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Abstract Building on previous work, we derive an optimiza-
tionmodel for a two-state stochastic environment and evaluate
the fitnesses of five reproductive strategies across generations.
To do this, we characterize spatiotemporal variation and de-
fine grain (=patch) size as the scale of fitness autocorrelation.
Fitness functions of environmental condition are Gaussian.
The strategies include two specialists on each of the environ-
mental conditions; two generalists that each fare equally well
under both conditions, but one (a conservative bet hedger)
optimizes the shape of the fitness function; and a diversified
bet hedger producing an optimal mix of the two specialists
within individual broods. When the environment is primarily
in one of the two states, the specialist on that state achieves the
highest fitness. In the more interesting situation where the two
environments are equally prevalent in the long term, with low-

moderate environmental variation, a generalist strategy (that
copes with both states well) does best. Higher variation favors
diversified bet hedgers, or surprisingly, specialists, depending
mainly on whether spatial or temporal variation predominates.
These strategies reduce variance in fitness and optimize the
distribution of offspring among patches differently: specialists
by spreading offspring among many independently varying
patches, while diversified bet hedgers put all offspring into a
few patches or a single patch. We distinguish features consis-
tent with strategies like diversified bet hedgers that spread risk
in time from features linked to strategies like specialists that
spread risk in space. Finally, we present testable hypotheses
arising from this study and suggest directions for future work.
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Introduction

Life history strategies in stochastic environments

A key issue in ecology and evolutionary biology is the need to
understand how organisms cope with spatial and temporal
variation in environmental factors that affect fitness (Starrfelt
and Kokko 2012; hereafter S&K). Plasticity within genera-
tions can be effective in this context when there are reliable
cues predicting the environmental state at later stages of de-
velopment (Pigliucci 2001; Gabriel et al. 2005). Without reli-
able cues, however, though the frequency distribution of en-
vironmental states may be Bknown^ or genetically encoded,
the specific upcoming changes are unpredictable. Under these
circumstances, specializing to take advantage of specific con-
ditions when they arise or generalizing to exploit a wide range
of conditions are alternative strategies for addressing variable
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environments. Specialists do well in their favored conditions
and may at least get by under other conditions. Generalists
manage to do fairly well under many conditions, though not
usually as well in any given condition as the relevant specialist
(i.e., the specialist-generalist trade-off: Levins 1962, 1968;
Futuyma and Moreno 1988; Dall 2010). A key question is
then: What patterns of spatial and temporal environmental
variation favor specialists versus generalists? Intuition and
simple models (e.g., see Dall and Cuthill 1997) indicate that
environmental variation tends to favor generalists, but this
view requires evaluation within a modeling framework in-
cluding key features of environmental structure and variation
regime that are missing from analyses to date.

To persist in a variable environment, life histories
must prove effective across generations that experience
different environmental conditions. Successful lineages
are those with the highest multiplicative product of life-
time reproductive success across generations (i.e., the
highest lineage fitness, the geometric mean per-
generation fitness over time; see Levins 1962; Bulmer
1994; Simons 2011). Strategies that specifically maxi-
mize lineage fitness by reducing the variance in fitness
of the lineage over time at the cost of a reduction in the
arithmetic mean fitness are generally known as bet
hedging (for recent reviews, see Frank 2011; Starrfelt
and Kokko 2012; Wright and Ratikainen 2012). The
advantage of this view is most apparent when there is
a non-negligible chance of complete reproductive failure
in any generation that would potentially extinguish the
lineage. In this situation, reducing fitness variation is
crucial for persistence, even if this requires greatly
shrinking the arithmetic mean fitness.

In reviewing the bet hedging literature and providing a
rigorous formulation and analysis of strategic responses to
unpredictably varying environments, Starrfelt and Kokko
(2012) erected a framework that considerably advances
our understanding of bet hedging in natural systems. To
do this, they addressed the large and diverse literature
from which the bet hedging concept has emerged.
Maximizing the geometric mean fitness that we refer to
as lineage fitness was emphasized in early work by
Dempster (1955), Levins (1962, 1968), and Lewontin
and Cohen (1969). The mathematics of bet hedging devel-
oped from the work of Gillespie (1974, 1975) on selection
for variance in offspring number and population genetics
in patchy environments, Seger and Brockmann (1987) and
Philippi and Seger (1989) on the distinction between
conservative and diversified bet hedging, Seger and
Brockmann (1987) and Frank and Slatkin (1990) on the
role of Jensen’s inequality, and Frank and Slatkin (1990)
on fitness as a random variable and implications for allele
frequencies. See S&K for a thorough summary of the
theoretical underpinnings of bet hedging.

The two-state stochastic-environment model

To illustrate how spatiotemporal variation can determine the
effectiveness of bet hedging strategies in nature, Starrfelt and
Kokko (2012) derived and analyzed an optimization model in
which the environment experienced by each individual at a
given time is in one of two discrete states or conditions. These
conditions (e.g., Bdry^ and Bwet^—see Seger and Brockmann
1987) apply to the different locations or patches. Time is as-
sumed to pass in discrete generations (=years here for conve-
nience) that vary between two randomly alternating annual
spatial patterns of the environmental conditions (e.g., rela-
tively dry or relatively wet years, based on frequencies of
patches in the alternative conditions).

In their analysis of this model, Starrfelt and Kokko (2012)
focused on equally frequent alternative spatial patterns be-
tween years and on individuals occupying separate patches
that vary independently across space and time. They provided
a thorough framework for determining the Bgenotypic
variance^ and its associated fitness, which is fitness assessed
across generations to track the success of each strategy as a
genotype through its potential to increase in abundance.
Genotypic fitness, expressed as the geometric mean fitness
across years, depends on (1) the arithmetic mean and (2) the
variance in fitness experienced by individuals and on (3) the
correlation in fitness effects of the environment among indi-
viduals. In general, bet hedging strategies can prove success-
ful by achieving a fitness-maximizing balance among those
three fitness factors.

S&K were primarily concerned with conservative and di-
versified bet hedging. These two types of bet hedging differ in
their influence on the three fitness factors. Conservative bet
hedging (CB) reduces the variation in fitness among individ-
uals via the generalist strategy of consistently responding
moderately well to a range of different environmental condi-
tions. Diversified bet hedging (DB) is based on risk spreading
by specializing on different environmental conditions with
certain probabilities (e.g., broods of offspring containing cer-
tain frequencies of specialists of different types, an example of
phenotypic polymorphism—Frank and Slatkin 1990; Davies
et al. 2012). Thus, DB is effective by reducing the
environment-based fitness correlation among individuals.
Crucially, both CB and DB reduce the genotypic variance in
fitness, a general requirement for adaptive bet hedging.

Both strategies are assumed to bear the cost of a reduction
in arithmetic mean fitness to achieve variance reduction, but
sufficient reduction in variance can in principle more than
offset this cost and lead to genotypic geometric-mean fitness
maximization. This cost as reduced arithmetic mean fitness is
not explicitly incorporated in the S&K analysis, presumably
for two reasons: to avoid additional arbitrary assumptions and
on the grounds that, in the absence of empirical evidence, the
magnitude of such a cost may be considered negligible. But,
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we suspected that even small bet hedging costs could alter the
fitness rankings among strategies across regimes of environ-
mental variation.

In considering variation through space and time, S&K in-
voke the concept of environmental grain (Levins 1968). For
S&K, an environment is coarse-grained if environmental con-
ditions are uniform over space but vary between uniform spa-
tial patterns over time; an environment is fine-grained if envi-
ronmental conditions vary across space, but the mean condi-
tion changes little or not at all through time.

In our analysis, we build on the S&K approach but use the
concept of grain differently. To incorporate patchiness arising
from spatial autocorrelation of environmental condition into
the model (thus connecting with empirically measurable
patchiness), we first separate the concepts of spatial and tem-
poral grain. Since time in the S&Kmodel and our extension of
it is discrete at the scale of generations (=years), we consider
this the (relatively coarse) temporal grain size: in effect, time is
perfectly autocorrelated (i.e., fixed and discrete) within years
but statistically independent between years.We do not address
temporal grain further here but emphasize its independence
from spatial grain.

Analogous to variation through time, we consider space to
consist of patches within which the environment is completely
uniform in condition (i.e., all microhabitats that individuals
might occupy within a patch are identical—e.g., either all
wet or all dry) and between which environmental conditions
are statistically independent (e.g., the probability of being dry
or wet in a given year is the same for all patches and does not
depend on the state of the neighboring patches). According to
this view, spatial grain size is the area of these individual
patches. For a given population size and total area occupied,
spatially coarse-grained environments consist of relatively
few patches among which conditions may differ, and each
patch may contain many individuals experiencing identical
condition. In contrast, spatially fine-grained environments in-
clude many patches that can differ in condition, each contain-
ing only a few individuals or perhaps a single individual.

We place special emphasis here on representing constraints
on responses that arise from specifying strategy-specific fit-
ness functions of environmental condition, thus allowing the
relative success of the strategies under different patterns of
spatiotemporal variability to be assessed. This is a particularly
important step toward using the analysis presented here to
evaluate implications of human-induced rapid environmental
change (HIREC) for populations adapted to a given environ-
mental variability regime.

We make the key assumption that adaptation to a particular
magnitude of condition (e.g., a moisture level in the environ-
ment) implies maximal fitness at that magnitude, with fitness
decreasing continuously for increasing differences in condi-
tions. To implement this approach, we represent fitness as a
normal or Gaussian function of environmental condition,

where the width and height of these functions express con-
straints to be expected on each strategy. The function then
determines fitnesses for the two conditions in the present anal-
ysis (and alternative conditions that may arise from HIREC)
but also accounts for the relationship between them, depend-
ing on the particular strategy.

Our goals in this study are (1) to present a simple frame-
work to characterize physical structure and stochastic varia-
tion for evaluating the efficacy of life history strategies, (2) to
derive and implement new theory for how strategies can max-
imize lineage fitness by optimizing features like the spatial
distribution of offspring, (3) to show how bet hedging may
be explicit or implicit in certain strategies, and (4) to propose
new testable hypotheses and identify fruitful future research
directions.

Derivation and methods

The modeling framework

Following Starrfelt and Kokko (2012), we assume that each
individual in each year experiences one of two discrete states
or conditions (see their paper for details of these derivations
that can be sketched only briefly here). These conditions (here
designated c1 and c2) apply to the different locations occupied
by individuals, with patch conditions assumed to be internally
uniform for all intra-patch locations yet statistically indepen-
dent between patches across space and time. Time is discrete,
corresponding to generations (=years here), and each year
falls into one of two states (e.g., relatively dry or relatively
wet, depending on whether most patches that year are dry or
wet). Whether a year is in state 1 (e.g., dry) or state 2 (e.g.,
wet) randomly alternates, with probabilities in a given year of
state 1 or state 2 being P1 and P2=1−P1, respectively. Within
any given year, there is a spatial array of patches such that the
frequency of patches in year j experiencing condition i is fij
(e.g., the frequency of wet patches [i=2] in dry years [j=1]
may be f21=0.25, and thus, f11=0.75 for dry localities in dry
years; while the frequency of wet patches in wet years may be
f22=0.8, and thus, f12=0.2). Restrictions consistent with these
designations are 0.5≤f11≤1, 0.5≤f22≤1, 0≤f12≤0.5, and 0≤
f21≤0.5. This scheme allows for a full range of environmental
variation from purely spatial variation (when f11=f22=0.5) to
purely temporal variation (when f11=f22=1) between the an-
nual patterns. Moreover, the patterns may favor one condition
or the other either symmetrically (P1=P2=0.5) or asymmetri-
cally (P1≠P2). See Table 1 for a list of symbols, definitions,
magnitudes, and units of the variables and parameters used in
the model.

The focus of this study is on reproductive success per gen-
eration in sequence across generations. For each generation,
reproductive success is assessed as the ratio R of the number
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of individuals living at the beginning of the next generation
that are produced per progenitor at the beginning of the current
generation. Because the multiplicative product of these R
values indicates the successive numbers of offspring along a
lineage, the expected geometric mean of these values over an
arbitrarily long sequence expresses long-term evolutionary
success as lineage fitness W. The idea is then to evaluate and
compare the lineage fitnesses of different strategies over a
spatiotemporally varying environment. (Hereafter, fitness=
lineage fitness unless otherwise indicated.)

We allow for brood sizes of I individuals (=offspring), tak-
en to consist of genotypes (=strategies) that respond indepen-
dently, hence the focus on genotypic fitness for each strategy
separately. In the present derivation, we ignore density and
frequency dependence and explicit interactions among geno-
types and address the arithmetic mean reproductive successM
and variance V for a single genotype. We then Taylor-expand
the per-capita increase rate lnR about the arithmetic mean R
value M, ignoring terms beyond second order, and solve for
fitness W as the geometric mean eE(lnR) :

E lnRð Þ ¼ E lnM þ R−M
M

−
R−Mð Þ2
2M 2 þ⋯

" #
≈lnM−

V

2M 2 ;

ð1Þ

where V is the genotypic fitness variance (E[(R-M)2]), and
thus

eE lnRð Þ ¼ W≈Me
V

2M2 : ð2Þ

Following Bulmer (1994), we use the exponential approx-
imation for W instead of the linear one used by S&K, though
results are similar for these alternatives. V expresses temporal
variation in expected (mean) fitness over the relevant group of
offspring (or genotype, assuming genetic uniformity), hereaf-
ter indicated as VT. (This avoids S&K’s use of VG, which also
refers to a variance in trait values among genotypes in quan-
titative genetics.) Note that when VT=0, then W=M, but for
VT>0, W shrinks from M asymptotically to zero as VT in-
creases. The logarithmic function associated with the geomet-
ric mean fitness incorporates diminishing returns on R: sym-
metrical variation around R thus reduces the geometric mean
as expressed by the mathematical relationship for such con-
cave functions known as Jensen’s inequality (e.g., see
Needham (1993)). This effect is captured in Eq. (1), allowing
W to be maximized by bet hedging, trading a reduction in
arithmetic mean M for a lower variance VT in Eq. (2).

One of S&K’s most important insights was to consider the
implications of expressing genotypic fitness variance VT as the

Table 1 Variables and parameters of the model

Symbol Definition Default magnitude Units

ci Magnitude of environmental condition i (i ∈{1,2}) c1=1, c2=4 Condition

c
Mean environmental condition, (c1+c2)/2 2.5 Condition

s Standard deviation of Gaussian fitness function, specialists 1 Condition

ε Relative range of environmental variation, (c2−c1)/s 3 Dimensionless

Pj Probability of pattern j in a given year (j ∈{1,2}) 0.5 Dimensionless

fij Frequency of patches in condition i in a year of pattern j 0≤fij≤1 Dimensionless

R Expected lifetime reproductive success 0≤R≤1 Dimensionless

W (Approximate) lineage fitness 0≤W≤1 Dimensionless

M Genotypic arithmetic mean lifetime reproductive success (LRS) 0≤M≤1 Dimensionless

V (=VT) Genotypic temporal variance in lifetime reproductive success 0≤V≤1 Dimensionless

VP Temporal variance in mean LRS of a patch 0≤VP≤1 Dimensionless

VL Temporal variance in LRS at a location within a patch 0≤VL≤1 Dimensionless

CP Temporal covariance in mean LRS between patches −1≤CP≤1 Dimensionless

CL Temporal covariance in LRS within patches −1≤CL≤1 Dimensionless

ρP Environmental correlation of mean LRS between patches −1≤ρP≤1 Dimensionless

ρL Environmental correlation coefficient of LRS within patches −1≤ρL≤1 Dimensionless

n Total number of patches occupied by the brood 1≤n≤∞ Dimensionless

m Number of offspring per patch 1≤m≤∞ Dimensionless

I Total number of offspring in the brood 1≤I≤∞ Dimensionless

d1 Fraction of all specialists that specialize on condition 1 0.5 Dimensionless

δC Fractional cost factor for conservative bet hedgers 0.05 Dimensionless

δD Fractional cost factor for diversified bet hedgers 0.05 Dimensionless

152 Theor Ecol (2016) 9:149–161



variance through time of the mean over space of n random
variables—the fitnesses of individuals, each assumed to occu-
py a separate patch of habitat. Thus, VT corresponds to a stan-
dard error based on non-independent sample points. For a
given strategy, we let VP be the fitness variance through time
that would be associated with a single patch occupied by a
sequence of single individuals of the particular genotype
across generations (corresponding to σ2 in S&K). Since the
expected magnitudes of these variances and their covariances
CP are all identical, it follows that

VT ¼ nVP

n2
þ n n−1ð ÞCP

n2
¼ VP

1

n
þ n−1ð ÞρP

n

� �
¼ 1

n
VP þ n−1ð ÞCPð Þ; ð3Þ

where ρP ¼ CP
VP

is the correlation coefficient of environmental

effects on different individuals within the genotype. Because n
is the number of individuals=patches in this fine-grainedworld,
S&K argued that for large groups Eq. (3) becomes simply VT=
VPρP. S&K emphasized that the two main types of bet hedging
reduce VT mainly in different ways: conservative bet hedging
(CB) by reducing VP and diversified bet hedging (DB) by re-
ducing the environmental correlation coefficient ρP.

We suppose instead that there are I individuals in a brood;
each spatial patch contains m individuals, with a total of n
patches occupied, making mn=I individuals altogether. By
spatial patch, here we mean neighborhoods in which the en-
vironment is uniform (i.e., all within-patch locations are per-
fectly autocorrelated in environmental condition), but between
patches, independence in environmental conditions prevails.
This mosaic spatial structure is a discrete approximation of
continuously shrinking spatial autocorrelation with distance
and directly expresses the spatial grain size.

We now let VP be the variance in mean fitness over the
patch by taking account of the m individuals in each patch
using

VP ¼ VL
1

m
þ m−1ð ÞρL

m

� �
: ð4Þ

This follows the same logic used to generate Eq. (3); here

ρL ¼ CL
VL

is the fitness correlation coefficient for locations with-

in patches, VL is the variance in fitness through time at a
location within the patch, and CL is the fitness covariance
among locations in the patch. Notice that with only a single
individual in each patch (i.e., m=1, as assumed by S&K) or
when all individuals within each patch have identical fitnesses
(i.e., ρL=1), then VP=VL. But in general, substituting (4) into
(3),

VT ¼ VL
1

m
þ m−1ð ÞρL

m

� �
1

n
þ n−1ð ÞρP

n

� �

¼ 1

I
VL þ m−1ð ÞCL þ m n−1ð ÞCPð Þ: ð5Þ

There are now three components of genotypic tempo-
ral variance, perhaps best understood using the middle
result in (5) as the multiplicative product of the tempo-
ral variance in fitness at any single location (VL), a
within-patch environmental correlation term, and a
between-patch environmental correlation term. Each of
these correlation terms is the sum of the magnitude of
environmental autocorrelation within location (1/m) or
within patch (1/n) and the environmental correlation be-
tween locations (ρL) or between patches (ρP), with larg-
er numbers of occupied locations or patches biasing the
sum toward ρL and ρP, respectively. The different strat-
egies influence these multiplicative terms differently, in
part via different distributions of offspring within vs.
between patches.

The strategies and their fitness distributions

In this study, we focus on five different strategies as
alternative means of addressing spatiotemporal variation.
We emphasize the role of these strategies as tools in
understanding how individuals and lineages with partic-
ular environmental tolerances (described by fitness func-
tions) deal with environmental variation. Each strategy
is based on normally distributed per-generation fitness
functions of the continuous variable environmental con-
dition c, with mean c and standard deviation s (see
Fig. 1 and Appendix A). Per-generation fitness is the
expected lifetime reproductive success R, determined
by averaging over R(c1) and R(c2), weighted by expect-
ed frequencies of c1 and c2, respectively. Preliminary
analyses confirmed the intuitively obvious prediction
that if one environmental state is much more common
than the other, then the specialist on the more common
state achieves the highest fitness. Here, we focus on the
more interesting scenarios that arise when the long-term
expected frequencies of the two environmental states, c1
and c2, are the same (=0.5).

Of the five strategies, two are specialists, S1 and S2, where
S1 has its peakR1(c1) at c1, and S2 has its peakR2(c2) at c2. The
standard deviation s of these fitness functions is assumed to
result from an evolutionary trade-off between curve width and
height. Here, s is taken to be the largest standard deviation
compatible with a maximum possible fitness of 1 (see S&K
regarding 1 as an upper fitness limit), under the assumption
that the specialist i has been selected to maximize fitness at ci.
The shapes of these and the other functions below indicate the
fitness implications of shifts in condition, such as those that
might result from long-term shifts in the environment. Though
specialist 1 tends to do poorly when the environment is in state
2, and vice versa for specialist 2, in a spatially variable envi-
ronment, both can reduce variance in annual fitness by
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spreading offspring across numerous patches, some of which
are in the state that they are well adapted to, offsetting low
fitness in patches that are in the mismatched environmental
state.

There are two types of generalists (G), depending on
whether the shape of the fitness function remains fixed
(FG) or optimizes a trade-off between height and width
of the distribution, a strategy we take to be conservative
bet hedging (CB). FG is adapted to the environmental
conditions in that it minimizes patch-level variance VP

(=VL) by achieving equal fitness in the two conditions,
resulting in VP=VL=0. Because the fitness functions are
symmetrical, this means that the optimal cG ¼ c1 þ c2ð Þ
=2. FG is assumed to have the same standard deviation
s and thus the same shape of fitness distribution as the
specialists but shifted to the mid-point between c1 and
c2. The CB, however, has the same mid-point but opti-
mizes curve height and width as indicated in Appendix
A. This adjustment by CB increases genotypic fitness
by maximizing the mean, though as for FG, the peak
fitness approaches zero asymptotically in adjusting to
increasing environmental variability. A fractional cost
of conservative bet hedging δC is imposed as a multi-
plicative factor 1-δC on fitness, such that 0<δC<1.
(Note that we have labeled the flexible generalist

strategy Bconservative bet hedger^ on the assumption
that there is an additional cost to pay for this flexibility.
We emphasize, however, that FG could itself be consid-
ered a conservative bet hedger on the basis that the
mean of its Gaussian fitness function is necessarily re-
duced in exchange for reduced fitness variance.) Though
other forms of generalists and conservative bet hedging
strategies are certainly possible and can easily be
modeled in this framework, FG and CB capture impor-
tant features that distinguish them from specialist-based
strategies and help show how particular regimes of en-
vironmental variation make particular strategies
successful.

The other strategy is the diversified bet hedger. The DB
strategy produces a mix of specialists S1 and S2, of which
the proportion d1 are S1. Note that this ensures a good
match between some subset of the population and the
patch it occupies regardless of the variation in conditions,
buffering the mean fitness from variation. We assume that
the proportion d1 is optimized to maximize fitness. With
R1(c1)=R2(c2)=1, and the long-term frequencies of c1 and
c2=0.5, as assumed here, the optimal value of d1 is d1=
0.5. As for the conservative bet hedger, DB strategies may
incur a fractional cost δD, imposed as a multiplicative cost
factor 1-δD on fitness, such that 0<δD<1.

Fig. 1 Fitness functions of
environmental condition for the
five strategies (two of which are
specialists shown in a. All are
Gaussian or combinations of
Gaussian functions, and they
express fitness as expected
lifetime reproductive success R.
The alternative environmental
conditions in the two-state model
are c1 and c2, and the black dots
on the graphs indicate the
corresponding fitness values
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The way diversified bet hedging addresses the vari-
ance in fitness depends on whether it operates between
patches (as in the S&K analysis, based on a fine-
grained environment) or within patches. Between-patch
diversified bet hedging reduces genotypic variance VT

by reducing the environmental correlation ρP among
the fitnesses of individuals occupying different indepen-
dently varying patches. When both DB phenotypes S1
and S2 (the specialists on conditions c1 and c2, respec-
tively) jointly occupy individual patches, there is within-
patch DB. With m>1, the optimal d1 remains 0.5. The
fitness associated with each patch is the mean fitness
over each within-patch subset of the brood. This re-
duces genotypic variance VT by reducing the within-
patch variance, making DB resemble yet another type
of generalist.

Fitness distributions, fitnesses at c1 and c2, and the equa-
tions for determining the fitness components of Eq. (5) for the
five strategies are presented in Appendix B (supplementary
materials).

Obtaining and presenting the numerical results

The results summarized below (1) indicate how fitnesses of
the strategies vary with the relative range of environmental
variation ε=(c2–c1)/s for particular combinations of the fre-
quencies f11 and f12 with P1=0.5 and (2) identify the dominant
(highest fitness) strategies across all combinations of P1, f11,
and f12 for particular magnitudes of ε. Bet hedging cost coef-
ficients were set at δC=δD=0.05. Because P2=1−P1, f21=1−
f11, and f22=1−f12, we expressed the pattern and frequency
combinations simply in terms of the condition 1 magnitudes
P1, f11, and f12. We considered only Bunbiased^ combinations,
meaning that the expected frequencies of patches in environ-
mental conditions 1 and 2 over time were both 0.5. Note that
this can come about with say P1 more frequent than P2, as
long as the frequencies compensate by having more localities
in environmental condition 2 during pattern−2 years−than are
in environmental condition 1 during pattern−1 year. In other
words, when one pattern is more frequent, the less frequent
pattern is more extreme in frequency for the alternative envi-
ronmental condition. Figure 2 illustrates example patch distri-
butions for three different combinations of f11 and f12 with
P1=P2=0.5, using a grid representation.

Results were obtained by calculating the fitnesses for the
five strategies at each combination of ε, P1, f11, and f12.
Offspring per patch m and number of occupied patches n for
a given total number of offspring I, the curve shape for CB,
and the proportion d1 of the S1 phenotype for DB were all
optimized. The optimizations on these unimodal fitness land-
scapes were accomplished by standard numerical hill-
climbing techniques. The calculations and graphs were pro-
duced in MATLAB 7 (The MathWorks 2012).

Numerical results

Quantitative results of the full analysis are presented in
Appendix C (supplementary materials). A summary of the
main results follows.

As ε, the relative range of environmental condition, in-
creased, the fitnesses of all types declined: It is inherently
more difficult for any strategy to handle a broader range of
environments. When ε was relatively small (e.g., ε=1.5), the
fixed generalist FG achieved the highest fitness, regardless of
the spatial or temporal pattern of environmental variation. But
with larger ε (e.g., ε=3.0), the fitness of the FG dropped
enough that specialists or DB did best. When spatial variation
was low (e.g., all or most patches are dry in 1 year but wet in
another, and thus, temporal variation between annual patterns
is high), diversified bet hedging DB tended to achieve the
highest fitness. Generalists CB or FG did poorly in this situa-
tion because the two conditions were too different for any
generalist to handle well. Specialists also did poorly because
they experienced very high temporal variation in fitness; in
particular, they had very low fitness in years when their spe-
cialized strategy was ill suited for all or almost all patches.
This was less of a problem for specialists when extreme years,
in which few or no patches fit them optimally, were rare. Thus,
with high spatial variation within years (e.g., 50 % of the
patches are wet and 50 % are dry, and temporal variation
between annual patterns=0), specialists on one environmental
condition or the other had the highest fitness.

For specialists and for DB, there was no effect on
fitness of the way offspring were distributed within or
among patches in the absence of spatial variation (i.e.,
when f11=1 and f12=0), since all potential local environ-
ments over all space were perfectly correlated. But for
specialists with increasing amounts of spatial variation
via lower f11 and higher f12, placing each offspring in a
different patch became increasingly advantageous; this ad-
vantage increased for larger brood size I and relative range
ε (Fig. 3). Specialists could thus Bspread their eggs among
many baskets,^ some of which will be a good fit for their
specialized phenotype. This spatial risk spreading, when
coupled with costs of dispersal, is a type of bet hedging
that enables specialists to use spatial variation to reduce
patch-level correlation as n increases (see Eq. (5)). For
DB, there was no effect on fitness of offspring distribution
within or among patches when I approached ∞. For finite
numbers of offspring with spatial variation (f11<1, f12>0),
there was a modest advantage for putting all offspring in a
single patch or a small number of patches—an advantage
that shrank with I but increased with ε (Fig. 3).

Because of these m and n dependencies, the remainder of
the results reflect the optima obtained with m=1 and n=I for
specialists and generalists and with m=I and n=1 for diversi-
fied bet hedgers.
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When the environment remains constant (i.e., ε=(c2–
c1)/s=0), S1, S2, and FG have fitnesses of 1, and CB
and DB have fitnesses of 0.95, reflecting the costs of
bet hedging δC and δD (see Fig. 4). It is clear from the
figure that including these costs qualitatively influences the
relationship between strategy dominance and the relative
range of environmental variation ε. (Because quantitative
effects of modest costs can be visualized from the figure
and produce only small shifts in boundaries between dom-
inant strategies, we do not explore these effects further
here.) Near and below a relative range of 2, FG dominates
by eliminating fitness variation of individuals (VL=0)
while achieving a relatively high fitness mean. Above a
relative range of 2, mean fitness of FG declines rapidly, as
fitness magnitudes are forced out into the tails of the
Gaussian curve (see Fig. 1b). The flexibility of CB then
provides an advantage over FG, but by this point, other
strategies eclipse them both in the Fig. 4 example; only a
high δD and very low δC could produce an interval of CB

dominance. With f11=f12=0.5 (Fig. 4a), temporal variance
in mean environmental conditions across patches is zero.
Spreading risk across space by putting only a single indi-
vidual into each patch then allows specialists to deal ef-
fectively with levels of relative range above 2 without
paying a cost of diversified bet hedging. But for a suffi-
ciently large difference between f11 and f12 (Fig. 4b), DB
dominates the specialists by achieving the same mean with
lower temporal variance. The greater the relative range
and the difference between f11 and f12, the more DB dom-
inates the other strategies (Fig. 4c).

For a particular value of the relative range of environmental
variation ε, we can identify the dominant strategy for all com-
binations of f11 and f12 (Fig. 5). Below a relative range of about
2.2, FG dominated for all possible combinations of f11 and f12
in our example (Fig. 5a). Within the small interval 2.2<ε<2.3
with large brood sizes, specialists dominated for relatively
small differences in the magnitudes of f11 and f12, but FG
dominated for greater differences (Fig. 5b): The higher

Pattern 1 Pattern 2

f11 = 1

f12 = 0

f11 = 0.75

f12 = 0.25

f11 = 0. 5

f12 = 0. 5

Fig. 2 Diagrammatic
representation of example
patterns and environmental
condition frequencies for patches
distributed on an 8×8 grid. One of
the two patterns j specifying the
frequency fij of each condition i
occurs according to the
probabilities Pj in each
generation; the exact positions of
the environmental conditions
among patches in a given
generation are determined
randomly
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temporal variation associatedwith greater differences between
f11 and f12 shifted the advantage to FG. This small interval of
relative range with a mixture of specialists and FG dominating
disappeared for small values of I, replaced by uniform FG
dominance, as in Fig. 5a. Relative ranges above about 2.3
consistently produced mixtures of specialists for small differ-
ences between f11 and f12 and DB for moderate-to-large dif-
ferences. The region of DB dominance was slightly smaller
for large brood sizes, with specialist offspring occupying more
patches (Fig. 5c) than for smaller brood sizes (Fig. 5d), though
the results remained qualitatively similar.

Discussion

Interpreting the results

A conventional wisdom in evolutionary ecology is that low
environmental variability allows organisms to specialize on
the usual environmental conditions, whereas higher environ-
mental variability favors flexible generalists. With the two-
state model in results not included here, we verified this when
low variability meant that one condition was much more com-
mon than the other over the long term: greater bias toward one
condition made the corresponding specialist increasingly
more successful. But in the results presented, we focused on
the more informative situations where the two states were
equally common in the long term. We quantified variables as
the magnitude of differences between the two environmental
states (ε) and in the patterns of spatial and temporal variation.

Our analysis introduced four novel features into the
two-state stochastic environment model: (1) We let patch
area be the scale of spatial autocorrelation (=grain size)
and permitted patches to contain the numbers of offspring
optimal for any particular strategy. (2) We fleshed out the
environmental variation regime to include different magni-
tudes of the parameters P1, f11, f12, and ε. (3) We used
Gaussian functions to represent how expected lifetime re-
productive success R depends on environmental condition
c, thus constraining the relationship between the R values
under the two different environmental conditions in a rea-
sonable way. And (4), we incorporated bet hedging costs
in exchange for the flexibility associated with conservative
bet hedging (i.e., optimal shape of the R(c) curve) and
with diversified bet hedging (i.e., an optimal combination
of the two specialists within each brood). We also incor-
porated risk spreading in space by specialists; incurring

Fig. 3 Results at high levels of environmental variation (ε=3),
depending on whether the variation is predominately temporal or spatial
and on brood size (I). Specialists (SP) are optimal when environmental
variation is primarily spatial, except when brood size is low. Diversified
bet hedgers (DB) are optimal otherwise. With temporal variation
predominant, DB does equally well for any distribution of offspring
within or between patches; toward increasingly spatial environmental
variation and low-to-moderate brood sizes, placing all offspring into a
single patch is optimal
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f12 = 0.50 

f11 = 0.75 

f12 = 0.25 

f11 = 1.00 

f12 = 0.00 
A B C

specialists (S1 & S2)
conservative bet hedger (CB)

LEGEND

Fig. 4 Lineage fitnesses of the strategies as a function of the relative
difference in environmental condition ε=(c2–c1)/s associated with the
alternative states, i.e., the environmental variation, where c1 and c2
quantify the environmental conditions and s is the standard deviation of
Gaussian fitness functions of specialists (SP) and fixed generalists (FG).
Three examples of frequency combinations of f11 and f12 are illustrated,
all with P1=P2=0.5 and fractional cost factors for conservative and
diversified bet hedging δC=δD=0.05. In all of these cases, we let the

number of offspring I=∞; for the diversified bet hedger DB, all
individuals are assumed to occupy a single patch, whereas for all other
strategies, there is only one individual in each patch. a For f11=f12=0.5,
FG has the highest fitness for environmental variation below about 2.2;
above this value, SP achieves the highest fitness. b For f11=0.75 and f12=
0.25, fg has the highest fitness below about 2.3; above this value, db has
the highest fitness. c For f11=1.00 and f12=0.00, the outcome for highest
fitnesses is the same as for f11=0.75 and f12=0.25
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the inevitable dispersal costs made them into bet hedgers
as well.

With these modifications of the model, we found that
when environmental variation is relatively low (ε≤2),
the fixed generalist strategy that does equally well in
the two conditions dominates. When environmental var-
iation was relatively high (ε>2), except for the small
range of ε values for large brood sizes producing dom-
inance by specialists and fixed generalists, a mix of
specialists and diversified bet hedgers dominated. In this
later case, the specialists did best where the temporal
variation in the overall spatial mean condition was low-
est, and the bet hedgers did best otherwise. The bound-
ary at ε≈2 between regions of dominance by different
strategies arises from the shape of the Gaussian func-
tions, which have inflection points one standard devia-
tion from the mean.

Making sense of these generalizations requires under-
standing for each strategy how the mean (expected) lifetime
reproductive success and variance in Eq. (2) and the com-
ponents of variance VT in Eq. (5) depend on the features of
environmental variation. The characteristics, advantages,
and disadvantages in this context of each strategy addressed
here are as follows.

Specialists cannot reduce the magnitude of VL, the var-
iance in fitness through time at any particular location with-
in a patch. They gain no advantage from placing multiple

offspring in a single patch, because fitnesses of these off-
spring will be perfectly correlated. So, specialists distribute
offspring among as many patches as possible, spreading
risk in space and reducing patch-level correlation. They
maintain a relatively high mean fitness and can dominate
when temporal variation between mean conditions of the
patterns is low, but specialists are vulnerable to high tem-
poral variation, which results in their relatively high VT.
Though we did not explicitly incorporate dispersal costs
into the analysis, it is clear that large grain size, large brood
size, and high dispersal costs can limit the spreading of the
specialists’ offspring across patches, perhaps causing them
to put several offspring into each patch (see below). We
also note that specialists could spread risk in time instead
of (or in addition to) space by using dormancy and other
mechanisms to produce cohort splits, with subcohorts com-
pleting development in different years (e.g., Cohen 1966).
We explore this alternative as a form of bet hedging else-
where (Crowley and Hopper 2015).

Fixed generalists FG and conservative bet hedgers CB have
the major advantage of reducing VL and thus VT to zero by
achieving equal fitness under the two conditions. FG in par-
ticular (which avoids dealing with the cost factor δC) has a
high mean lifetime reproductive success for low relative range
ε, where FG dominates. But, the straddle between c1 and c2
pulls the mean down as ε increases beyond 2, and the optimal
shape of CB is not enough to compensate. Both FG and CB
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Fig. 5 Optimal strategies for particular combinations of the condition
and frequencies f11 and f12 and the pattern frequencies P1 and P2, under
the assumption that the long-term frequencies of patches in the two
environmental conditions are the same (i.e., unbiased long-term
environmental condition). The main diagonal indicates results for
combinations of f11 and f12 with P1=P2=0.5. When P1>P2 (e.g., P1=
0.8 and P2=0.2), pattern 2 will strongly be dominated by condition 2 to
compensate for the more modest but frequent domination by

environmental condition 1 in pattern 1, thus preserving the long-term
unbiased environmental condition. When P1<P2 (e.g., P1=0.2 and P2=
0.8), opposite compensation for the opposite condition frequencies
between patterns will likewise preserve the long-term unbiased
environmental condition. Recall that ε is the relative range of variation
in environmental condition, and I is the total number of offspring in the
brood. a ε=2.00 and I=∞. b ε=2.25 and I=∞. c ε=2.50 and I=∞. d ε=
2.50 and I=16
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are best thought of as alternative generalist strategies where
CB pays a cost, δC, for the flexibility of optimizing the shape
of its fitness function. Such a cost in this analysis is minimal,
and CB’s failure to dominate over large magnitudes of envi-
ronmental range, ε, suggest that generalist strategies using a
fixed strategy are best suited for the environmental conditions
we have imposed when ε is small (e.g., <2).

The diversified bet hedger DB, producing both types of
specialists, cannot shrink VL but can reduce ρL to zero by
putting equal numbers of both types of specialists into indi-
vidual patches. This happens when half of the within-patch
correlations are between the same types of specialists (ρL=1),
and half are between different types of specialists (ρL=−1),
resulting in an average ρL=0 (but see Appendix B for the case
of small brood sizes). Then, by putting all offspring into a
single patch,m=I and n=1, resulting inVT=0. Combining this
advantage with the specialists’mean fitness ≥0.5 even for very
high ε makes DB an especially effective strategy for dealing
with high temporal variation.

Note that specialists spread risk between patches in a way
similar to risk spreading by DB within patches. Thus, be-
cause specialists do not pay the cost of bet hedging, when
dispersal costs are low, they will always have higher fitness
than DB if f11 and f12 are similar in magnitude. The advan-
tage is reversed, however, at the higher levels of temporal
environmental variation when f11 and f12 are sufficiently
different. This accounts for the regions of specialist and
DB dominance in Figs. 4 and 5.

The two-state model is an important means of address-
ing spatiotemporal variability in nature (Starrfelt and Kokko
(2012) while maintaining tractability. Conceiving of envi-
ronmental conditions as two discrete alternatives is often a
useful simplification or a first-cut approximation of contin-
uous variation (e.g., the El Niño-La Niña dichotomy). The
difference in magnitudes of the two conditions (ε) may
indicate the expected year-to-year difference in condition
and thus provide a solid link to empirical measurements.
Moreover, these discrete conditions may influence organ-
isms with discrete life cycles through fitness effects and
constraints best represented using continuous fitness func-
tions like those invoked here. The continuous functions
allow the fitness implications of shifts in the two conditions
or in ε to be immediately recognized. Future work will
incorporate annual variation in condition drawn from mul-
tinomial or continuous distributions, but most of the same
basic principles and dynamics considered here are likely to
apply (P.H. Crowley, unpublished analysis).

General issues arising from the analysis

This study addresses particular strategies with continuous fit-
ness functions in the context of various regimes of stochastic
spatiotemporal variation, taking bet hedging costs into

account. But to keep this analysis tractable, some features
known to influence the phenomena of interest here have not
been explicitly included. For example, dispersal is obviously
required for distributing offspring among patches. How far a
female must travel to accomplish this distribution, thus in-
creasing n, depends on the spatial grain size. (Because dispers-
al is generally costly in energy expenditure and mortality risk,
the choice of n may depend in part on this cost that is not
included in the model.) Increasing n reduces the genotypic
variance VT for specialists, has no effect on VT for FG and
CB, and increases VT for DB (see Eq. (5)). Dispersal has been
recognized as a type of diversified bet hedging, because it
reduces environmental covariance among individuals by
spreading risk over more patches, but at some cost (Crowley
and Saeki 2009; Wright and Ratikainen 2012; Starrfelt and
Kokko 2012; but see also Seger and Brockmann 1987;
Hopper 1999; Hopper et al. 2003).

For DB based on producing different types of off-
spring, the advantages of high numbers of offspring
per patch m reduces the value of dispersal, particularly
given an associated cost. Our not including the cost of
dispersal in the model can mean that the boundary be-
tween frequencies in which specialists vs. DB dominate
may need to be shifted somewhat more in favor of DB
to account for this cost. However, neither have we
attempted to account for density dependence, kin com-
petition, or an increase in inbreeding associated with
confining much or all of a brood within a single patch.
Placing offspring in the parent’s natal patch at each
generation potentially insures intense kin competition
and possibly inbreeding and overcrowding during inter-
vals of population growth (genotypic expansion). In na-
ture, DB would thus be expected to maintain at least a
modest level of offspring dispersal to other patches—
though this should be much more spatially restricted
than that for specialists.

Our results suggest a strategic continuum from spreading
risks over space to spreading risks over time when spatiotem-
poral variability is high. Specialists can spread risk effectively
over space when dispersal to multiple patches that differ in
environmental condition is manageable. DB can spread risk
over time with minimal dispersal using a combination of spe-
cialist strategies, depending on costs of bet hedging, density
dependence, kin competition, and inbreeding. Density depen-
dence and kin competition could become costly when enough
offspring are added to each patch to increase the intensity of
within-patch competition and competitive interactions among
brood members. This effect is actually weaker when some
number of offspring from a single brood occupies patches
already containing many other offspring. This is because the
many potential competitors already present must be dealt with
regardless, but the increase in competition per offspring added
is thereby reduced. Inbreeding becomes an important issue
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when siblings added to individual patches become likely to
mate with each other, and when inbreeding depression is a
likely outcome of such matings.

When spatiotemporal environmental variability is moder-
ate or low, generalist strategies are likely to dominate. These
deal effectively with variation in both space and time and, by
generating equal fitness in the two environments, have no
tendency to favor distributing offspring into few vs. many
patches—except for the balance of the effects noted above
that are not explicitly included in the model. While we found
no evidence for the efficacy of conservative bet hedging based
on cost-incurring optimal flexibility in the fitness curve shape,
this flexibility may prove important in addressing a rapidly
changing environment. We note that in our model generalists
achieve equal fitness in the two environmental conditions in
effect by being specialists on an intermediate condition that
never occurs. Future work with continuously distributed envi-
ronmental conditions (see below) will avoid this by relaxing
the two-state assumption altogether.

Our analysis and results have generated hypotheses that
should spawn empirical tests. These include

1. With high spatiotemporal variability along a gradient
from high spatial variation to high temporal variation,
offspring within broods should become increasingly var-
iable in traits best suited for different environmental con-
ditions, and offspring dispersal should be reduced.

2. For high spatiotemporal variability, low-dispersal strate-
gies and coarse-grained environments should feature high
trait variability, and high-dispersal strategies and fine-
grained environments should feature low trait variability.

3. Withmoderate-to-low spatiotemporal variability, trait var-
iability among offspring should be low and centered on
average environmental conditions.

These hypotheses can be addressed in plant populations
that vary in dispersal distances and germination times. For
example, the cold desert annual plant Diptychocarpus strictus
produces low-dispersal/high-dormancy propagules under
stressful conditions but high-dispersal/low-dormancy propa-
gules under non-stressful conditions (Lu et al. 2012), strate-
gies linked by the authors to bet hedging. This environment
has high spatiotemporal variability, and the association be-
tween dispersal and trait variability (implied by dormancy
duration) postulated in hypothesis (2) is found, though envi-
ronmental grain was not assessed.

Insect populations with flexible generation times and
ranges that extend across latitude may be suitable for these
studies as well. Multiple mating by insects can produce
fitness advantages via bet hedging (Fox and Rauter 2003;
Forsman et al. 2007), allowing the possibility of examin-
ing these responses and their possible correlations with
dispersal at different levels of spatiotemporal variability.

Altitudinal gradients along mountainsides may correspond
to differences in spatiotemporal variability, for which eco-
types of plants or insects may be compared using common
garden experiments. Bet hedging in particular, though ex-
tensively supported by observational evidence, requires fo-
cused laboratory, greenhouse, and especially field experi-
mentation to achieve broad and definitive empirical sup-
port. We add that there may be constraints on the evolu-
tion of diversified bet hedging strategies (e.g.,
polyphenism) that we have neglected such as constraints
on developmental plasticity or antagonistic pleiotropic ef-
fects (Moran 1992). In many systems, such constraints are
seemingly overcome, however, as diversified bet hedging
is a taxonomically widespread phenomenon occurring in
insects (Hopper 1999), rotifers (García-Roger et al.
2014), fish (Polačik et al. 2014), crustaceans (Hakalahti
et al. 2004), and plants (Childs et al. 2010).

Continued theoretical development requires turning to con-
tinuous models for a more realistic analysis of reproductive
strategies in unpredictable environments. Most of the same
concepts will carry over into continuous representations of
environmental condition in space and time, though some dif-
ferences may arise, such as better performance of the conser-
vative bet hedger when the environment varies continuously.
This again underscores the importance of connecting with
empirical studies to quantify these relationships. A thorough
understanding of bet hedging can only be achieved through a
close and effective linkage between theoretical and empirical
analysis.

Bet hedging may play an important role in understanding
the implications of human-induced rapid environmental
change (HIREC). Bet hedgers, particularly diversified bet
hedgers, may be pre-adapted to respond better to HIREC than
are other strategies, a hypothesis currently under study (Sih
et al., in preparation). The model presented here can address
this question by virtue of its patchiness and grain structure,
continuous fitness functions, and means of characterizing en-
vironmental variation (fij, Pj, ci, and ε). Strategies adapted to
particular patterns of environmental variation can be forced to
respond to a new, post-HIREC variation regime, and both the
short-term (fitness) and long-term (evolutionary response) can
be determined.
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