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Abstract Population density can be affected by its prey [re-
source] and predator [consumer] abundances through two dif-
ferent mechanisms: the alternation of birth [or somatic
growth] or death rate and inter-habitat movement. While the
food-web theory has traditionally been built on the former
mechanism, the latter mechanism has formed the basis of a
successful theory explaining the spatial distribution of organ-
isms in the context of behavioral and evolutionary ecology.
Yet, few studies have compared these two mechanisms, leav-
ing the question of how similar (or different) predictions de-
rived from birth–death-based and movement-based food-web
theories unanswered. Here, theoretical models of the tri-
trophic (resource–consumer-top predator) food chain were
used to compare food-web patterns arising from these two
mechanisms. Specifically, we evaluated the response of the
food-chain structure to inter-patch differences in productivity
for movement-based models and birth–death-based models.
Model analysis reveals that adaptive movements give rise to
positively correlated responses of all trophic levels to in-
creased productivity; however, this pattern was not observed

in the corresponding birth–death-based model. The
movement-based model predicts that the food chain response
to productivity is determined by the sensitivity of animal
movement to the environmental conditions. More specifically,
increasing sensitivity of a consumer or top predator leads to
smaller inter-patch variance of the resource or consumer den-
sity, while increasing inter-patch variance in the consumer or
resource density. In conclusion, adaptive movement provides
an alternative mechanism correlating the food-web structure
to environmental conditions.

Keywords Food-webtheory .Mathematicalmodel . Idealfree
distribution . Game theory . Productivity . Two-patchmodel

Introduction

A central issue in community ecology is what determines
species abundance, community structure, and their spatio-
temporal variation. Ecological theory suggests that interspe-
cific interaction is an important determinant of population
dynamics and the pattern of species abundance. The key as-
sumption in community ecology is that interspecific interac-
tions drive population dynamics through the alternation of
bir th (or somatic growth rate in physiological ly
parameterized models; Yodzis and Innes 1992) and death
rates. This assumption extends from the classical theory of
Lotka (1925) and Volterra (1926) to the recent theory on mu-
tualistic communities (e.g., Bastolla et al. 2009; Thébault and
Fontaine 2010) and communities with multiple interaction
types (Allesina and Tang 2012; Mougi and Kondoh 2012,
2014). For example, food-web theory (Polis and Winemiller
1995; deRuiter et al. 2005) has utilized the basic assumption
that population growth rate increases with increasing food
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resource consumption, while the mortality rate increases with
increasing attack by natural enemies.

When trophic interactions influence population levels via
the alternation of birth, growth, or death rates, the rate at which
new biomass is synthesized at the basal trophic level (termed
primary productivity) represents a major determinant of local
community structure (Rosenzweig 1971; Oksanen et al. 1981;
Yodzis 1984; Abrams 1995). Theory on linear food chain
predicts that changing productivity may not affect all trophic
levels in the same way; instead, the equilibrium biomass at a
given trophic level may be determined by either top-down or
bottom-up force. Consequently, increased productivity only
affects certain trophic levels (Oksanen et al. 1981; Mittelbach
et al. 1988; DeAngelis et al. 1995; Power 1992). For example,
in a tri-trophic food chain, the equilibrium biomass at the
second level may be exclusively determined by top-down
forces, and not affected by changing productivity (Hairstone
et al. 1960, Oksanen et al. 1981; DeAngelis et al. 1995). This
prediction holds as long as the population growth rate of the
third level (top predator) is exclusively determined by its re-
source density (ΔNtop/Ntop=f(Ntop−1)−mtop). However, em-
pirical studies suggest that, in some ecological communities,
the biomass of all trophic levels increases with increasing
productivity (Kagata and Ohgushi 2006), conflicting with
the theoretical prediction.

Movement is another major driver of population dynamics
(Johnson et al. 1992; Morales et al. 2010), which potentially
modifies community dynamics that arises from direct inter-
specific interactions (Holt 1984; Briggs and Hoopes 2004;
Abrams 2007; McCann et al. 2005; McCann and Rooney
2009). Inter-habitat movements (including both immigration
and emigration) may be more important than birth and death
when the time scale is too short for the birth–death process to
influence population dynamics or when the spatial scale is so
small that organisms easily depart or arrive at the focal habitat
area. Furthermore, organisms often change the habitats they
use to avoid high predation risk (Lima and Dill 1990) or to
seek certain resources (Cowie and Krebs 1979; Lima 2002).
Such adaptive movement generates a mechanism where pop-
ulation dynamics is influenced by its resources or consumers,
even in the absence of direct contact. Thus, this phenomenon
represents another potential mechanism relating food-web
structure to population dynamics.

The ideal free distribution (IFD) theory (e.g., Fretwell and
Lucas 1969; Fretwell 1972; Kacelnik et al. 1992; Křivan et al.
2008) correlates consumer population levels with resource
distribution, without considering the birth–death process. This
theory assumes that each consumer in a population adaptively
chooses a resource patch frommultiple resource patches char-
acterized by a specific amount of available resource. Accord-
ing to the IFD theory, individuals with perfect information
about within- and between-patch status should move from
more competitive, resource-poor patches (fewer resource or

more individuals) to less competitive, resource-rich patches
(more resource or less individuals) to reach Nash equilibrium,
where the animals distribute themselves among resource
patches in a way that all the resource patches have the same
intrinsic value (Holt 1984). Thus, a habitat with higher re-
source production is predicted to contain more consumer in-
dividuals. Originally, this theory did not take the top-down
effect into account. Yet, it is straightforward to extend this
theory to include the natural enemy effect; whereby, individ-
uals move from a patch with higher predation risk to a patch
with lower predation risk (Lima and Dill 1990). Under natural
conditions, both resource availability and predation risk are
expected to affect animal movement to drive community dy-
namics (Sih 1984; Lima and Dill 1990; Abrams 2007; Bolker
et al. 2003; Křivan et al. 2008).

If adaptive movement, rather than the birth–death pro-
cess, is the major driver of local population dynamics,
how should trophic communities respond to productivity?
How is the resulting community-level pattern different to
that which arises when trophic interactions directly affect
birth and death rates? A number of theoretical models
have taken prey–predator habitat choice into account as
a major driving force of prey–predator population dynam-
ics (Iwasa 1982; Hugie and Dill 1994; Křivan 1997; van
Baalen and Sabelis 1999; Alonzo 2002; Bolker et al.
2003; Jackson et al. 2004; Abrams 2007; Cressman
et al. 2008; Křivan et al. 2008; Cressman and Garay
2009; Křivan and Cressman 2009; Wang and Takeuchi
2009). However, most studies, including IFD theory, have
been carried out in the context of behavioral or evolution-
ary game theory, making its relevance to food-web ecol-
ogy less clear. Moreover, previous studies that include
animal movement often consider the confounding effect
of trophic interactions on birth–death processes, which
mask the pure movement-mediated effect (Hugie and Dill
1994; Křivan 1997; van Baalen and Sabelis 1999; Alonzo
2002; Abrams 2007; Wang and Takeuchi 2009), place
more focus on evolutionary dynamics (Iwasa 1982;
Alonzo 2002; Křivan and Cressman 2009; Cressman and
Garay 2009), or do not address, or successfully isolate,
the productivity effect on community structure (Iwasa
1982; Křivan 1997; van Baalen and Sabelis 1999; Abrams
2007; Cressman et al. 2008; Cressman and Garay 2009).
As a result, the pure effect of productivity on trophic
communities mediated by the alternation of animal adap-
tive movements remains unclear. Jackson et al. (2004)
constructed an exceptional individual-based prey–predator
model, where inter-habitat movements by prey and pred-
ators exclusively drive population dynamics. The authors
used this model to show that the information organisms
have about patch status influences how patch productivity
is related to prey and predator distributions. However, the
individual-based nature of their model and simulation-
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dependent analysis prevent one from gaining a general,
analytical solution. Furthermore, no comparison was
made with what arises when prey–predator interactions
directly affect birth–death processes.

Here, we present two mathematical models of a tri-trophic
linear food chain. Prey–predator interaction affects population
dynamics via the alternation of birth and death rates in the
birth–death-based model, whereas population dynamics is
solely driven by adaptive and non-adaptive (random) move-
ments of consumers and top predators in the movement-based
model. Adaptive movement in the latter model is based on the
fitness function that is derived from the former model,
allowing the two models to be directly compared. We focused
on comparing the responses of the two models to inter-patch
differences in productivity. We show that the birth–death-
based and movement-based models leads to qualitatively dif-
ferent responses to increased productivity and discuss its
mechanism and ecological implications.

Model

We present two models of tri-trophic food chain dynamics: (1)
one driven by birth–death processes and (2) one driven by
adaptive or non-adaptive movement. To evaluate how inter-
patch variation in productivity is reflected in community
structure, the equilibrium densities of three species and their
responses to productivity were evaluated.

Food-chain dynamics driven by the birth–death process

Consider a tri-trophic food chain containing a resource, con-
sumer, and top predator. The resource is added to the system at
a constant rate, r, which represents ecosystem productivity.
The population dynamics of the consumer and top predator
are driven by the birth–death process linked to trophic inter-
actions; that is, the birth rate increases when individuals in a
population are eating more, while the death rate increases
when more individuals in a population are being eaten.

The population dynamics of the three species are described
as:

dR

dt
¼ r−αRC; ð1aÞ

dC

dt
¼ eCαRC−βCT−dCC; ð1bÞ

dT

dt
¼ eTβCT−dTT ; ð1cÞ

where R, C, and T are the population sizes of the resource,
consumer, and top predator, respectively; r is the resource
production rate (system productivity); α is the interaction
strength between the consumer and the resource; β is the

interaction strength between the top predator and consumer;
eC and eT are the energy conversion rates of consumer and top
predator, respectively; dC and dT are the mortality rates of the
consumer and top predator, respectively.

Food-chain dynamics driven by inter-patch movement

Consider a two-patch meta-community of a tri-trophic food
chain, where the local dynamics of the consumer and top-
predator populations are driven solely by inter-habitat move-
ment. It is assumed that the resource level in habitat i (i=1 or
2) increases at the habitat-specific constant rate, ri. To evaluate
the effect of productivity on community structure, we assume
that habitat 1 is richer in productivity than habitat 2 (r1≥r2),
without loss of generality. The resource at habitat i is lost at
rate, αRiCi, due to exploitation by the consumer in the same
habitat, while the density of the other species (i.e., the con-
sumer and top predator) are not directly affected by other
species. This setting allows us to isolate the dynamics that
arise from just behavioral movement.

The population dynamics of the three species in habitat i
are described by the following differential equations:

dRi

dt
¼ ri−αRiCi; ð2aÞ

dCi

dt
¼ mC − f CCi þ 1− f Cð ÞC j

� �
; ð2bÞ

dTi

dt
¼ mT − f TT i þ 1− f Tð ÞT j

� �
; ð2cÞ

where Ri, Ci, and Ti are the population sizes of the resource,
consumer, and top predator in habitat i, respectively. ri is the
resource production rate of habitat i; mC and mT are the max-
imum movement rates of the consumer and top predator, re-
spectively; fC and fT represent the effect of other species to the
rate of movement of the consumer and top predator from
habitat i to j, respectively. Assume that a consumer moves
between habitat patches according to differences in both the
resource (Ri) and top predator (Ti) densities of the two habitats,
while a top predator moves according to difference in consum-
er density (Ci) between the two habitat patches. We set fC and
fT as:

f C ¼ 1

1þ eθC α R j−Rið Þ−β Ti−T jð Þf g ð3aÞ

and

f T ¼ 1

1þ eθTβ Ci−C jð Þ ð3bÞ

respectively, where α is the interaction strength between the
consumer and resource; β is the interaction strength between
the top predator and consumer; θC and θT represent the
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Bsensitivity^ of the consumer and top predator to the differ-
ences in habitat quality, respectively, and may be interpreted
as the certainty of information about habitat status (larger θi
represents higher certainty of information; θi=0 if no informa-
tion available as to habitat status). θi (i=C or T) is set to 0 for
random movement; whereby, as θi increases, the function be-
comes closer to a step function of the difference in habitat
quality (Fig. 1).

Note that, with this model, it always holds that (dC1/dt)+
(dC2/dt)=0 and that (dT1/dt)+(dT2/dt)=0; thus, the total pop-
ulation size of consumers, C1+C2, and top predators, T1+T2,
are kept constant over time, confirming that the confounding
effect via the alternation of birth–death processes is excluded.

Results

Food-chain dynamics driven by the birth–death process

The effect of system productivity, r, on the equilibrium density
of each species depends on species composition (see
Appendix, Fig. 2). When the community consists of a re-
source and consumer (no top predator), an increase in produc-
tivity, r, has no effect on resource level, (R*(=dC/eCα)), but
does increase consumer population level at equilibrium,
C*(=r/αR∗). When the three species coexist, an increase in
productivity, r, has no influence on the equilibrium population
level of the consumer, C*(=dT/eTβ), but does increase the
equilibrium population levels of the resource level, R*(=reT-
β/αdT) and predator, T*(=(reCeT/dT)−(dC/β)).

To compare these results with the results of following the
two-patch, movement-driven model analysis easily, let us see
what is expected if there are two isolated birth–death-driven
communities with the same species composition (resource–
consumer or resource–consumer-top predator), but different
productivity (r). The population densities (Ri, Ci, Ti) in more
and less productive habitats are denoted by subscripts, i=H
and L, respectively. When the community consists of a re-
source and consumer, the habitat with higher productivity is
occupied by a consumer with a higher population level (CH

* >
CL
*), but the resource level remains unchanged (RH

* =RL
*).

When the community consists of a resource, consumer, and
top predator, the habitat with higher productivity contains
higher resource and top predator levels (RH

* >RL
* ,TH

* >TL
*), but

the population level of the consumer remains the same in both
habitats (CH

∗ =CL
∗).

Food-chain dynamics driven by adaptive inter-patch
movement

Consider a resource–consumer system (T1
*=T2

*=0). The
equilibrium densities (Ri*, Ci*) depend on the adaptive capa-
bility of the consumer, θC (Appendix, Figs. 2 and 3). When a
consumer randomly moves between the two patches (i.e., the
absence of consumer adaptation; θC =0 and, thus, fC=0.5), the
population levels of the consumer, Ci, in the two habitats are
the same (C1

*=C2
*=C*); consequently, the plant population

level, Ri, is higher in habitat 1 than in habitat 2 (R1*=r1/αC*>
R2*=r2/αC*). When consumer movement is adaptive (θC >
0), the resource and consumer levels at equilibrium are higher
at the more productive habitat 1 compared to the less produc-
tive habitat 2 (R1

*>R2
*,C1

*>C2
*). Note, here, the moving rate

from habitat 2 to 1 is larger than the opposite direction (fC<(1
−fC)); thus, the number of consumers moving from habitat 1
to 2 equals that from habitat 2 to 1 (fCC1

*=(1−fC)C2
*; balanced

dispersal rate, sensu Holt 1985). Numerical calculations con-
firmed that the system is locally stable for the parameter space
examined in this study (Fig. 2).

Next, consider a three-species system, where the resource,
consumer, and top predator coexist (Appendix, Figs. 2 and 3).
When the consumer randomly moves (θC =0), inter-patch dif-
ferences in the population levels of the consumer and top
predator vanish (C1

*=C2
*=C*, T1

*=T2
*=T*), while the re-

source is more abundant in habitat 1 (R1
*>R2

*). The sensitiv-
ity of the top predator (θT) has no effect on the pattern; how-
ever, when the consumer adaptively moves (θC >0), the sen-
sitivity of the top predator (θT) matters. If the top predator
randomly moves (θT=0), its population levels are the same
in both habitats (T1

*=T2
*), whereas the resource and consum-

er levels at equilibrium are higher in the more productive
habitat (R1

*>R2
*, C1

*>C2
*). In contrast, if the top predator

adaptively moves θT >0, inter-patch differences in the popu-
lation levels of all three species occur; that is, R1

*>R2
*, C1

*>
C2

*, T1
*>T2

*. Numerical calculations confirmed that the sys-
tem is stable within the parameter space examined in this
study (Fig. 2).

Given two three-species local communities with different
productivity, inter-patch variation in population levels is relat-
ed to the sensitivity of the consumer (θC) and top predator
(θT), as shown by the numerical calculation (Fig. 3). The spa-
tial heterogeneity of the resource is larger when θT is larger or
θC is smaller. The spatial distribution of the consumer is
skewed to the habitat with higher productivity, because the
consumer is more sensitive (larger θC) or the top predator is

Fitness difference between patches (x)
0

0

1

fi(x) i = 0

0.5
1 5 10

Fig. 1 Shape of the movement function, fi(x), where i is C or T
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less sensitive (smaller θT). In contrast, the spatial distribution
of the top predator is skewed to the more productive habitat
when the both animals are more sensitive (larger θC or θT;
Fig. 3). The relative importance of the top-predator for the
movement of the consumer, β/α, does not qualitatively alter
these results (Fig. 3).

Discussion

Food-web theory may be built on the basis of the classic IFD
theory. Our theoretical model demonstrated that adaptive
movement in response to changing densities of interacting
species drives population dynamics and shapes food-chain
responses to habitat productivity. This finding implies that
productivity-dependent patterns in the community-level struc-
ture may emerge, even in the absence of direct birth–death
process-mediated effects between species, which are assumed
to be necessary in the traditional community theory (Polis and
Winemiller 1995; deRuiter et al. 2005). The comparison of
two different models, one based on the traditional birth–death
process and one based on just movement, allowed us to iden-
tify the similarities and differences between the patterns that
emerge from these two models.

In movement-driven population dynamics, sensitivity (or
certainty of information on resource patch status) is the main
determinant of community structure (see Figs. 2 and 3), be-
cause an organism with stronger sensitivity is able to respond
to smaller inter-habitat variances in resource availability or

predation risk, generating a stronger interspecific effect. This
phenomenon contrasts with the community dynamics arising
from direct trophic interactions, where the strength of inter-
specific effects on birth and death rates (per-capita predation
rate in food-web dynamics, for example) are central for shap-
ing communities.When adaptivemovement drives population
dynamics, the responses of trophic levels to inter-habitat dif-
ference in productivity are dependent on the sensitivity of both
consumers and top predators. More specifically, an increase in
the sensitivity of consumers leads to smaller inter-patch vari-
ance in resource density, but an increase in inter-patch vari-
ance in consumer and top-predator density. Similarly, an in-
crease in the sensitivity of top predators lowers the inter-patch
variance of consumer density, but increases the inter-patch
variance in top-predator and resource densities (Fig. 3).

According to the IFD theory, organisms that adaptively
choose habitat patches should eventually distribute them-
selves among patches, until all patches have the same their
quality in terms of resource availability or predation risk,
and to realize the fitness equivalence among individuals in
different patches. This process provides a potential mecha-
nism where adaptive consumers cause resource density to
be independent of habitat productivity. Indeed, in our mod-
el, the consumer (i.e., the prey of the top predator) becomes
equally distributed in the two habitats as the sensitivity of
the top predator increases. Similarly, the resource levels of
the two habitats become more similar as the sensitivity of
the consumer increases (Fig. 3). However, population dy-
namics that do not only take movement into account also
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Movement of the top predator is random (c, d) or adaptive (e, f). Solid

and dashed lines are for Habitat 1 (higher production) and habitat 2 (lower
production), respectively. Green, blue, and red indicate plant, consumer,
and top predator, respectively. Parameters are r1=1.5, r2=1,mC=mT=0.1,
α=β=2, and θC=θT=10. The initial population sizes of Ri, Ci, and Ti
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give rise to Bfitness equivalence^ between habitats (Křivan
et al. 2008). In fact, in the model with birth–death-driven
dynamics, it should hold that eCαR

∗=dC at the equilibrium
in which only resources and consumers coexist (trans-
formed from Eq. A1b in Appendix for C*>0). This equa-
tion suggests that the amount of benefit a consumer re-
ceives, eCαR*, is constant, dc, and independent of system
productivity, r. Similarly, in the three-species equilibrium,
it holds that eCαR*−βT*=dC and eTβC

∗=dT (transformed
from Eq. A3b and A3c in Appendix for C*, T*>0). This
equation suggests that the benefit the consumer or top pred-
ator receives from the community, eCαR*−βT* or eTβC∗, is
again constant, dc or dT, and independent of system produc-
tivity, r. It is clear that fitness equivalence alone is not
enough to discriminate between birth–death-driven and
movement-driven community dynamics.

There is a striking difference between birth–death-driven
and movement-driven models in their response to productiv-
ity. When population dynamics is driven by adaptive move-
ment, the population density at all the trophic levels is predict-
ed to be higher in a habitat with higher productivity (Figs. 2
and 3; also see B(f) Three-species model with adaptive con-
sumer and adaptive top predator^ in Appendix). In contrast,
the tri-trophic food chain model based on birth–death process
predicts that the second level shows no response to changing
productivity (e.g., the resource in the two-species system or
the consumer in the three-species systems). The prediction
derived from birth–death-based model is well known in
food-chain theory (Oksanen et al. 1981), but the empirical
support for it is ambiguous (e.g., the references in Persson
et al. 1996). For example, in a review of bottom-up cascades
in terrestrial plant-herbivore-parasitoid systems by Kagata and
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Ohgushi (2006), it was found that positive effects to herbi-
vores tended to be accompanied with positive effects to para-
sitoids. Ecological theory suggests that the positive responses
of adjacent trophic levels can be explained by making addi-
tional assumptions to the birth–death-based model such as
environmental heterogeneity (Oksanen 1990b), seasonality
(Oksanen 1990a), ratio-dependent functional response (Arditi
and Ginzburg 1989), transient dynamics (Abrams and Roth
1994), and species heterogeneity within a trophic level
(Abrams 1993). Present model added adaptive movement as
an alternative explanation for the pattern found in real trophic
communities.

Trophic cascade is a well-known phenomenon in commu-
nity ecology, where a change in species density is transmitted
to non-adjacent trophic levels along the food chain via trophic
interactions (Strong 1992; Schmitz et al. 2000, Kagata and
Ohgushi 2006). Our model suggests that even in the absence
of direct trophic interactions, an analogous phenomenon may
occur when organisms adaptively move. In other words, adap-
tive movement of sensitive species sets a condition that drives
the movement of adjacent adaptive species, potentially lead-
ing to the transmission of a behavior-mediated effect along the
food chain. This phenomenon explains why inter-habitat het-
erogeneity in productivity leads to heterogeneity in all of the
trophic levels in our model (Fig. 2f; see B(f) Three-species
model with adaptive consumer and adaptive top predator^ in
Appendix). In fact, when the consumer is non-adaptive, the
top-predator, whether it is adaptive or non-adaptive, shows no
response to inter-habitat variance in productivity (Fig. 2e; see
B(d) Three-species model with non-adaptive consumer and
adaptive top predator^ in Appendix). It is hypothesized that
the insertion of non-adaptive species to a linear food chain
would prevent the interspecific effect cascading along the
food chain.

Movement-based and birth–death-based models of the
food chain showed different responses to productivity change.
The differences in their predictions might imply that the food-
chain response depends on both spatial and temporal scales, in
addition to the combination of species involved. In natural
ecosystems, the relative importance of adaptive movement
and birth–death processes is expected to vary with spatial
and temporal scales. In the long-term scale of multiple gener-
ations, the latter may be more prominent. In contrast, the
movement-based food-web theory requires that different
patches are spatially separated, and that consumers and pred-
ators should be able to move between them; thus, this theory
may only be applicable at smaller spatial scales (Adler et al.
2001). In addition, adaptive movement and birth–death pro-
cesses should be interactive under most spatial and temporal
scale, as predicted by a number of community dynamics
models. Yet, at the same time, interacting species might occu-
py different spatio-temporal scales. For example, predators at
higher trophic level tend to be larger and, thus, their spatial

scale is also larger (Holt 1996; McCann et al. 2005). In com-
parison, parasitoids, which are usually smaller than their host,
might have smaller movement ranges. Similarly, a time scale
of multiple generations for a short-living species can be a time
scale of behavioral movement for a long-living organism. This
prey–predator mismatch in spatio-temporal scales may imply
that the population dynamics of interacting species is driven
by different mechanisms. In other words, while the population
dynamics of one species is influenced by another species via
the alternation of the birth–death process, the opposite effect
arises from the induction of adaptive movement. The ecolog-
ical consequence of this process and how the emerging pattern
depends on the choice of spatio-temporal scale is an open
future question that requires addressing to fully understand
what drives community dynamics and what patterns should
emerge in nature.
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Appendix

I. Equilibrium state for the model with the birth–death
process

(a) Two-species model

The equilibrium is obtained by setting the right hand sides
of Eq. 1a and b to zero and T to 0:

r−αR*C* ¼ 0 ðA1aÞ
eCαR

*C*−dCC* ¼ 0 ðA1bÞ

These equations are solved to give:

R* ¼ dC
eCα

ðA2aÞ

C* ¼ reC
dC

ðA2bÞ

(b) Three-species model

Similarly, the equilibrium for three-species is obtained by
solving:

r−αR*C* ¼ 0 ðA3aÞ
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eCαR
*C*−βC*T*−dCC* ¼ 0 ðA3bÞ

eTβC
*T*−dTT* ¼ 0 ðA3cÞ

as:

R* ¼ reTβ
αdT

ðA4aÞ

C* ¼ dT
eTβ

ðA4bÞ

T* ¼ reCeT
dT

−
dC
β

ðA4cÞ

Note, this system is always locally stable. Under equilibri-
um conditions, we obtain the Jacobian matrix, as follows:

J ¼

−
dTα
eTβ

−
eT rβ
dT

0

dTeCα
eTβ

0 −
dT
eT

0
eT eCeT rβ−dCdTð Þ

dT
0

0
BBBBBB@

1
CCCCCCA

ðA5Þ

The characteristic equation, the solution of which is the
eigenvalue, is given as:

λ3 þ w1λ
2 þ w2λþ w3 ¼ 0; ðA6Þ

where:

w1 ¼ dTα

eTβ
; ðA7aÞ

w2 ¼ eCr αþ eTβð Þ−dCdT ; ðA7bÞ

w3 ¼ eTα
dCdT
eTβ

−eT r
� �

: ðA7cÞ

The equilibrium point is locally stable if w1, w3>0
and w1w2>w3, according to the Routh-Hurwitz criteria.
It is trivial that w1>0 because all parameter values are
positive. Inequality w3>0 always holds, as long as the
consumer has a positive equilibrium density. Hence, the
stability condition reduces to w1w2>w3. We find the last
condition reduces to rα>0, which always holds.

II. Equilibrium state for the model with adaptive
or non-adaptive movement

(a) Two-species model with non-adaptive consumer

The equilibrium is obtained by solving:

ri−αR*
i C

*
i ¼ 0 ðA8aÞ

0:5mC −C*
1 þ C*

2

� � ¼ 0 ðA8bÞ

as:

R*
i ¼

ri
αC*

i

ðA9aÞ

C*
1 ¼ C*

2 ðA9bÞ

(b) Two-species model with an adaptive consumer

The following equations should hold at equilibrium:

ri − αR*
i C

*
i ¼ 0 ðA10aÞ

mC − f CC
*
1 þ 1− f Cð ÞC*

2

� � ¼ 0 ðA10bÞ

The two equations taken together give:

C*
2

C*
1

¼ 1

f C
−1 ¼ exp θC

r2
C*

2

−
r1
C*

1

 !" #
; ðA11Þ

Note, when d(C1+C2)/dt=0, it holds that C1+C2=Ctotal,
where Ctotal is constant. Thus, Eq. A8 becomes:

Cconst

C*
1

−1 ¼ exp θC
r2

Cconst−C*
1

−
r1
C*

1

 !" #
: ðA12Þ

The LHS of Eq. A12 is a monotonically decreasing func-
tion of C1* with its limits:

lim
C*

1→0

Cconst

.
C*

1

� �
−1 ¼ ∞

and

lim
C*

1→Cconst

Cconst

.
C*

1

� �
−1 ¼ 0:

The RHS of Eq. A12 is a monotonically increasing func-
tion of C1* with its limits:

lim
C*

1→0

exp θC r2
.

Cconst−C*
1

� 	
−r1
.
C*

1

n oh i
¼ 0

and

lim
C*

1→Cconst

exp θC r2
.

Cconst−C*
1

� 	
−r1
.
C*

1

n oh i
¼ ∞:

Taken together, there should be unique C
*

1 , which holds
Eq. A12.

C*
1 should also be larger thanCconst/2 as follows. The LHS

of Eq. A12 is 1 for Ci*=Cconst/2, while the RHS is smaller
than 1 for C1*=Cconst/2 as:

θC r2
.

Cconst−C*
1

� 	
−r1
.
C*

1

n o
< 0
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suggesting that LHS should be larger than RHS for C1*=C-

const/2.Given that the LHS and LHS of Eq. A12 are decreasing
and increasing functions of C1*, respectively, the solution,

C*
1 , should be larger than Cconst/2. Thus, it follows that

C2*>C1* as:

C*
2 ¼ Cconst−C*

1 < Cconst−Cconst

.
2 ¼ Cconst

.
2 < C*

1:

Note, when Cconst=C
*
1

� 	
−1 < 1, it should follow that:

exp θC r2
.

Cconst−C*
1

� 	
−r1
.
C*

1

n oh i
< 1

suggesting that r2/C2
∗−r1/C1

∗<0 and, thus, R1
∗>R2

∗.

(c) Three-species model with a non-adaptive consumer and
non-adaptive top predator

The following equations should hold at equilibrium:

ri − αR*
i C

*
i ¼ 0 ðA13aÞ

0:5mC −C*
1 þ C*

2

� � ¼ 0 ðA13bÞ
0:5mT −T*

1 þ T *
2

� � ¼ 0 ðA13cÞ

These three equations taken together give:

R*
i ¼

ri
αC* ðA14aÞ

C*
1 ¼ C*

2 ¼ C* ðA14bÞ
T*
1 ¼ T*

2 ¼ T* ðA14cÞ

It should hold that R1*>R2* as r1>r2.

(d) Three-species model with a non-adaptive consumer and
adaptive top predator

The following equations should hold at equilibrium:

ri − αR*
i C

*
i ¼ 0 ðA15aÞ

0:5mC − C*
1 þ C*

2

� � ¼ 0 ðA15bÞ
mT − f TT

*
1 þ 1− f Tð ÞT*

2

� � ¼ 0 ðA15cÞ

Equations A15a and A15b give:

R*
i ¼

ri
αC* ðA16aÞ

C*
1 ¼ C*

2 ¼ C* ðA16bÞ

Further, note, when f T ¼ 1
1þeθT βC∗−βC∗ð Þ ¼ 0:5, it follows

that:

T*
1 ¼ T*

2 ¼ T* ðA16cÞ

It should hold that R1*>R2* as r1>r2.

(e) Three-species model with an adaptive consumer and
non-adaptive top predator

The following equations should hold at equilibrium:

ri − αR*
i C

*
i ¼ 0 ðA17aÞ

mC − f CC
*
1 þ 1− f Cð ÞC*

2

� � ¼ 0 ðA17bÞ
0:5mC −T*

1 þ T*
2

� � ¼ 0 ðA17cÞ

Equation A17c gives:

T*
1 ¼ T*

2 ¼ T* ðA18Þ

Using this equation with Eq. A17b, we get:

f C ¼ 1

1þ eθC αR*
i −βT

*
� 	

− αR*
j−βT

*
� 	� �

¼ 1

1þ eθCα R*
i −R

*
jð Þ ðA19Þ

Given this, Eqs. A17a and A17b are identical to A10a and
A10b. Thus, R1

*>R2
* and C1

*>C2
*.

(f) Three-species model with an adaptive consumer and
adaptive top predator

At equilibrium, it should hold that:

ri−αR*
i C

*
i ¼ 0 ðA20aÞ

mC − f CC
*
1 þ 1− f Cð ÞC*

2

� � ¼ 0 ðA20bÞ
mT − f TT

*
1 þ 1− f Tð ÞT*

2

� � ¼ 0 ðA20cÞ

Using Eq. A13a, Eqs. A13b and A13c are transformed to:

C*
2

C*
1

¼ 1

f C
−1

¼ exp θC α
r2
C*

2

−
r1
C*

1

 !
þ β T*

1−T
*
2

� 	( )" #
ðA21aÞ

T*
2

T*
1

¼ 1

f T
−1 ¼ exp θT α C*

2−C
*
1

� 	� �
 �
; ðA21bÞ

respectively. Note, when d(C1+C2)/dt=0 and d(T1+T2)/dt=0,
it should hold that C1+C2=Cconst and that T1+T2=Tconst,
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where Cconst and Tconst are constants. Using these equations,
Eqs. A13c and A14a taken together give:

Cconst

C*
1

−1 ¼ exp θC α
r2

Cconst−C*
1

−
r1
C*

1

 !
þ β

2T const

exp θTα Cconst−2C*
1

� 	
 �þ 1
−T const

 !( )" #
; ðA22Þ

LHS of Eq. A14b is a decreasing function of C1* with its
limits, ∞(C1

∗→0) and 0(C1
∗→Cconst); RHS of Eq. A14b is an

increasing function of C1* with its limits, 0(C1
∗→0) and

∞(C1
∗→Cconst). Therefore, there should exist a unique solu-

tion, C1
∗, for Eq. A14b.

It should generally hold that T1
*>T2

* and, consequently, it
should also hold that C1

*>C2
* and that R1

*>R2
* (r1/C1

*>r2/C2
*).

This is proved as follows. First, assume that T1
*<T2

*. Then,
using Eq. A14b, it should follow that C1

*<C2
*. However, if

both T1
*<T2

* and C1
*<C2

* hold, then Eq. A14a never holds,
suggesting that it should not hold that T1

*<T2
*. Next, assume

that T1
*=T2

*. Then, using Eq. A14b, it should follow that C1
*=

C2
*. However, if both T1

*=T2
* and C1

*=C2
* hold, then Eq. A14a

should never hold, suggesting that it should not hold that T1
*=

T2
*. Consequently, it is proven that R1

*>R2
*, C1

*>C2
* and T1

*>T2
*

always hold.
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