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Abstract The stability conditions for an isolated special-
ist predator-prey community are fairly well understood.
The spatial coupling of several such systems through dis-
persal of individuals can generate new dynamic behavior
that is not yet completely understood. Many factors are
known to be stabilizing or neutral, e.g., random dispersal or
time delays, while others may induce instabilities in some
cases but not others, e.g., density-dependent movement. We
study the combination of two stabilizing mechanisms in
a two-patch Rosenzweig-MacArthur model with a novel
density-dependent movement term. Specifically, we assume
that prey move between patches according to their perceived
predation risk, and we include travel time between patches
as a time delay. We show that the combination of mecha-
nisms may be destabilizing even though each mechanism by
itself is stabilizing. Our results show that a detailed knowl-
edge of mechanisms and their temporal scales is necessary
to correctly predict the stability of a metacommunity.
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Introduction

The movement of individuals and the constraints imposed
to movement over natural landscapes are key features of
community dynamics that affect persistence and resilience
of populations, species coexistence, and ecosystem func-
tion (Nathan and Giuggioli 2013). Ecological implications
of movement can be predicted from simplistic assump-
tions of passive and instantaneous movement between
locations. However, more complex patterns of movement
associated with species traits (life history, behavior) and/or
with environmental heterogeneity can have major ecologi-
cal consequences. Most importantly, this interplay between
species traits and the environment is greatly impacted by
the management of exploited ecosystems. While simulation
studies have incorporated complex behaviors (McCauley
et al. 1993) and movement patterns in complex landscapes
(Cuddington and Yodzis 2002; Ruokolainen et al. 2011),
there is still an important gap between general ecologi-
cal theory of spatial dynamics and our understanding of
complex mechanisms and patterns of movement in nat-
ural landscapes. Here, we study the interaction between
the time of movement across landscapes and behavioral
drivers of movement to avoid predators. We integrate these
features of landscapes and traits into a simple discrete-
habitat model that extends current ecological theory. In
particular, we study the stability of predator-prey dynam-
ics in terms of the timescales of movement controlled by
both behavior (predator avoidance) and life history (dis-
persal and migration) in relation to movement time across
landscapes.

Trophic interactions between predators and their prey
constitute a model system for the study of dynamical
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stability. Rosenzweig and MacArthur (1963) showed how
such a simple ecological community can switch from stable
equilibrium to stable limit cycles in response to increased
carrying capacity of the prey (i.e., the paradox of enrich-
ment). This simple model has generated a large body
of literature on the role of individual movement as a sta-
bilizing mechanism in simple two-patch systems, as well
as spatially explicit models (Briggs and Hoopes 2004;
Cantrell and Cosner 1996; Hauzy et al. 2010; Jansen 2001;
Ramanantoanina et al. 2011). The most general analyses
of such models result from the assumption of random and
instantaneous movement of individuals between homoge-
neous locations. Many studies have been able to relax this
assumption and include more complex behavioral mecha-
nisms of movement and habitat heterogeneity such as taxis
(Sapoukhina et al. 2003; Chakraborty et al. 2007), density-
dependent movement (Abrams and Ruokolainen 2011), and
travel time (Klepac et al. 2007). Mostly, these mechanisms
have been studied separately or in simulation studies with
specific parameter values. An integration into a general
ecological theory is still missing.

Natural landscapes can be described as a matrix of var-
ious habitat types, each with its own impact on individuals
(Goodwin and Fahrig 2002). In its simplest form, land-
scapes are represented as two or more suitable patches,
where a population can establish, and surrounded by a land-
scape matrix, only allowing for movement between suitable
habitats. This complex structure can be simplified by only
considering the time of travel between suitable habitats
instead of assuming instantaneous transfer of individuals
(Klepac et al. 2007). However, when movement is associ-
ated with life-history traits such as dispersal of larvae or
propagules, movement is assumed to be short compared
to individual life span, which limits its study to arbitrarily
low values. Alternatively, when movement is triggered by
mechanisms operating over a much shorter timescale such
as behavior, movement time can be scaled to that of behav-
ioral responses. For example, the role of predator avoidance
resulting in a non-consumptive response of prey to predator
density can be formulated as density-dependent movement
and has been well studied using models and experiments
(Abdllaoui et al. 2007; Mchich et al. 2005; Mchich et al.
2007). It has been generalized to behavioral response of
prey to total expected fitness and to evolutionary dynam-
ics of the traits mediating the response (Abrams 2007). This
behavioral response to predator density means that move-
ment changes much faster than the expected life span of
individuals and can thus interact with travel time between
habitats. Here, we study community persistence and stabil-
ity in response to the interaction between non-consumptive
prey response to predators and travel time of prey between

two discrete habitats. We more specifically present and ana-
lyze a two-patch extension of the Rosenzweig-MacArthur
predator-prey model with a travel time (time delay) in
both density-dependent and density-independent move-
ments of the prey. We derive the timescales of density-
independent and density-dependent movements relative
to travel time that predict both stabilizing and destabi-
lizing effects of movement on the spatially structured
community.

In the following section, we present the details of our
model and show that as long as movement is instantaneous,
the inclusion of predator-dependent dispersal does not alter
the stability of the coexistence steady state. When move-
ment is not instantaneous, then an unstable coexistence
equilibrium can be stabilized by density-independent dis-
persal (“Density-independent dispersal (α = 0)” section).
In addition, stable coexistence can be destabilized by
predator-induced dispersal (“Predator-dependent dispersal
(α > 0)” section). Throughout the manuscript, we will
use the terms “coexistence (steady) state” and “coexistence
equilibrium” interchangeably. When coexistence occurs in
the form of a stable limit cycle, we will explicitly say
so.

The model

A minimal model that allows us to study how predator-
dependent dispersal and travel time delay interact to affect
the stability of a multi-patch predator-prey system tracks
the density of prey (Hi) and predator (Pi) on two patches
(i = 1, 2) through time, t . On each patch, we assume the
Rosenzweig-MacArthur dynamics: the prey grows logisti-
cally in the absence of the predator and is consumed by
the predator according to a type II functional response; the
predator decays exponentially in the absence of prey. In the
absence of predators, prey move randomly between the two
patches with exponentially distributed waiting time. When
predators are present, prey also leave a patch according to
their perceived predation risk, which is proportional to the
per capita of prey predation rate in the functional response.
In particular, the perceived predation risk increases with
the number of predators and decreases with the number of
prey. Previous work had considered movement rates depen-
dent on predator density only (e.g., Abdllaoui et al. (2007))
or on fitness (Abrams 2007). The total rate of movement
between the two patches is a linear interpolation between
random movement and predation avoidance. The time (η)
that it takes an individual to travel from one patch to the
other enters the equations in the form of a delay. For sim-
plicity, we assume that the two patches are identical and that
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the predator does not move between patches. We write our
model as
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(2.1)

where D > 0 is the movement rate and 0 ≤ α ≤ 1 denotes
the contribution of predator-induced dispersal to the total
dispersal rate. The prey growth rate and carrying capacity
are r and K . Parameter a is the maximum ingestion rate, b is
the half-saturation constant, and c is the inverse of the yield.
The predator death rate is denoted by m, and ρ is a scal-
ing factor proportional to c. We have several characteristic
times in our model, but we focus on a few only. The inverse
of the ingestion rate is the mean time between subsequent
meals for the predator, which reflects the time between sub-
sequent successful captures. We call 1/a the mean time to
capture. The characteristic time of dispersal consists of the
mean residence time on a patch, 1/D, and the (fixed) travel
time between patches, η. All parameters in our model are
summarized in Table 1.

Table 1 Summary of all parameters, their meaning, and their
dimensions

Symbol Description Dimension

Hi Prey density on patch i [H]= #prey
space

Pi Predator density on patch i [P]= #predator
space

t Time Time

η Travel time between patches Time

r Prey growth rate 1
time

K Carrying capacity [H ]
a Maximum ingestion rate 1

time

b Half-saturation constant for predation [H ]
c Inverse of yield [H ]

[P ]
m Predator mortality 1

time

D Between-patch movement rate 1
time

α Fraction of density-dependent movement –

ρ Conversion factor [H ]/[P ]

We reduce the number of parameters by passing to non-
dimensional quantities Hi = bhi, Pi = br

ac
pi, t = 1

a
s, η =

1
a
τ, k = K

b
, γ = ρr

ac
, d = D

a
, ε = r

a
, μ = m

a
. The resulting

dimensionless system of equations is as follows.
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In the absence of dispersal, the model consists of two
independent copies of the Rosenzweig-MacArthur system
in the following form:

dhi

ds
= εhi

(
1 − hi

k
− pi

1 + hi

)
,

dpi

ds
= hipi

1 + hi

− μpi. (2.3)

This well-known system has up to three steady states: the
trivial state (0, 0), the predator-extinction state (k, 0), and
the coexistence state (h∗, p∗), where h∗ = μ

1−μ
and p∗ =

(1 − h∗
k

)(1 + h∗), provided that 0 < h∗ < k. The predator-
extinction state is stable precisely when h∗ > k. When (k −
1)/2 < h∗ < k, the coexistence equilibrium is globally
stable, but when 0 < h∗ < (k−1)/2, the coexistence state is
unstable and a unique globally stable limit cycle exists (see,
e.g., Kot (2001)).

The three equilibria from the single-patch model trans-
late into three corresponding equilibria the two-patch
model since the assumption of equal patches gives a
symmetric system. These are (0, 0, 0, 0), (k, 0, k, 0), and
(h∗, p∗, h∗, p∗), respectively. In addition, since predators
do not move between patches, there can be two bound-
ary equilibria (h̄, 0, h∗, p̄) and (h∗, p̄, h̄, 0) for some pos-
itive numbers h̄, p̄. We focus the analysis on the sta-
bility of the symmetric positive coexistence equilibrium
(h∗, p∗, h∗, p∗).

When movement between patches is instantaneous,
i.e., τ = 0, our model is a special case of the model in
Hauzy et al. (2010). Those authors showed that then the
coexistence equilibrium (h∗, p∗, h∗, p∗) of Eq. 2.2 is sta-
ble if and only if the coexistence equilibrium (h∗, p∗) of
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Eq. 2.3 is stable. For the convenience of the reader, we give
the proof of this fact in Appendix A. In other words, if
dispersal between patches is instantaneous, then predation-
induced prey movement does not affect the stability of the
coexistence steady state. From now on, we study the case
when dispersal is not instantaneous.

Stability of the coexistence equilibrium

When travel time is included in the model (τ > 0), the sta-
bility analysis of the coexistence steady state becomes more
difficult and reveals destabilizing mechanisms. Throughout
this section, we shall assume 0 < h∗ < k. We linearize sys-
tem (2.2) at the coexistence state by setting hi = h∗ + ui

and pi = p∗ + vi for small perturbations ui, vi . Keeping
only the linear terms in the Taylor expansion of the right-
hand side of Eq. 2.2 leads to the transcendental eigenvalue
problem:
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for nonzero (u1, v1, u2, v2). The coexistence state is stable
if all solutions λ have negative real part.

System (3.1) admits a nonzero solution if and only if the
determinant of the corresponding coefficient matrix is zero.
Due to the symmetry of the system, this coefficient matrix
can be expressed in the following form:

J =
(

J1 − λI J2

J2 J1 − λI

)
,

where I is the 2 × 2 identity matrix. Since J is a block-
circulant matrix with 2 × 2 blocks, its determinant is given
by det J = det(J1 −λI +J2) ·det(J1 −λI −J2). Therefore,
a nonzero solution of Eq. 3.1 exists if and only if det(J1 −
λI + J2) = 0 or det(J1 − λI − J2) = 0.

These two conditions are equivalent to

L(λ) = −R(λ) or L(λ) = R(λ), (3.2)

where
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The coexistence equilibrium of Eq. 2.2 is stable if and
only if all characteristic roots of Eq. 3.2 have negative real
parts; otherwise, it is unstable. To analyze (3.2), we rely on
a result from Cooke and Grossman (1982) that states that a
change of stability in our system can occur only if roots of
Eq. 3.2 appear on the imaginary axis. For the convenience of
the reader, we quote and explain this result in Appendix B.

Since we know the stability conditions for the coexis-
tence state when d, α, τ are zero, we can ask whether those
three parameters affect the stability by studying how zeros
of Eq. 3.2 on the imaginary axis depend on those three
parameters. For simplicity, we first treat the case α = 0 sep-
arately in the next section and then move on to the general
case.

Density-independent dispersal (α = 0)

When α = 0, the characteristic equations in (3.2) become

λ2 − λ(εA − d) + εB = ±dλe−λτ , (3.3)

where we denoted

A = 1− 2h∗

k
− p∗

(1 + h∗)2
, B = μp∗

(1 + h∗)2
> 0. (3.4)

The expression εA is precisely the trace of the commu-
nity matrix of the Rosenzweig-MacArthur model (2.3) at
the coexistence steady state. In particular, this steady state
is stable on the single patch if and only if A < 0.

Since zero is not a root of Eq. 3.3, and since complex
roots appear in pairs, we look for roots λ = iy, with y > 0.
Splitting the equations in Eq. 3.3 into real and imaginary
part gives the system{ −y2 + εB = ±dy sin(yτ)

−(εA − d) = ±d cos(yτ)
(3.5)

Case 1: A < 0

When A < 0, the steady state on the single-patch model is
stable. The second condition in Eq. 3.5 becomes

| cos(yτ)| = 1 − εA

d
> 1, (3.6)
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and this condition is impossible to satisfy. Hence, no solu-
tions of Eq. 3.3 can appear on the imaginary axis for any
d, τ. Since the coexistence state is locally asymptotically
stable for d = 0, τ = 0, it is also locally asymptotically
stable for all d, τ > 0. In particular, density-independent
dispersal and travel time delays cannot destabilize a sta-
ble coexistence state in the absence of density-dependent
dispersal.

Case 2: A > 0

When the positive equilibrium is unstable for the single-
patch model (2.3) (A > 0), we ask whether and under
which conditions dispersal and/or travel time delay can sta-
bilize the system. As above, such a change in stability can
only happen on a critical curve in the (τ, d)-plane on which
the characteristic equations in (3.3) have a purely imaginary
root.

When the dispersal rate is small, no such roots can
appear, and the coexistence equilibrium cannot be stabi-
lized by dispersal and/or travel time delay. More precisely,
when 0 ≤ d < εA/2, then the second condition in Eq. 3.3
becomes

| cos(yτ)| = εA

d
− 1 > 1, (3.7)

which is impossible. Since the eigenvalues for τ = 0 have
positive real parts, they will have positive real parts for all
τ > 0, provided that 0 ≤ d < εA/2. In dimensional
parameters, this condition reads

D <
rm

2a

[
1 − b

K

a + m

a − m

]
. (3.8)

When the dispersal rate is large enough, the coexistence
equilibrium can be stabilized for some intermediate values
of τ, but the relationship between d and τ where stabiliza-
tion occurs is complex. To understand this relationship in
detail, we summarize some of the analysis of the charac-
teristic equations in (3.3), using the results by Cooke and
Grossman (1982). For a fixed value d > εA > 0 and τ = 0,

Eq. 3.3 with the plus sign has two solutions with negative
real parts, whereas the equation with the minus sign has
two solutions with positive real part, representing the fact
that the coexistence state is unstable for the single-patch
model. As τ increases from zero, the number of solutions
of Eq. 3.3 with positive real part increases or decreases by
two at certain values of τ that can be computed explicitly. If
the number of solutions with a positive real part of Eq. 3.3
with the minus sign decreases before the number of such
solutions to Eq. 3.3 with the plus sign increases, then the
coexistence steady state can be stabilized. We now give a
detailed description of these threshold values for τ.

We begin with Eq. 3.3 and the plus sign. According to
Cooke and Grossman (1982), there are two sequences {τn,1}
and {τn,2} defined by the relationships

τn,1 = θ1 + 2nπ

y1
, τn,2 = θ2 + 2nπ

y2
, n = 0, 1, 2...,

θ1 = cos−1(εA/d − 1) ∈ (π/2, π)

θ2 = cos−1(εA/d − 1) ∈ (π, 3π/2)

y1 = 1

2
(d2 − (εA − d)2)

1
2

+ 1

2
(d2 − (εA − d)2 + 4Bε)

1
2 > 0

y2 = −1

2
(d2 − (εA − d)2)

1
2

+ 1

2
(d2 − (εA − d)2 + 4Bε)

1
2 > 0.

We obtain these expressions from Eq. 3.5 by squaring,
adding the equations, and solving for y. These sequences are
increasing and nested i.e. τ0,1 < τ0,2 < τ1,1 < τ1,2 < . . . .
As τ increases, the multiplicity of roots with a positive
real part increases by two when τ passes through τn,1 and
decreases by two when τ passes through τn,2 until some
finite τN,1, after which the multiplicity will remain positive.

Similarly, for Eq. 3.3 and the minus sign, there are
increasing interlaced sequences {τn,3} and {τn,4} defined by

τn,3 = θ3 + 2nπ

y2
, τn,4 = θ4 + 2nπ

y1
, n = 0, 1, 2...,

θ3 = cos−1(1 − εA/d) ∈ (0, π/2)

θ4 = cos−1(1 − εA/d) ∈ (3π/2, 2π),

such that the total multiplicity of the roots with positive real
parts decreases by two as τ increases and passes through any
value of {τn,3}, and increases by two when τ crosses {τn,4}.
With this notation, the coexistence equilibrium is stabilized
by dispersal and travel time delay when τ0,3 < τ < τ0,1. For
the intermediate case εA

2 < d < εA, the analysis proceeds
similarly to the case for large d. We omit the details.

The results from this analysis are summarized in Table 2
and illustrated in Figs. 1 and 2. The solid and starred curves
in this figure correspond to τn,1 and τn,2; the dotted and
dashed curves depict τn,3 and τn,4. The number of solutions
a with positive real part (counting multiplicity) decreases by
two when τ increases and passes through dotted and starred
curves, and increases by two when τ crosses the solid and
dashed curves. We observe one region in the (d, τ )-plane
where the coexistence steady state is unstable for a single
patch, but stable in the coupled two-patch system. We illus-
trate the time course of a typical solution in this region
in Fig. 2. The densities exhibit decaying oscillations and
eventually stabilize.
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Table 2 Summary of the stability analysis of the coexistence equilib-
rium with α = 0

0 < d < εA/2 d > εA/2 Single patch

A < 0 Stable Stable Stable

A > 0 Unstable Stable if τ0,3 < τ < τ0,1 Unstable

We revert to dimensional variables and interpret these
stability result in the light of condition (3.8). The first con-
dition for the existence of the coexistence state (h∗ > 0)
is m < a or 1/m > 1/a. The mean life expectancy for
the predator has to be larger than the mean time to capture.
The condition A > 0 translates into a being much larger
than m or 1/m � 1/a. The term in brackets in Eq. 3.8 is
bounded by unity. The condition 1/a � 1/m then implies
that inequality (3.8) is violated if D � r/2 or 1/D � 2/r.

Hence, if the mean time spent in a patch (1/D) is much
shorter than the timescale of reproduction, then an unsta-
ble coexistence can be stabilized by dispersal (with delay)
between two patches. Stabilization can occur when τ is on
the order of unity, i.e., when the travel time delay is of the
same order as the mean time to capture.
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Fig. 1 Stability region for density-independent dispersal and A > 0.

For any fixed d > 0, the coexistence equilibrium is unstable when
τ = 0. As τ increases and crosses the dotted curve that corresponds to
τn,3, the coexistence steady state is stabilized. As τ increases further,
it crosses the solid line corresponding to τn,1, so that the coexis-
tence equilibrium becomes unstable again. As τ increases and passes
through a solid (τn,1) curve or a dashed (τn,2) curve, two eigenvalues
with positive real part appear. When τ passes through a dotted (τn,3)
or starred (τn,4) curve, two eigenvalues with positive real part disap-
pear. In the figure, there is only one stability region, but if parameters
were chosen such that the starred curve were shifted to the left, another
region of stability would appear. Parameter values are ε = 1, k = 2,

and μ = 0.2
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Fig. 2 Density-independent dispersal with travel time delay stabilizes
the populations at the positive coexistence equilibrium. Parameters are
as in the previous figure so that A = 0.05 > 0, and dispersal parame-
ters are chosen in the stable region as d = 1, τ = 2. Only the predator
density on one patch is plotted. Densities on the other patch are indis-
tinguishable after a short initial transient; prey densities in both patches
follow the same pattern. In particular, the densities between patches
are in synchrony. Stabilization occurs also for smaller values of τ, for
example with ε = 0.8, τ = 1, and d = 4. The approach to equilibrium
is then very slow (plot not shown)

Predator-dependent dispersal (α > 0)

When prey dispersal depends on perceived predation risk, a
new phenomenon occurs, namely dispersal may destabilize
an otherwise stable coexistence state. This result follows
from a detailed analysis of the characteristic (3.2) along the
lines of the previous section and using again the results in
Section 5 of Cooke and Grossman (1982). As in the previous
section, zero is not an eigenvalue, and we need to under-
stand when purely imaginary roots of these equations occur.
After lengthy calculations, we find that such roots occur if
and only if the following inequality holds:

2Bε + 2d

[
αγB + εA

(
αγ

μ
B + (1 − α)

)]

> 2B

√
ε2 + 2dαγ ε + ε2A2. (3.9)

Since the term on the right is greater than 2Bε, this inequal-
ity cannot be satisfied if the term in square brackets is
negative, i.e., αγB + εA(

αγ
μ

B + (1 − α)) ≤ 0. Hence, we
get a negative upper bound for A that guarantees stability of
the two-patch system:

A ≤ A∗(α, γ ) := − αγB

ε
(

αγ
μ

B + (1 − α)
) < 0. (3.10)
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Then, there is a window of opportunity for A∗ < A < 0
where the coexistence state is stable in the absence of dis-
persal but could be destabilized by dispersal. We investigate
this possibility in more detail.

The threshold value A∗(α, γ ) is strictly decreasing in
both arguments, and A(0, 0) = 0. Hence, as the propor-
tion (α) of predator-induced dispersal or its strength (γ )
increases, the interval A∗ < A < 0 of potential destabi-
lization becomes larger. For each A∗ < A < 0, there is a
critical dispersal rate d∗ for which inequality (3.9) becomes
an equality. We can calculate

d∗ = ε2A2αγB + [ αγ
μ

B + (1 − α)](ε3A3 − 2ε2AB) + √
�

2[αγB + εA(
αγ
μ

B + (1 − α))]2
,

(3.11)

where

� = 4B2ε2
{[

αγB + εA

(
αγ

μ
B + (1 − α)

)]2

+ B2α2γ 2

−αγ (2B − εA2)

[
αγB + εA

(
αγ

μ
B + (1 − α)

)]}
.

All else being equal, this threshold value increases with α;
see Fig. 3.

With these thresholds for A and d, we have several cases
to consider; see Table 3. When A < A∗, the coexistence
state is stably independent of dispersal. When A∗ < A < 0
and 0 ≤ d < d∗, the coexistence equilibrium is still sta-
ble. However, for A∗ < A < 0 and d > d∗, dispersal
may destabilize the stable coexistence state for the single
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Fig. 3 The critical dispersal rate d∗ is an increasing function of α, the
strength of density-dependent dispersal. When d < d∗, the stability of
the coexistence equilibrium is the same as for α = 0. When d > d∗,
the stability of the coexistence state can change, compared to the case
with α = 0, provided that the travel time delay, τ, is in the appropriate
range (see text for details on that range). Parameters are ε = 1, γ =
0.5, k = 2, and μ = 0.2. These choices lead to A = −1/20 > A∗

patch. A similar analysis as in the previous section (for more
details, see Section 5 in Cooke and Grossman (1982)) gives
a critical value τ ∗ such that coexistence is stable for all
τ ∈ [0, τ ∗), but becomes unstable when the delay τ is larger.
We illustrate this destabilizing effect in Fig. 4. We choose
parameter values such that A∗ < A < 0. Then the system is
stable without dispersal but unstable with density-dependent
dispersal, as the densities in Fig. 4 show.

Finally, when A > 0, the situation is similar to Case 2 in
the previous section, but explicit calculations are more cum-
bersome since they include additional terms with α. More
specifically, one can define τ̄n,i , i = 1, 2, 3, 4 that act in
the same way as τn,i , i = 1, 2, 3, 4 in the previous section.
Specifically, the system can be stabilized when d > d∗ and
τ ∈ (τ̄0,3, τ̄0,1). In Fig. 5, we compare the region in the
(d, τ )-plane where stabilization happens for different values
of α. The case α = 0 is the same as in Fig. 1. For α = 1, the
stability region is much narrower with respect to τ, at least
for small d.

Discussion

The local conditions and mechanisms that affect the stability
of a community have been studied intensely since the work
by Rosenzweig and MacArthur (1963) and May (1973) and
are, by now, fairly well understood. Our understanding of
the effects of movement in spatially coupled communities
on their stability is much less developed, but some prin-
ciples have emerged in recent years. Movement between
identical patches, either as density-independent dispersal
(Jansen 1995) or as a density-dependent behavioral response
(Hauzy et al. 2010), does not change the stability of the
community on a single patch, as long as movement is instan-
taneous. Including movement time across a landscape in
simple density-independent dispersal models may stabilize
local populations, but never destabilizes local stable com-
munities (Neubert et al. 2002; Klepac et al. 2007). We
studied how density-dependent and independent dispersal
and movement time interact to affect community stability.

We used a two-patch Rosenzweig-MacArthur model with
prey-only dispersal. For density-independent dispersal, our
results agree with and extend the previous results that
including travel time acts as a stabilizing mechanism. Our
main result is that the interplay between density-dependent
dispersal and travel time between patches can destabilize
the community even though neither of these mechanisms
is destabilizing on its own. Our analysis also reveals that
temporal scales over which this interplay operates are com-
patible with temporal scales over which travel time and
density-dependent movement are expected to overlap in
some natural systems. Since our analysis relies on local
stability techniques, it is independent of the specific form
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Table 3 Summary of the
stability analysis of the
coexistence equilibrium with
α ∈ (0, 1]

0 < d < d∗ d > d∗

A < A∗ Stable Stable

A∗ < A < 0 Stable Stable if 0 < τ < τ ∗

A > 0 Unstable if d < min(εA/2, d∗) and otherwise stable if τ̄0,3 < τ < τ̄0,1

of the functions chosen to model growth, consumption,
and density-dependent dispersal. The overall results should
hold more generally, as long as the general shape of the
functions is similar, in particular, density-dependent move-
ment decreases with conspecific density and increases with
predator density.
Landscape heterogeneity and between-patch movement time
Landscape heterogeneity and geometry are crucial deter-
minants of individual movement. Movement in heteroge-
neous landscapes is often idealized as individuals dispersing
among focal patches where demographic processes take
place (Goodwin and Fahrig 2002; Nystrand et al. 2010;
Strevens and Bonsall 2011). Empirically, landscape matrix
surrounding focal patches does affect movement patterns
(Ricketts 2001) and travel time (Bélisle 2005) between
patches. While some more recent theories have explored
the effects of heterogeneous movement rates from patches
(Hanski and Gilpin 1991; Hanski 2001), very few have
explicitly included travel time between patches (Neubert
et al. 2002; Klepac et al. 2007).

Often, travel time can be assumed to be much faster than
demographic processes, thus supporting the assumption of
instantaneous dispersal found in most theories. However,
even arbitrarily short delays in dispersal can have very

strong impacts on predicted synchrony of predator-prey
oscillations between patches (Wall et al. 2013). Instanta-
neous and random dispersal has no direct stabilizing effect
on an unstable equilibrium (Briggs and Hoopes 2004).
Instead, low movement rate can only stabilize the metacom-
munity by maintaining asynchronous dynamics between
patches (Taylor and et al 1990). Our analytical study agrees
with and generalizes previous numerical analyses (Klepac
et al. 2007) showing a direct stabilizing effect of dispersal
in the presence of delayed dispersal. Our analysis reveals
how travel time and the timescale of movement can inter-
act to stabilize oscillations. We show that intermediate travel
time on the order of time to capture by the predator can
actually allow strong dispersal rates to stabilize the other-
wise unstable two-patch system (Fig. 2). In systems with
sedentary predators and mobile prey, frequent prey move-
ment and travel time approaching their life span provide
sufficient decoupling between predator and prey densities to
stabilize the equilibrium coexistence of the metacommunity.
This prediction applies to prey with long-lived dispersing
phases such as aquatic and marine species with long pelagic
larval stage, interacting with sedentary predators that can
have a much shorter or no pelagic larval phase (Kinlan and
Gaines 2003; Kinlan et al. 2005)).
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Fig. 4 Sustained oscillations can arise from the interplay between
density-dependent dispersal and travel time delay. The coexistence
equilibrium of the two-patch system is unstable even though the coex-
istence state is stable on each patch in the absence of dispersal. The
densities on the two patches oscillate out of phase. The large plots

show the respective densities on one of the patches, while the insets
show the corresponding densities on patch 1 (solid) and patch 2
(dashed). Parameter values are ε = 1, γ = 0.5, μ = 0.2, k = 1, α =
0.9, τ = 2, and d = 20. Accordingly, we calculate A∗ = −0.1459 <

A = −0.1 < 0; see text for details
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Fig. 5 Illustration of how the stability region for A > 0 in the
d-τ -plane changes between density-independent (α = 0) and density-
dependent (α = 1) dispersal. The dotted and solid curves for α = 0
are the same as the curves bounding the stability region in Fig. 1.
The range of τ -values for which stabilization occurs decreases signif-
icantly, at least for small enough values of d. Parameter values are the
same as in Fig. 1

Density-dependent dispersal and timescales of movement
The many mechanisms and causes of movement and dis-
persal are typically greatly simplified in ecological models
and implemented as either density-independent or density-
dependent rates. Multiple mechanisms of animal movement
are necessarily associated with multiple temporal scales
(Nieminen 1996; Goodwin and Fahrig 2002) that can con-
flict with the simplicity of spatially explicit models (Cantrell
and Cosner 1996; Auger et al. 2008). Predator-prey models
based on demographic processes typically assume instan-
taneous and density-independent movement (Jansen 2001)
on the same time scale as demographics. In contrast, preda-
tor avoidance or foraging behavior can trigger density-
dependent movement on much faster timescales (Abdllaoui
et al. 2007; Hauzy et al. 2007). In particular, the time to
movement from a patch can be comparable to travel time
between patches. Our results show that important dynamical
phenomena emerge from integrating fast density-dependent
trigger of movement with travel time over similar tem-
poral scales (see Table 3). For example, frequent prey
movement driven by density-dependent response to preda-
tor density can destabilize the metacommunity equilibrium
if travel time is sufficiently close to the time to capture
(see Fig. 4).

One important insight emerging from this result is that
frequent movement is an important driver of stability when
it is driven by a behavioral mechanism (predator avoid-
ance), which makes the prediction broadly applicable to
ecological systems. Even more importantly, our analysis
shows how metacommunities can be destabilized by the

interplay between several common properties (prey move-
ment, predator avoidance, and travel time) when none
of these properties is destabilizing on its own (Hauzy
et al. 2010). Our specific predictions suggest that such
destabilization could be observed in systems where fre-
quent prey movement in response to predators is asso-
ciated with long travel time. The effects of density-
dependent dispersal and travel time are not only lim-
ited to community stability, but they also extend to the
dynamics of nonequilibrium communities (Ramanantoan-
ina et al. 2011). Hauzy et al. (2010) demonstrate that
density-dependent dispersal can shift periodic to chaotic
behavior. Travel time for density-independent dispersal
can lead to a shift from in-phase to anti-phase locking
in cyclic communities (Wall et al. 2013). The behavior
observed in Fig. 4 points to a stable, anti-phase-locked
situation. In future work, we shall explore the effect
of density-dependent dispersal with travel time delay on
the stability of the phase-locked solution and potential
switches.

Future challenges Our study predicts that movement
driven by predator avoidance and travel time between
habitats can destabilize metacommunities. Our model still
includes relatively simplistic assumptions; for example, we
only included travel time between patches. In reality, travel
through unfavorable regions could induce mortality, partic-
ularly if dispersal is stress-induced (predator avoidance).
By linking mechanisms on lower scales, one could derive
expressions for travel time between patches and dispersal-
induced mortality from multi-scale models for individual
movement in continuous space (Cobbold and Lutscher
2014). Another avenue for future research is to include
behavior-based dispersal of the predator as well. Specifi-
cally, the dispersal rate of the predator should decrease as
a function of prey density. Some work in this direction was
already started, when the prey movement rate depends on
predator density alone (Abdllaoui et al. 2007; Mchich et al.
2005, 2007). Despite its limitations, our study contributes
to the integration of complex effects of landscapes and
behavior on movement, to a general theory of metacom-
munity stability. As our study suggests, this integration and
its application to natural systems depend on the explicit
assessment of temporal and spatial scales associated with
natural landscapes and life histories of species that control
movement.
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Appendix A: Stability of the coexistence steady state
when τ = 0

In this appendix, we demonstrate that the coexistence steady
state for the two-patch model (2.2) with τ = 0 is stable
if and only if the coexistence state is stable for the single-
patch model (2.3). The transformation introduced in Hauzy
et al. (2010) gives a block-diagonal matrix whose stability
properties can easily be determined.

We denote the vector of densities on patch i with Xi =
(hi, pi)

T . Then system (2.2) with τ = 0 can be written as

dX1

ds
= F(X1) − G(X1) + G(X2)

dX2

ds
= F(X2) − G(X2) + G(X1), (4.1)

where

F(Xi) =
(

ε(hi(1 − hi

k
) − hipi

1 + hi

),
hipi

1 + hi

− μpi

)
,

G(Xi) =
(

d(αγ
pihi

1 + hi

+ (1 − α)hi), 0

)
.

The crucial transformation consists of the change of vari-
ables: U = (X1 + X2)/2, V = (X1 − X2)/2. Then, system
(4.1) is equivalent to

dU

ds
= F(U + V ) + F(U − V )

2
,

dV

ds
= F(U + V ) − F(U − V )

2
+G(U − V ) − G(U + V ). (4.2)

Linearizing system (4.2) at the coexistence state U∗ =
(h∗, p∗)T , V ∗ = (0, 0)T , we get the linear system

dU

ds
= DF(U∗)U

dV

ds
= [DF(U∗) − 2DG(U∗)]V, (4.3)

where DF(·) and DG(·) denote the Jacobian matrix
of functions F and G, respectively. This system is in
block-diagonal form, and the steady state is stable if all
eigenvalues of the two matrices DF(U∗) and DF(U∗) −
2DG(U∗) have negative real parts.

We calculate both matrices.

DF(U∗) =
(

ε(1 − 2h∗/k − p∗/(1 + h∗)2) −εμ

p∗/(1 + h∗)2 0

)
,

and DF(U∗) − 2DG(U∗) =(
ε(1 − 2h∗/k − p∗/(1 + h∗)2) − 2d(αγp∗/(1 + h∗)2 + (1 − α)) − (ε + 2dαγ )μ

p∗/(1 + h∗)2 0

)
.

(4.4)

Since the determinants of both matrices are positive, stabil-
ity depends on the sign of the two traces. Since the trace
of the second matrix is smaller than the one of the first,
the coexistence state is stable precisely when the trace of
DF(U∗) is negative. But the matrix DF(U∗) is precisely
the community matrix of the single-patch Rosenzweig-
MacArthur model (2.3).

The same method gives the additional result that
(k, 0, k, 0) is stable for Eq. 2.2 if and only if (k, 0) is sta-
ble for the single-patch system. That is, the local stability
of symmetric equilibria does not depend on the values of d

and α.

Appendix B: Zeros of a transcendental polynomial

A key element in our analysis is the control of eigenval-
ues with a positive real part of the linearization at the
coexistence state. The following lemma from (Cooke and

Grossman 1982) shows that in our case, an eigenvalue with
a positive real part can only appear by passing through the
imaginary axis and not, for example, in a saddle-node bifur-
cation. For ease of referral and convenience of the reader,
we state this not-so-well-known lemma here.

Lemma 4.1 (Cooke and Grossman (1982)) Let f (λ, τ) =
λ2 + a1λ + a2λe−τλ + a3 + a4e

−λτ , where ai and τ are
real numbers and τ ≥ 0. Then, as τ varies, the sum of the
multiplicities of zeros of f in the open right half-plane can
change only if a zero appears on or crosses the imaginary
axis.
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