Stochastic perturbations will eventually push the
population to low levels. If the Allee effect is weak, the net
population growth rate at low levels is positive but sluggish,
creating increased risk of stochastic absorption at zero. The
stochasticity can magnify the weak Allee effect into appearing
for all practical purposes as if there is a lower unstable equi-
librium, in the form of an antimode in the stationary distribu-
tion. If the Allee effect is strong, the net population growth
rate at low population levels is negative and the population
must win an unlikely favorable lottery of positive stochastic
shocks in order to recover before sliding down into extinction.
The addition of immigration to a population with a strong

Allee effect can prevent extinction under ordinary environ-
mental noise, but the underlying Allee effect can cause the
population to fluctuate and linger at very low abundance
levels.

Populations experiencing Allee effects would require addi-
tional ameliorating circumstances to persist. Persistence near
an upper stable equilibrium can be prolonged by greater depth
and/or greater width of the deterministic basin as well as
lowered intensity of stochastic forces. For instance, strong
negative density dependence and/or predominantly demo-
graphic stochasticity would make the deterministic forces of
return to the upper equilibrium more influential and hence
would increase resilience.

As well, even a small amount of immigration will enhance
long-run persistence. A small amount of immigration added to
a model with a strong Allee effect produces a lower positive
stable equilibrium. A rare population could persist at the low
point until favorable stochastic fluctuations allow it to escape
to the basin of attraction to the upper stable equilibrium. The
persistence, however, is precarious, in that the average time
necessary to escape the lower basin can be large. The situation
would describe an invading, reintroduced, or translocated
population in the early stages of colonization, where contin-
ued propagule pressure is commonly required for the popula-
tion to become established (Williamson 1996; Shigesada and
Kawasaki 1997; Deredec and Courchamp 2007).

With a small amount of immigration under the strong Allee
effect model analyzed here, the mean attainment time from the
endemic level to the basin of attraction to the upper stable
equilibrium can be large. The stationary probability distribu-
tion puts some of the probability in the basin of attraction to
the upper stable equilibrium, and some in the lower basin,
with the magnitudes depending on parameter values. The pop-
ulation will therefore persist at or near one of the stable equi-
libria for long time intervals, punctuated by occasional so-
journs to the other basin. Extinction is averted by the propa-
gule pressure contributed by immigration.

Concluding remarks

The existence of Allee effects poses an immediate quandary
about the resilience of ecological populations. How do popu-
lations persist in a stochastic world? We conclude that popu-
lations with strong Allee effects could persist long-term if
receiving migrants from a source population that (1) was near
an upper stable equilibrium itself and (2) was large enough to
nearly negate demographic stochasticity. We conjecture that a
network (metapopulation) of strong Allee populations might
persist, long-term if not indefinitely, by trading occasional
migrants. We note that establishing or recovering a population
by colonization or translocation is often a tenuous process at
first, requiring continuous replenishment of colonists for the
population to become successful. And, we assert that practical
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questions of ecological resilience cannot be adequately ad-
dressed with only deterministic tools. The marble can and will
hop out of the ecological bowl.
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