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Abstract Spatial and stochastic models are often
straightforward to simulate but difficult to analyze math-
ematically. Most of the mathematical methods available
for nonlinear stochastic and spatial models are based on
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heuristic rather than mathematically justified assumptions,
so that, e.g., the choice of the moment closure can be con-
sidered more of an art than a science. In this paper, we build
on recent developments in specific branch of probability
theory, Markov evolutions in the space of locally finite
configurations, to develop a mathematically rigorous and
practical framework that we expect to be widely applicable
for theoretical ecology. In particular, we show how spa-
tial moment equations of all orders can be systematically
derived from the underlying individual-based assumptions.
Further, as a new mathematical development, we go beyond
mean-field theory by discussing how spatial moment equa-
tions can be perturbatively expanded around the mean-field
model. While we have suggested such a perturbation expan-
sion in our previous research, the present paper gives a
rigorous mathematical justification. In addition to bringing
mathematical rigor, the application of the mathematically
well-established framework of Markov evolutions allows
one to derive perturbation expansions in a transparent
and systematic manner, which we hope will facilitate the
application of the methods in theoretical ecology.

Keywords Markov evolution · Locally finite
configuration · Point process · Mean field · Perturbation ·
Ecological modelling

Introduction

Almost all ecological and evolutionary processes are in one
way or another structured by space, and consequently spatial
models are ubiquitous in theoretical ecology (e.g., Durrett
and Levin 1994; Dieckmann et al. 2000; Okubo and Levin
2001; Cantrell and Cosner 2003; Hanski and Gaggiotti
2004; Cantrell et al. 2010). Reflecting the many choices to
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be made when simplifying ecological reality into a mathe-
matical model, theoreticians have developed a great variety
of modelling frameworks, including models in which space
and time are considered as discrete or continuous, and mod-
els with deterministic or stochastic dynamics. To mention
a few examples (for a more thorough review, see, e.g.,
Berec 2002), mathematical frameworks for spatial ecol-
ogy include partial differential equations (e.g., Cantrell and
Cosner 2003), systems of ordinary differential equations
(e.g., Hanski and Ovaskainen 2000), integro-difference
equations (e.g., Kot et al. 1996), lattice models (e.g.,
Hiebeler 2000), point process models (e.g., Bolker and
Pacala 1997), quantum field theory (e.g., Dodd and
Ferguson 2009; O’Dwyer and Green 2010), and individual-
based simulation models (e.g., Grimm and Railsback 2005).
However, given the complex and hidden nature of ecologi-
cal reality, choices of modelling framework are often based
on familiarity or mathematical tractability, rather than the
specific biological characteristics of the system. As models
are approximations of nature, many (often somewhat arbi-
trary) choices are made in the process of modelling, and an
important challenge is to understand which choices make
qualitative differences in the conclusions of a modelling
exercise.

Spatial and stochastic models are often straightforward
to simulate but difficult to analyze mathematically. Thus
many of the ecological insights gained from such mod-
els have been based on simulations, the results of which
can be hard to generalize and communicate in spite of the
effort that has gone into the development of standardized
protocols (Grimm et al. 2006). Tools for linking individual-
based models with analytical models include mean-field
(Morozov and Poggiale 2012) and scale-transition (Chesson
2012) theories, as well as related mathematical tools such
as aggregation of variables (Iwasa et al. 1987), moment
closures (Levermore 1996; Keeling 2000; Murrell et al.
2004; Bolker 2004; Barraquand and Murrell 2013), and pair
approximations (Matsuda et al. 1992; Keeling et al. 1997;
Ellner 2001). However, most of the mathematical meth-
ods available for nonlinear stochastic and spatial models
are based on heuristic rather than mathematically justified
assumptions, so that, e.g., the choice of the moment clo-
sure is considered more of an art than a science (Bolker
2004). Thus, one reason for the dominance of simulation
approaches in ecological modelling is the continued lack
of robust and accessible mathematical tools that would
enable the mathematical analysis of spatial and stochastic
models.

A specific class of spatial and stochastic models called
spatiotemporal point processes are common in both statisti-
cal (e.g., Thompson 1955; Penttinen et al. 1992; Shimatani
2002; Law et al. 2009) and theoretical (e.g., Bolker and
Pacala1997; Murrell and Law 2003; Law et al. 2003;

Ovaskainen and Cornell 2006b; North et al. 2011a;
Barraquand and Murrell 2013) ecology. In this framework,
individual organisms are represented by points in space, so
that demographic processes such as birth, death, and disper-
sal can be represented by the appearance, disappearance,
and movement of points. This individual-based perspective
gives to the assumptions and parameters clear biological
interpretations and allows demographic stochasticity to
be incorporated in a natural way. The points can also be
assigned marks (Penttinen et al. 1992; Illian et al. 2008;
Ovaskainen and Cornell 2006a; Baddeley 2010), allowing
for differentiation among, e.g., species, subpopulations
or genotypes, or (with continuous-valued marks) for the
modelling of size dynamics of individuals. Sophisticated
statistical machinery has been developed to fit such mod-
els to data (Baddeley and Turner 2005; Illian et al. 2008,
2012; Baddeley 2010), and this area of statistics is still
under active development. In theoretical ecology, spatial
point process models have typically been analyzed with
the help of a moment closure (Bolker and Pacala 1997;
Keeling 2000; Filipe and Gibson 2001; Law et al. 2003;
Murrell et al. 2004; Bolker 2004; Barraquand and Murrell
2013), i.e., by truncating the infinite hierarchy of moments
by assuming a specific relationship between higher-order
(typically third-order) moments and the lower-order
moments. However, moment closures are uncontrolled
approximations whose suitability to a particular modelling
question is difficult to establish a priori, and the optimal
closure may depend on the problem and the parameter
regime (e.g., Murrell et al. 2004).

Within probability theory, a mathematically rigorous
toolbox for the analysis of spatiotemporal point pro-
cesses has recently started to emerge (Kondratiev et al.
2006b, 2008a, b, 2010; Kondratiev and Skorokhod 2006;
Finkelshtein et al. 2012), but these tools have attracted lit-
tle attention in the ecological literature, for two reasons.
First, the mathematical literature is written in a highly
technical notation, making it difficult for many theoreti-
cal ecologists even to assess the relevance of the results.
For example, what most ecologists (or statisticians) would
call “spatiotemporal point processes” are instead “Markov
evolutions in the space of locally finite configurations” in
probabilists’ terminology. Second, much of the mathemati-
cal literature focuses on issues such as proving existence and
uniqueness of solutions, which may seem trivial from ecol-
ogists’ point of view, given that the processes are defined to
mimic real systems (although nonexistence or nonunique-
ness of solutions may usefully indicate an ambiguity or
problem in the mapping from an intuitive idea about an
ecological system into a formal mathematical description).
Nevertheless, we believe that this formalism affords a more
powerful and economical description of spatiotemporal
point processes than those previously adopted in theoretical
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ecology. For instance, in earlier work in theoretical ecology
(e.g., Bolker and Pacala 1997; Law et al. 2003; Ovaskainen
and Cornell 2006b; North et al. 2011a), spatial moment
equations were derived separately for each of the orders.
In contrast, the formalism used by the probabilists (e.g.,
Kondratiev et al. 2008a; Finkelshtein et al. 2009) allows
one to derive exact equations for spatial moments simulta-
neously of all orders.

In this paper, our aim is to translate mathematical lit-
erature for spatiotemporal point processes to provide a
mathematically rigorous and practical framework for the-
oretical ecology. More specifically, we will (1) introduce
the notation of Markov evolutions in locally finite config-
urations and (2) show how spatial moment equations of all
orders can be systematically derived from the underlying
individual-based assumptions. Further, as a new mathe-
matical development, we will go beyond mean-field the-
ory by (3) discussing how spatial moment equations can
be perturbatively expanded around the mean-field model.
While we have proposed such a perturbation expansion in
our previous research (Ovaskainen and Cornell 2006a, b;
North and Ovaskainen 2007; Cornell and Ovaskainen 2008;
North et al. 2011a, b; Gurarie and Ovaskainen 2013),
before the present work, we have not been able to give
it a rigorous mathematical justification. In addition to
bringing mathematical rigor, the application of the math-
ematically well-established framework of Markov evolu-
tions allows us to derive our previously defined pertur-
bation expansions in a transparent and systematic man-
ner, which we hope will facilitate the application of the
methods.

The framework and the mathematical methods to be dis-
cussed are very general in the sense that the modelled enti-
ties (typically representing individuals) may follow birth–
death dynamics, move, interact with other entities, and
they may have marks to represent, e.g., different species,
genotypes, sexes, and age classes. To simplify the intro-
duction of the mathematical framework, however, we will
restrict the discussion in the present paper to a specific
model, namely the spatial and stochastic logistic model
(Bolker and Pacala 1997; Law et al.2003; Ovaskainen and
Cornell2006b), which we consider as an illustrative example
of a nonlinear stochastic and spatial model with localized
interactions.

The modelling framework

Preliminaries

We model individuals (called particles in the mathemati-
cal literature) by discrete points in R

d . To avoid boundary
conditions and finite-size effects, we consider an infinitely

large domain R
d , but assume that the number of individuals

within any finite region is finite. Thus, mathematically, we
consider the space of locally finite configurations,

� :=
{
γ ⊂ R

d
∣∣ |γ ∩�| < ∞ for any bounded � ⊂ R

d
}
,

where, if A is a discrete set of points, then |A| stands for
the number of points in A. To define a model, one might
like to start from an initial configuration γ0 and then give
rules on how the configuration evolves in time. However, it
turns out to be very difficult to write down the correspond-
ing equation for γt in a mathematically rigorous manner (for
a nonrigorous attempt at such a derivation, see Ovaskainen
and Cornell 2006b; Cornell and Ovaskainen 2008); there-
fore, we use ensembles of such starting configurations as
a starting point. We use a probability measure μt on � to
describe the state of the system at time t. Informally, the
measure μt describes how likely the system is to be in a
given configuration at time t, given that it starts from an
initial state described by the measure μ0 at time 0.

Due to the complicated nature of the measure μt , it is
difficult to define the time evolution of the system by for-
mulating an equation for μt . Instead, we build the evolution
of the measure with the help of observables (functions on �

which typically take real values but could be also vectors,
matrices, etc.) which we denote by F. Thus, given a config-
uration γ , F(γ ) is a numerical quantity that characterizes
some property of the configuration γ . As an example, con-
sider the indicator function 1�(x) of a subdomain � ⊂ R

d ,
with value 1 if x ∈ � and with value 0 otherwise. In this
case, the observable F(γ ) = ∑

x∈γ 1�(x) simply counts
how many points the configuration γ has within �.

We define the pairing between an observable and a
measure by

〈F,μ〉 :=
∫

�

F (γ ) dμ(γ ).

For the current example, 〈F,μ〉 is the expected (mean)
number of points within the region � if a configuration
is sampled according to the measure μ. For example, if μ
corresponds to the Poisson measure, often called complete
spatial randomness in the ecological and statistical liter-
atures (Haase 1995), with intensity (expected number of
individuals per unit area) ρ, then 〈F,μ〉 = ρ|�| where |�|
is the volume (in two-dimensional case, the area) of �.

The observable F can be considered as a test function, so
that the pairing 〈F,μ〉 gives information about the state of
the system, i.e., the measure μ. By varying the function F, it
is possible to get essentially any desired information about
the state of the system μ. This is described in more detail
below, where we employ the spatial moment functions as
observables.
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Defining a model

A specific model is defined by describing how individual-
level events modify an arbitrary observable F. More pre-
cisely, the evolution of states is defined through the differ-
ential equation

d

dt
〈F,μ(t)〉 = 〈LF,μ(t)〉, (1)

where L is a linear operator acting on observables, i.e.,
functions on �.

To illustrate, we consider the evolution of states associ-
ated with the spatial and stochastic logistic model (Bolker
and Pacala 1997; Law et al. 2003; Ovaskainen and Cornell
2006b), abbreviated henceforth as SSLM. A Lagrangian
(individual-based) description of this model is as follows:
(1) Sedentary individuals produce propagules at a per capita
fecundity rate f (by “rate” we mean probability per time
unit, so that in a continuous-time model, the probability of a
propagule being produced by a particular individual during
a short time dt is f dt). (2) A newly produced propagule is
distributed (instantaneously) according to a dispersal kernel,
and it is assumed to establish (instantaneously) as a new-
born individual, which matures (instantaneously) and starts
to produce propagules. (3) Existing individuals may die
for two reasons. Firstly, there is a constant background per
capita mortality rate m, yielding an exponentially distributed
lifetime with mean 1/m. Secondly, mortality has a density-
dependent component (self-thinning), so that competition
among the individuals may also lead to death. The density-
dependent component of the death rate of a focal individual
is a sum of contributions from all the other individuals
within the entire R

d , but the strength of the competitive
effect decreases with distance.

The SSLM is mathematically defined through the linear
operator L with

(LF )(γ ) =
∑
x∈γ

⎛
⎜⎜⎜⎜⎜⎝

m

︸︷︷︸
dens−ind

+
∑

y∈γ \x
a−(x − y)

︸ ︷︷ ︸
dens−dep

⎞
⎟⎟⎟⎟⎟⎠
[F(γ \ x) − F(γ )]

︸ ︷︷ ︸
mortality

+
∑
y∈γ

∫

Rd

a+(x − y)[F(γ ∪ x)− F(γ )]dx
︸ ︷︷ ︸

reproduction

. (2)

Here, the upper line corresponds to a death of an individual
at location x, which changes the value of the observable F
from F(γ ) to F(γ \x) (where the notation γ \x means “the
set γ , omitting the point x”). Because only existing individ-
uals may die, the sum goes over x ∈ γ . The death rate of the
individual located at x is the sum of the density-independent

rate m and the density-dependent rate
∑

y∈γ \x a−(x − y).
In the latter, the sum goes over all other individuals that are
present in the system except the focal individual x, and the
kernel a−(x − y) describes the mortality rate imposed by
an individual located at y to the individual located at x. The
lower line of Eq. 2 corresponds to the birth of a new individ-
ual at location x, which changes the value of the observable
F from F(γ ) to F(γ ∪ x). Here, the sum goes over all
individuals which are currently present and which may thus
produce propagules. The reproduction kernel a+(x − y)

indicates the rate (per unit area) at which newborn individ-
uals are created at location x by a parent located at y. The
new individual may be born anywhere within R

d , as indi-
cated by the integral over the space. Note that the per capita
fecundity rate is incorporated in the reproduction kernel a+,
i.e., f = ∫

Rd a
+(x)dx.

To finalize the model definition, an initial condition must
be given. For example, the initial state μ0 can be the Pois-
son measure with intensity parameter ρ(x), where we have
included the spatial location x in the argument to emphasize
that the initial intensity can vary in space.

Spatial moments and cumulants

While the operator L (together with initial measure μ0)
defines the model, as such it yields no statistical infor-
mation on how the population behaves. To analyze the
model behavior, we turn to the time evolution of spatial
moments and spatial cumulants (Fig. 1), which translate
the Lagrangian (individual-based) model definition into an
Eulerian (population-based) framework. Spatial moments
are also called correlation functions, and spatial cumulants
are also called truncated correlation functions or semi-
invariants (Ruelle 1964, 1969).

Before defining spatial moments and cumulants, we start
from what we expect to be familiar to many theoretical ecol-
ogists, namely the usual nonspatial moments and cumulants
of a real-valued random variable X. Denoting the probability
density function of the random variable X by f, the moment
of order n is defined by

mn = E
[
Xn

] =
∫ ∞

−∞
xnf (x)dx.

A central tool for working with moments is the moment
generating function,

MX(t) := E
[
etX

]
= 1 +m1t +m2

t2

2! +m3
t3

3! + ... (3)

Cumulants are an alternative to moments: there is a one-
to-one mapping between cumulants and moments. In some
cases, cumulants lead to simpler algebra than moments, e.g.,
the cumulants for a sum of two independent variables are
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simply the sum of the cumulants of the variables. Cumulants
can be defined through the cumulant generating function

CX(t) := logE
[
etX

]
= c1t + c2

t2

2! + c3
t3

3! + ... (4)

The first few moments relate to the corresponding cumu-
lants as

m1 = c1

m2 = c2
1 + c2

m3 = c3
1 + 3c1c2 + c3,

so that more generally for n ≥ 2,

cn = mn −
∑

p1+...+ps=n
s≥2,pi>0 for i=1,...,s

1

s!cp1 . . . cps . (5)

Moving to the spatial case, the nth order spatial moment
is denoted by the function k(n)(x1, . . . , xn). It is assumed
to be symmetric, i.e., invariant to permutation of the argu-
ments x1, . . . , xn. It is said to correspond to measure μ if
the equation

∫

�

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)dμ(γ )

= 1

n!
∫

(Rd )n
f (n)(x1, . . . , xn)k

(n)(x1, . . . , xn) dx1 . . . dxn (6)

holds for all symmetric functions f (n) : (Rd)(n) → R. The
spatial moments of all orders (n = 0, 1, ...) are collected
into the family k = {

k(n)
}
, with the zeroth order defined

as k(0) = 1. The vector k of all spatial moments is a suffi-
cient description of the state of the system, i.e., it includes
the same statistical information as the measure μ (see
Electronic Supplementary Material). These objects are
called correlation functions in Mathematical Physics and
factorial moments in Probability Theory.

For example, let the function f (1)(x) be the indicator
function of a set �. Then, by the above definition, the
expected number of points within � can be written with the
help of the first correlation function k(1)(x) as∫

�

∑
x∈γ

1�(x)dμ(γ ) =
∫

Rd

1�(x)k
(1)(x)dx

=
∫

�

k(1)(x)dx.

Thus, k(1)(x) corresponds to the expected population den-
sity at location x, so that the probability of there being at
least one individual in a small neighborhood (of size dx)
around the location x is k(1)(x)dx. The second-order spa-
tial moment k(2)(x1, x2) measures the density of pairs of
individuals, so that the probability that there is at least
one individual in the neighborhood of the location x1 and
simultaneously at least one individual in the neighborhood

of the location x2 is k(2)(x1, x2)dx1dx2. More generally,
k(n)(x1, . . . , xn)dx1 · · · dxn can be interpreted as the prob-
ability that there are simultaneously individuals in the
neighborhoods of each of the locations xi . Thus, the first-
order spatial moment describes expected population density,
while the second and higher orders describe dependency
among the individuals, i.e., the degree of clustering of the
pattern. In the case of Poisson measure (i.e., complete spa-
tial randomness), the spatial moment function of any order
n is simply given by the product (Albeverio et al. 1998)

k(n)(x1, . . . , xn) =
n∏

i=1

k
(1)
1 (xi).

Analogously to nonspatial cumulants (5), the spatial
cumulants can be defined recursively as (see, e.g., Ruelle
1964; Kondratiev et al. 2008b)

u(0) : = 0,

u(1)(x) : = k(1)(x),

u(2)(x1, x2) : = k(2)(x1, x2)− k(1)(x1)k
(1)(x2)

and, for any η, |η| = n ≥ 2,

u(n)(η) : = k(n)(η)−
∑

η1�...�ηs=η
s≥2,ηi �=∅ for i=1,...,s

1

s!u(η1)...u(ηs) . (7)

Here, � means a disjoint union (a modified union opera-
tion that indexes the elements according to which set they
originated in), and the sum includes all permutations of
elements of a given partition of η. Thus, as in the non-
spatial case, the cumulant of order n is obtained from
the moment of order n by subtracting all combinations of
lower-order cumulants.

For the Poisson measure, all spatial cumulants of order at
least two are zero. Unlike the spatial moments, the spatial
cumulants can often be expected to be small in the sense that
they tend to zero as the distance between any two points in
the definition tends to infinity.

Generating functionals

Moment (and cumulant) generating functions provide one
of the most central mathematical tools in the analysis of
real-valued random variables. In the same manner, much
of the mathematical machinery that can be developed for
Markov evolutions in the space of locally finite configura-
tions is based on the use of generating functionals. While
the material covered elsewhere in the main text of this
paper does not require knowledge on generating function-
als, we provide here a short and informal treatment of this
topic, a slightly more detailed treatment being given in the
Electronic Supplementary Material.

The spatial generalization of a moment generating func-
tion is that of a spatial moment generating functional,
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also called the Bogolyubov functional(Kondratiev and Kuna
2002; Kondratiev et al. 2006a), denoted by B(θ). The
Bogolyubov functional corresponding to a measure μ is
defined as

B(θ) :=
∫

�

∏
x∈γ

(
1 + θ(x)

)
dμ(γ ), (8)

where θ is any real function θ on R
d with a compact sup-

port. We note that as the configuration γ is locally finite, and
as the function θ has compact support, the product has only
a finite number of values that differ from 1, and thus there
is no problem with convergence of the infinite product. This
integral is analogous to the definition E[etX] of the usual
moment generating function (3). To see this, we note first
that integration with respect to the measure μ over the space
� corresponds to taking an expectation. In the present case,
the random variable is not a real value X, but a point con-
figuration γ , thus we cannot simply multiply it by a scalar
and exponentiate. For this reason, the scalar is replaced by
the function θ , and the exponential is replaced by the prod-
uct over the value of 1 + θ evaluated at the locations of the
point configuration.

An alternative but equivalent (see Electronic Supplemen-
tary Material) way of defining the Bogolyubov functional is
through spatial moments k corresponding to the measure μ,

B(θ) :=
∫

�0

(∏
x∈η

θ(x)

)
k(η) dλ(η) (9)

Here (and elsewhere), η denotes a finite configuration,
to be distinguished from a potentially infinite but locally
finite configuration denoted by γ . Thus η ∈ �0, the set of
all finite subsets of Rd . Here, k is the vector of all spatial
moments, and k(η) is evaluated using the nth order spatial
moment, where n = |η| denotes the number of points in the
finite configuration η. In the equation above, the integral is
taken over the space of all finite configurations with respect
to the measure λ. This measure is defined for any function
H on �0 as

∫

�0

H(η) dλ(η) := H(0)+
∞∑
n=1

1

n!
∫

(Rd )n
H (n)(x1, . . . , xn) dx1 . . . dxn.

(10)

Thus, while our first definition of the Bogolyubov func-
tional corresponds to E[etX], the second definition corre-

sponds to the series expansion 1+m1t +m2
t2

2! +m3
t3

3! + ...,
where the powers of t have been replaced by products of the
function θ .

The spatial cumulant generating functional is defined in
the same way as the spatial moment generating functional,
but replacing moments with cumulants, i.e.,

W(θ) =
∫

�0

(∏
x∈η

θ(x)

)
u(η)dλ(η).

In full agreement with the nonspatial case, the generat-
ing functionals of spatial moments and spatial cumulants
are related to each other as (see Electronic Supplementary
Material)

B(θ) = eW(θ).

Time evolution of spatial moments and cumulants

One central aim of this paper is to provide a general recipe
for how to translate an equation for the evolution of mea-
sures (i.e., the model definition at the individual level) into
a set of equations for spatial moments or equivalently for
spatial cumulants (Fig. 1). In other words, we present a
mapping from the Markov generator L into another linear
operator L
, the latter of which describes the time evolution
at the level of spatial moments by

d

dt
kt (η) =

(
L
kt

)
(η). (11)

As the derivation is somewhat technical, we present the full
version in the Electronic Supplementary Material, and illus-
trate here only the end result, i.e., the resulting operator L
.
For the case of the SSLM, we obtain

(L
k)(η) = −
⎛
⎝m|η| +

∑
x∈η

∑
y∈η\x

a−(x − y)

⎞
⎠ k(η) (12)

−
∑
y∈η

∫

Rd

a−(x − y)k(η ∪ x)dx (13)

+
∑
y∈η

⎛
⎝ ∑

x∈η\y
a+(x − y)

⎞
⎠ k(η \ y) (14)

+
∑
y∈η

∫

Rd

a+(x − y)k((η \ y) ∪ x)dx (15)

In earlier work in theoretical ecology (e.g., Bolker and
Pacala 1997; Law et al. 2003; Ovaskainen and Cornell
2006b; North et al. 2011a), spatial moment equations were
derived separately for each of the orders. In contrast, the
above equation contains the exact equations for spatial
moments simultaneously of all orders, as the finite configu-
ration η may include any number of points.

While the general formula (12–15) may seem compli-
cated at a first glance, the terms in it can be interpreted
in an intuitive manner. To see this, consider a particular η
consisting of n points, η = {x1, . . . , xn}. By the interpre-
tation of the correlation function, k(η)dx1 · · · dxn can be
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Fig. 1 An overview of the mathematical framework presented in
this paper. The evolution of measures represents an individual-based
(Lagrangian) description of a spatiotemporal point process, whereas
the evolutions of spatial moments and spatial cumulants give equiva-
lent population-based (Eulerian) descriptions. The aggregated distribu-
tion of particles shown in panel a was generated by a process in which
“habitat patches” are generated at a rate 0.05 per unit area. Each patch
consists of a Poisson distributed (with mean 20) number of particles
distributed in space according to a two-dimensional Gaussian kernel
(length scale 0.5 spatial units) centered at the location of the patch.
Particles disappear independently of each other at rate 1. The process
was simulated for 20 time units to reach approximately the stationary
state. Panels b and c show second-order spatial moments and cumu-
lants, respectively, measured either empirically (the points) from the
snapshot shown in panel a or computed analytically for the stationary
state (the lines) using the formulae given in Cornell and Ovaskainen
(2008). With the above parameters, the stationary density of the parti-
cles is one, and thus the second-order spatial moment converges to one
when the distance between locations diverges. In contrast, the second-
order spatial cumulant converges to zero when the distance between
locations diverges and thus statistical dependency vanishes

thought as the probability that a randomly chosen configu-
ration γ contains individuals in the neighborhoods of each
of the locations xi . Let us call the individuals near (within
the neighborhoods dxi) the locations η as the η-individuals.
The negative terms in Eqs. 12–15 represent the rate at which
configurations containing η-individuals are lost, which hap-
pens if any of the η-individuals dies. The rate at which
this happens due to background mortality is m|η|. Con-
cerning density-dependent mortality, there are two options.
First, one of the η-individuals may kill another η-individual,
which case is represented by the double sum in Eq. 12. Sec-
ond, an individual which is not one of the η-individuals
may kill one of the η-individuals. This possibility is repre-
sented by Eq. 13. As the individual that imposes mortality
to one of the η-individuals can be located at any location
x, this term contains an integral over the space. Because
the probability of a configuration γ having points both
in the neighborhoods of η and at the point x is given by
k(η∪x), this term includes a spatial moment function of the
order |η| + 1.

Similarly, the positive terms represent the rate at which
a configuration γ which does not contain η-individuals will
start doing so. As the model involves only events in which
new individuals appear one at a time, the configuration must
already involve individuals near all locations in η except
one, denoted by y ∈ η. The density of such configura-
tions is k(η \ y). Again, there are two possibilities: the
parent of the new individual to appear at y may be part of
η \ y (14), or it may be any other individual of the present
configuration (15).

To make the link from the general Eqs. 12–15 to the ear-
lier literature, let us set η = {x} and thus consider the first
spatial moment. In this case, Eq. 11 simplifies to

d

dt
k
(1)
t (x) = −mk

(1)
t (x)−

∫

Rd

a−(x − y)k
(2)
t (y, x) dy

+
∫

Rd

a+(x − y)k
(1)
t (y) dy,

as derived in previous studies (e.g Bolker and Pacala 1997;
Law et al. 2003; Ovaskainen and Cornell 2006b). As the
first spatial moment depends on the second spatial moment
(or more generally, the spatial moment of order n depends
on the spatial moment of order n + 1 if the model involves
pairwise interactions), the spatial moment equations form
an infinite hierarchy and thus they cannot be solved
exactly.

The corresponding equations for spatial cumulants can be
obtained simply by employing the relationship between spa-
tial cumulants and spatial moments. In general, this results
in the equation (see Electronic Supplementary Material for
details)

d

dt
ut (η) =

(
Q
ut

)
(η), (16)
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where, unlike in the spatial moment equations, the operator
Q
 is nonlinear. Q
 can be decomposed into linear and
nonlinear parts as

Q
 = L
 +M
,

where the linear part L
 is the same as that determining the
time evolution for spatial moments. For example, in the case
of the SSLM, the first-order equation for spatial cumulants
reads

d

dt
u
(1)
t (x) = −mu

(1)
t (x)−

∫

Rd

a−(x − y)u
(2)
t (y, x) dy

+
∫

Rd

a+(x − y)u
(1)
t (y) dy

−u
(1)
t (y)

∫

Rd

a−(x − y)u
(1)
t (y) dy, (17)

where the last term in the right-hand side is the nonlinear
component. As for the spatial moment equations, spatial
cumulants form an infinite hierarchy that cannot be solved
exactly, but unlike spatial moments, spatial cumulants of
higher orders can be expected to be small, at least in some
useful limit.

Perturbation expansion around the mean-field limit

The equations for the time evolution of spatial moments (or
equivalently, for the spatial cumulants) correspond exactly
to the underlying Markov evolution, but as noted above, they
cannot be solved in closed form except for some trivial cases
(essentially, cases without ecological interactions or density
dependent terms). The main problem here is that the lower-
order moments depend on higher-order moments, so that,
for example, in the case of the SSLM, the nth order spatial
moments (or cumulants) depends on the n+1th order spatial
moments (or cumulants). In theoretical ecology as well as
in physics and chemistry, a lot of emphasis has been paid on
developing moment closures (e.g., Levermore 1996; Murrell
et al. 2004; Bolker 2004) and pair approximations (e.g.,
Matsuda et al. 1992; Keeling et al. 1997; Ellner 2001), the
latter of which are analogous to moment closures in the con-
text of discrete-space problems. Moment closure methods
produce a closed set of equations by making some struc-
tural assumption on how the higher-order moments depend
on the lower-order moments.

While moment closure methods have been successfully
applied to a wide range of problems, they do not provide
a mathematically satisfactory approximation, in the sense
that the approximation is uncontrolled. Comparison to sim-
ulations is usually the only way to assess how accurate
approximation a given moment closure is for a particu-
lar problem, and how the accuracy of the approximation

depends on the parameter regime. To overcome this lim-
itation, some of us (OO and SC) have developed in our
earlier work (Ovaskainen and Cornell 2006a, b; North and
Ovaskainen 2007; Cornell and Ovaskainen 2008; North
et al. 2011a, b), an alternative approach, based on consid-
ering the full spatial and stochastic model as a perturbation
expansion around the mean-field model and working out the
first terms of the resulting expansion. Comparison to sim-
ulations has suggested that this approach indeed provides
a controlled approximation which becomes asymptotically
exact at the mean-field limit. However, as our earlier deriva-
tions have been of heuristic nature, we have not been able
to show the convergence of the perturbation expansion to
the exact solution in a mathematically rigorous manner. In
this section, we re-derive the perturbation expansion, build-
ing on the mathematical machinery that some of us (DF,
OK, and YK) have developed (Kondratiev and Kuna 2002;
Kondratiev et al. 2008a; Finkelshtein et al. 2010, 2011,
2012) in our earlier work. As we go here beyond the mean-
field limit, this section also contains methods and results
that are mathematically new.

A mean-field limit generally refers to a situation in
which the law of mass action holds, i.e., it assumes that
individuals are (at least locally) well-mixed in the sense that
the probability of interaction of a randomly chosen indi-
vidual with any other individual from the same population
does not depend on the individual chosen (Morozov and
Poggiale 2012). The mean-field limit, also called a meso-
scopic limit (Presutti 2009), can be obtained by various
kinds of scalings, which have been called, e.g., mean-field,
Vlasov and Lebowitz-Penrose in the mathematical liter-
ature. In this paper, we will consider only one particular
limit, which is that of long-ranged interactions (Ovaskainen
and Cornell 2006b). To define this limit, we note that
interactions are described in the operator L with the help
of kernels, which describe pairwise interactions between
individuals. For example, in case of the SSLM, two such
kernels are involved, namely a− (competition/density-
dependent mortality) and a+ (reproduction and dispersal).
For any such kernel a, we define a scaled version aε by

aε(x) := εda(εx). (18)

As ε → 0, the kernel becomes increasingly flat and
long-ranged, while its integral remains constant, i.e.,
∫

Rd

aε(x) dx =
∫

Rd

a(x) dx

independently of ε > 0. For a given model defined by an
operator L, we define a scaled model by replacing the oper-
ator L by Lε , meaning that all the kernels of L are rescaled
as in Eq. 18. Further, we denote the corresponding oper-
ators for the spatial moments and cumulants by L

�
ε , Q�

ε ,
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and M
�
ε , and the solutions to the corresponding equations

by k̂ε,t (η) and ûε,t (η). Thus, e.g., k̂ε,t satisfies

∂

∂t
k̂ε,t (η) =

(
L�
ε k̂ε,t

)
(η). (19)

The main idea here is that as ε → 0, the individu-
als interact with an increasing number of other individuals,
and thus the dynamics of the model are expected to fol-
low that of mass action with increasing accuracy. As ε →
0, the spatial patterns that emerge due to the dynamics
(e.g., aggregations) are also expected to become increas-
ingly long-ranged, and thus a limiting shape for the spatial
moments (and cumulants) should involve a scaling with
ε with respect to space. Motivated by this observation,
we consider the following renormalization procedure. We
denote for an arbitrary c > 0 by Sc the scaling of space

(Sck)(η) := k(cη),

where η ∈ �0 is any finite point configuration and cη

denotes the set {cx | x ∈ η}. We further denote by L
�
ε,ren a

renormalized version of the operator Lε , defined by

L�
ε,ren := Sε−1L

�
ε Sε. (20)

We denote the solution to the spatial moment equation
corresponding to L

�
ε,ren by kε,t (η), so that

∂

∂t
kε,t (η) =

(
L�
ε,renkε,t

)
(η). (21)

Comparing Eq.(19) to Eq.(21) shows that

k̂ε,t (η) = kε,t (εη). (22)

Before proceeding with the analysis, we note the reason
why we consider two differently scaled versions of the spa-
tial moments. If simulating the process with a given ε > 0,
we obtain an estimate of the spatial moment k̂ε,t . How-
ever, to consider the limiting procedure analytically, we do
not expect k̂ε,t to yield a nontrivial limit, whereas kε,t is
expected to do so. Equation 22 connects these two scal-
ings, making it possible to compare simulations to analytical
solutions.

We denote by uε,t the spatial cumulant that corresponds
to the spatial moment kε,t . As we approach the mean-field
limit, we expect the higher-order cumulants, which describe
the spatial patterns emerging due to localized interactions,
to weaken. More precisely, based on our earlier nonrigorous
analyses (Ovaskainen and Cornell 2006b), we expect that

uε,t (η) = vt (η)+ εdwt (η)+ o(εd), (23)

where o(εd) refers to a term that goes to zero faster than
εd as ε → 0. Here, vt represents the mean-field, and wt

the leading ’correction term’. Inserting this assumption into
the equation for time evolution of spatial cumulants yields
evolution equations for vt and wt . In these equations, lower-
order cumulants still depend on higher-order cumulants,

but equating powers of ε leads to a closed set of equa-
tions (Ovaskainen and Cornell 2006b). In the Electronic
Supplementary Material, we make this procedure mathe-
matically rigorous by showing that the equation for v(t)

is nonzero only on the space of one-point configurations.
In other words, at the limit of ε → 0 only the density of
individuals matters, the spatial distribution becoming com-
pletely random (thus corresponding to Poisson measure in
mathematical terminology).

The above observation results in a closed form equation
for v(t), i.e., the mean-field equation. For the case of SSLM,
the only modification is that the term corresponding to the
second-order cumulant is dropped from Eq. 17, resulting in

d

dt
v
(1)
t (x)=−mv

(1)
t (x)− v

(1)
t (y)

∫

Rd

a−(x − y)v
(1)
t (y) dy

+
∫

Rd

a+(x − y)v
(1)
t (y) dy.

The usual nonspatial logistic model is obtained by further
assuming translational invariance, i.e., that the initial con-
dition is independent of spatial location. In this case, in the
limit ε → 0 the expected population density ρt = v

(1)
t (x)

becomes independent of location, and evolves as

d

dt
ρt = (A+ − μ)ρt − A−ρ2

t ,

where A+ = ∫
Rd a

+(x)dx and A− = ∫
Rd a

−(x)dx denote
the integrals of the reproduction and mortality kernels,
respectively.

The convergence of the SSLM to the mean-field has
been rigorously proved earlier by Finkelshtein et al. (2013).
Our new results (Electronic Supplementary Material) show
that the first-order correction term wt is nonzero only on
the space of one- and two-point configurations. Thus, for
large (but finite) interactions, the two-point spatial cumulant
dominates the spatial pattern, the higher-order cumulants
being less important. This result motivates the use of sym-
metric moment closures at the limit of long-ranged interac-
tions, as suggested by Ovaskainen and Cornell (2006b). In
the context of the perturbation expansion, the observation
that wt is zero for higher-order terms than two-point con-
figurations results in a closed differential equation for wt ,
where the mean-field solution vt is present as a source term
(see Electronic Supplementary Material for the resulting
equation for the SSLM).

To illustrate, Fig. 2 compares individual-based simula-
tions to a numerical solution of vt and wt for a particular
parameterization of the SSLM. As expected, with ε → 0
the density converges to the mean-field limit vt , and the lin-
earized rate at which the system approaches the mean-field
density is given by the correction term wt (Fig. 2a). Fur-
ther, the limiting shape of the second cumulant is given by
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Fig. 2 A comparison between individual-based simulations of the
SSLM and a numerical solution to the first-order perturbation expan-
sion of the spatial cumulant equations. Panel a depicts the first-order
spatial cumulant, which corresponds to population density, and panel
b the second-order spatial cumulant, which corresponds to spatial pat-
terning at the level of two-point correlations. In panel a, the dots
present simulation results with ε = 1, 1/2, 1/4, 1/8, 1/16, and 1/32,
whereas the lines show the predictions of the mean-field model (func-
tion vt , horizontal line) and first-order perturbation theory (function
wt , decreasing line). In panel b, the thin lines show simulation results,
with color of the line corresponding to the different values of ε shown
in panel a, whereas the thick orange line shows the prediction of the
first-order perturbation theory (function wt ). Note that both axes in
panel b have been scaled by ε to result in a nontrivial and finite limit-
ing shape. As we assume a translationally invariant case, the first-order
spatial cumulant is independent of space and the second-order spatial
cumulant depends only on the distance 
x between the two points.
Parameter values d = 1 (i.e., one dimensional space), initial distribu-
tion Poisson with intensity 1, fecundity A+ = 2, density-independent
mortality m = 1, and density-dependent mortality A− = 1. Both the
fecundity and mortality kernels are assumed to have a top-hat shape
(explaining the sharp edges for the second-order spatial cumulant), i.e.,
a+(x) = 1 if |x| ≤ 1 whereas otherwise a+(x) = 0, and a−(x) = 1/2
if |x| ≤ 1 whereas otherwise a−(x) = 0. The state of the process is
shown at time t = 3. Simulations were conducted using the Gillespie
algorithm (Gillespie 1977) in a domain of size U = 200/ε with peri-
odic boundary conditions, and the results shown are the average of
4,000 replicate simulations

the correction term wt (Fig. 2b) predicted by the perturba-
tion theory. To see this, note that the simulation results (the
thin lines in Fig. 2b) converge to the limiting shape (the
thick orange line in Fig. 2b) as the length scale parame-
ter ε approaches zero, i.e., when the range of interactions
in the simulations was set to increasingly large values. We
note that the second-order spatial cumulant is positive and

thus the spatial pattern is more aggregated than in the mean-
field case of complete spatial randomness. As observed
earlier (Law et al. 2003), this results in elevated competition
among the individuals, leading to a lower population density
than in the mean-field model. Further comparisons between
first-order perturbation theory and individual-based simu-
lations can be found from our earlier work in the contexts
of population dynamics (Ovaskainen and Cornell 2006a, b;
North and Ovaskainen 2007; Cornell and Ovaskainen 2008),
evolutionary dynamics (North et al. 2011a, b), and animal
movement (Gurarie and Ovaskainen 2013).

Discussion

In this paper, we have presented a formalism that applies
to a wide range of spatially explicit ecological models. The
formalism, called Markov evolutions in the space of locally
finite configurations, has become well established in the
mathematical literature (Kondratiev et al. 2006b, 2008a, b,
2010; Kondratiev and Skorokhod 2006; Finkelshtein et al.
2012, 2010), but remained practically unnoticed in the the-
oretical ecology literature. As a consequence, theoretical
ecologists have spent much effort in developing mathemat-
ical machinery for spatial and stochastic models by their
own, including moment closure methods (Bolker and Pacala
1997; Keeling 2000; Filipe and Gibson 2001; Law et al.
2003; Murrell et al. 2004; Bolker 2004; Barraquand and
Murrell 2013) and the use of stochastic differential equa-
tions as a heuristic mean of deriving perturbation expansions
(Ovaskainen and Cornell 2006a, b; Cornell and Ovaskainen
2008; North et al. 2011a).

The advantage of the mathematical formalism presented
here is that it is not only mathematically rigorous but also
economical and transparent. As an example, to our knowl-
edge, the method that we have presented for deriving spatial
moment equations is the first one in the theoretical ecology
literature that yields spatial moment equations for all orders
simultaneously. Further, it is based on a standardized pro-
cedure for mapping one operator (L) into another operator
(L
). Hence, there are no biological or heuristic consider-
ations to be made, and thus only mathematics are needed
for the transition from a Lagrangian (individual level) to
Eulerian (population level) description of the system.

A well-known property of spatial moments is that, except
for trivial cases, the evolution equations form an infinite
hierarchy and consequently they cannot be solved with exact
methods analytically or even numerically. This problem
cannot be avoided with any mathematical formalism. Thus,
the transition from the individual level assumptions to spa-
tial moment equations (i.e., from L to L
) should not be
seen as the end result, but only as a starting point for model
analysis. As the next step, we have proposed moving to the
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spatial cumulant equations (i.e., the transition from L
 to
Q
). This transition reveals the nonlinear mean-field equa-
tions and serves as a natural starting point for further model
analysis. For example, some moment closures correspond to
the assumption that cumulants of a given order (typically 3)
and higher are set to zero (e.g., Keeling 2000; Marion et al.
2002).

In this paper, we have followed up our earlier work
(Ovaskainen and Cornell 2006a, b; Cornell and Ovaskainen
2008; North et al. 2011a) to propose the use of a systematic
perturbation expansion around the mean-field model as an
alternative for model closures. The use of such an approach
is mathematically appealing because the resulting approxi-
mations are controlled in the mathematical sense, i.e., they
are guaranteed to converge to the exact solution at the well-
defined limit of long-ranged interactions. As demonstrated
by Fig. 2, the expansion can also be accurate enough for
practical purposes even far from the mean-field model. In
this figure, as is the case also generally, the predicted solu-
tion converges to the exact solution as ε → 0. However,
the solution is close to the simulated one also, e.g., for ε =
1/2, in which case the individuals compete effectively only
with a few neighbors, and the realized population density is
only about half of the mean-field density. To gain numer-
ically more accurate predictions, higher-order terms could
be computed. The expansion can be expected to continue as

uε,t = vt + εdwt + ε2dzt + o(ε2d),

where the term z(t) would be nonzero only up to three-point
configurations, but we leave the treatment of this conjecture
for further work. Further, we note that while developing a
full form of the expansion would have both theoretical and
applied value, the first-order correction term wt is sufficient
for many applications.

We have used a version of the stochastic logistic model
as an example thorough this paper. In principle, gener-
alizations to other models, including those with multiple
entity types, are straightforward. However, in practice, the
derivations are of somewhat technical nature (see Electronic
Supplementary Material) and thus require a level of math-
ematical expertise. What simplifies the problem is that the
equations for the evolution of states and for the evolutions
of spatial moments are linear, and thus more complex mod-
els can be built from simpler components. To see this, note
that, e.g., the generator L of the SSLM (2) can be written as
L = LDIM + LDDM + LR , where the three components
refer to density-independent mortality, density-dependent
mortality, and reproduction, respectively. The correspond-
ing operator for spatial moments (12–15) splits in the same
way to L
 = L


DIM + L

DDM + L


R . One way forward
could be to construct a library of basic model ingredients
for ecologically relevant processes, such as LDIM , LDDM ,
LR and corresponding generators for, e.g., the processes of

immigration, movements by jumps or diffusion, mutation,
infection, etc. Given precomputed operators L
 for such
model ingredients, the spatial moment equations for more
complex models could be obtained simply by adding the
relevant components together.

Let us finally note that the perturbation expansion around
the mean-field is suitable for the analysis of model behavior
both at the stationary state and during transient behav-
ior. In our earlier work, we have used the perturbation of
eigenvalues to derive invasibility criteria for the evolution-
ary applications based on adaptive dynamics (North et al.
2011a). We expect that the methods presented in this paper
provide a natural starting point for a mathematically rigor-
ous treatment of such extensions. Major challenges to which
our formalism is not likely to provide easy solutions include
the analysis of non-local quantities such as the probabil-
ity of finding one or more particles in a finite region, and
large-perturbation theory required, e.g., to understand how
a system behaves as it approaches the extinction threshold.
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