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Abstract Understanding the factors that govern the com-
monness and rarity of individual species is a central
challenge in community ecology. Empirical studies have
often found that abundance is related to traits associated
with competitive ability and suitability to the local
environment and, more recently, also to negative conspe-
cific density dependence. Here, we construct a theoretical
framework to show how a species’ abundance is, in
general, expected to be dependent on its per-capita growth
rate when rare and the rate at which its growth rate declines
with increasing abundance (strength of stabilization). We
argue that per-capita growth rate when rare can be
interpreted as competitive ability and that strength of
stabilization largely reflects negative conspecific inhibition.
We then analyze a simple spatially implicit model in which
each species is defined by three parameters that affect its
juvenile survival: its generalized competitive effect on
others, its generalized response to competition, and an
additional negative effect on conspecifics. This model
facilitates the stable coexistence of an arbitrarily large
number of species and qualitatively reproduces empirical
relationships between abundance, competitive ability, and
negative conspecific density dependence. Our results
provide theoretical support for the combined roles of
competitive ability and negative density dependence in the
determination of species abundances in real ecosystems,
and suggest new avenues of research for understanding
abundance in models and in real communities.
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Introduction

What determines species diversity in ecological communi-
ties is a major unanswered scientific question (Pennisi
2005). Two interrelated aspects of species diversity are
species richness and relative abundance. Existing models,
such as the lognormal and the neutral models, can provide
good statistical fits to empirical patterns of relative
abundance for an ensemble of species (Volkov et al. 2007;
McGill 2003; Chisholm and Pacala 2010). However, these
models do not allow us to predict the relative abundance of
individual species.

Empirical studies have shown that abundance tends to be
correlated with two factors: conspecific density dependence
and traits related to competitive ability. Competitive ability
is generally defined as the ability to extract a limiting
resource or to use a limiting resource efficiently. For
example, in Minnesota grasslands, plant species with higher
competitive ability, measured as lower values for nitrogen
(the equilibrium level to which they reduce this limiting
resource in monoculture), had higher abundances in multi-
species plots (Fargione and Tilman 2006). A number of
other studies have also found that plant species with traits
leading to more efficient use or uptake of the limiting
resource tend to have higher abundances (Mamolos et al.
1995; Tsialtas et al. 2001; Theodose et al. 1996).

The second factor correlated empirically with relative
abundances is negative conspecific density dependence, by
which we mean the rate at which species’ per-capita growth
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rates decline with increasing abundance. In plant commu-
nities, species with stronger negative impacts on conspe-
cifics tend to be less abundant (Klironomos 2002; Mangan
et al. 2010; Comita et al. 2010). In general, conspecific
negative density dependence reflects intraspecific competi-
tion and/or apparent competition that is stronger than
interspecific competition and/or apparent competition.
Among plants, it is variously attributed to the influence of
host-specific natural enemies and to more intense resource
competition. Soil-borne pathogens have been specifically
linked to negative density dependence in a number of
systems (Klironomos 2002; Mangan et al. 2010; Bell et al.
2006). Negative density dependence is also a general
mechanism of coexistence in animals, although a similar
link between negative density dependence and relative
abundance has yet to be demonstrated in this case
(Amarasekare 2009).

The empirical correlations between abundance, compet-
itive ability, and negative density dependence have received
little attention in the theoretical literature (although see the
simulation model in Mangan et al. 2010). Models of
resource competition do predict that species having lower
R* values (i.e., more competitive species) should be more
successful (Tilman 1990; Tilman et al. 1982). However,
under pure R* theory, this does not lead to stable
coexistence because the species with the lowest R* is
predicted to competitively exclude all species with higher
R* values. Stable coexistence requires a mechanism that
makes intraspecific effects more negative than interspecific
effects and thereby creates negative conspecific density
dependence (Chesson 2000).

A logical starting point for investigating the relationship
between abundance, competitive ability, and negative
density dependence is the theoretical literature on stable
coexistence (Levin 1970). Stable coexistence means that
species tend to recover from perturbations that lower their
abundance (Chesson 2000). Species are predicted to coexist
when stabilizing forces, such as niche differences, limit
interspecific competition and are sufficiently strong to
overcome differences in inherent fitness between species
(Chesson 2000; Adler et al. 2007). Where stabilization is
insufficient to overcome differences in intrinsic fitness,
competitive exclusion results instead. Neutral models
(Hubbell 2001) correspond to the extreme case in which
species have the same intrinsic fitness and there is no
stabilization. Previous theoretical studies have investigated
how the addition of a constant level of negative density
dependence can affect species abundance distributions and
species–area curves (Chave et al. 2002; Volkov et al. 2005)
but have not evaluated the impacts of variation in density
dependence among species.

By parameterizing a coexistence model in terms of
competitive abilities and negative conspecific density

dependence of individual species, it should be possible to
derive coexistence conditions and equilibrium abundances
in terms of these parameters. One difficulty in analyzing
such a model is that a species’ abundance can depend to a
large extent on its location in parameter space relative to
other species (e.g., Tilman 1994; Muller-Landau 2010),
thereby obscuring any relationship between abundance and
absolute parameter values. Nevertheless, we hypothesize
that the relationship of abundance to negative density
dependence and competitive ability may be strong enough
to emerge consistently from different theoretical models
regardless of the underlying structure.

Our approach in this paper is to analyze the relationship
between relative abundance and negative density depen-
dence in a simple model. As discussed above, there is an
extensive theoretical literature on the relationship between
coexistence and negative density dependence, and we could
have chosen many different models as our starting point
(e.g., the Monod model (Grover 1990) or the Lotka–
Volterra model). The model that we use is based on
Chesson’s (2000) framework and is chosen for its simplic-
ity, generality, and analytical tractability. We first present a
general graphical description of the model to illustrate how
invasion growth rate and strength of stabilization are
conceptually related to equilibrium abundance. We then
turn to the analytical model that is parameterized in terms
of negative conspecific density dependence and competitive
response, and we derive formulas for equilibrium abun-
dance, invasion growth rate, and strength of stabilization
for each species. We also determine coexistence and
invasion criteria, and we analyze the stability of equilibria.
Our formulas reveal the theoretical relationship of abun-
dance to the parameters representing negative density
dependence and competitive response. We investigate this
relationship further by assembling communities and con-
ducting numerical simulations. We close with a discussion
of the implications for understanding species abundances in
real communities and of avenues for future research.

General framework

In communities that exhibit coexistence of multiple species,
all species have, by definition, positive per-capita growth
rates when rare (Chesson 2000; Levin 2000). A direct
corollary of this is that all species have negative average
per-capita growth rates when near monodominance. As a
first-order approximation, we can assume that the average
per-capita growth rate of each species decreases monoton-
ically as abundance increases, declining to zero at the
species’ equilibrium abundance and then becoming nega-
tive at higher values of abundance. In general, this picture
may be complicated by factors such as Allee effects, which
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cause per-capita growth rates to be negative when the
species is rare, or by limit cycles and chaotic dynamics,
which prevent species from reaching equilibrium abundan-
ces. We ignore these complicating factors in the framework
that follows, but our qualitative insights should be robust to
their inclusion.

First, we focus on the simple case in which the decline in
per-capita growth with increasing abundance for every
species is linear. The dynamics of a species can then be
fully described by any two of the following three quantities:
the invasion growth rate br (per-capita growth rate when
rare), the stabilization Z (decrease in per-capita growth with
increasing abundance), and the equilibrium abundance p
(Fig. 1). The three parameters are related by p ¼ �br=Z.

Within this framework, we can examine the dynamics
of multi-species communities graphically. Consider first
the special case in which species vary in their strength of
stabilization but not in their invasion growth rates. In this
case, relative abundances are fully determined by
stabilization (Fig. 2a). Next consider the case in which
species vary in their invasion growth rates but not in their
strength of stabilization: relative abundances are now fully
determined by the invasion growth rates (Fig. 2b). Lastly,
consider the case in which both stabilization and invasion
growth rate vary: relative abundances now depend on both
(Fig. 2c).

Thus, we can see conceptually that equilibrium abun-
dances should be related to both invasion growth rate and
competitive ability. To motivate the analytical model to be
introduced in the next section, we observe that insofar as
differences in invasion growth rate reflect differences in
competitive ability (Adler et al. 2007) and stabilization
reflects conspecific inhibition, abundance should be related
to competitive ability and conspecific inhibition.

Model

We develop a spatially implicit discrete-time model in
which species differ in their generalized competitive effects
on other species, in their responses to competition, and in
their additional negative influences on (or responses to)
conspecifics. We denote the relative abundance of species i
at time t as pi,t. A proportion m∈(0,1) of adults dies per unit
time step, and new individuals are recruited into the
community. The recruitment and survival of new individ-
uals are governed by a lottery among juveniles, which is
influenced by the relative abundances of adults in the
community.

The master equation governing the dynamical behavior
of the system is

pi;tþ1 ¼ 1� mð Þpi;t þ mpi;t
X

j

sijpj;t
Σkskjpk;t

; ð1Þ

where Sij∈(0,1) is the probability of survival of juveniles of
species i under species j, and the upper and lower bounds of
the summations (here and throughout) are 1 and n (Note
that for motile animal communities, the product pi,tpj,t could
be interpreted as the contact rate of species i and j and the
parameter Sij could be interpreted as a mass-action
coefficient). Competitive effects, competitive responses,
and negative conspecific density dependence together
determine juvenile survival, with Sij=αjβi for i≠ j, and
Sii=αiβi(1−ηi), with αi, βi, ηi∈(0,1). We interpret αi as a
measure of the effect of species i on other species: small
values of αi correspond to a strong effect of species i on
other species (e.g., a tree that casts deep shade). The
parameter βi is a measure of the competitive response of
species i: small values of βi correspond to species that do
poorly in the presence of competition (e.g., light-
demanding species). The parameter ηi is a measure of
conspecific inhibition: high values of ηi correspond to
strong conspecific inhibition and thus stronger negative
density dependence. This model just described is a niche
model with stable coexistence facilitated by conspecific
negative density dependence (non-zero ηi parameters). In
this model, the parameter βi is a measure of intrinsic fitness:
it determines the relative growth rates of the species in the
absence of stabilizing forces (Chesson 2000; Appendix I).
If stabilization is removed from the model (i.e., if all the
parameters ηi are zero, thus setting intraspecific effects
equal to interspecific effects), then the species with highest
intrinsic fitness (βi) will competitively exclude all other
species, and species with equal intrinsic fitness will exhibit
neutral coexistence (Appendix I).

Because the pi,t represents relative abundances and
because

P
ipi;tþ1 ¼

P
ipi;t from (1), we can assume without

loss of generality, the initial condition
P

ipi;0 ¼ 1. Also,
from (1) we can see that pi,t+1≥0, which, in conjunction

Fig. 1 Conceptual graphical model of the relationship between
equilibrium abundance (p; horizontal intercept), per-capita growth
rate when rare (br; vertical intercept) and strength of stabilization (Z;
magnitude of the slope) for a single species. For simplicity, the
relationship between the growth rate and abundance is assumed to be
linear in the graphical model, as discussed in the text
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with
P

ipi;t ¼ 1 implies pi,t+1≤1, so the behavior of the
master equation is sensible in that it constrains the relative

abundances to be between 0 and 1. Substituting the
expressions for Sij into the master equation gives

pi;tþ1 ¼ ð1� mÞpi;t þ m
�aibihipi;tP

kaibkpk;t
� �� aibihipi;t

pi;t þ bipi;t
X

j

ajpj;tP
kajbkpk;t

� �� ajbjhjpj;t

( )
ð2Þ

We also define:

f ðpÞ ¼
X
k

bkpk;t > 0

and

gðpÞ ¼
X
j

ajpj;tP
kajbkpk;t

� �� ajbjhjpj;t
¼
X
j

pj;t
f ðpÞ � bjhjpj;t

so the master equation becomes:

pi;tþ1 ¼ 1� mð Þpi;t þ mpi;t
�bihipi;t

f pð Þ � bihipi;t
þ big pð Þ

� �

Equilibrium abundances

We seek an equilibrium in which all of the n species are
extant pi > 0ð Þ. To solve for the equilibrium, we set
pi;tþ1 ¼ pi;t ¼ pi and divide through by pi:

1 ¼ �bihipi;t
f pð Þ � bihipi;t

þ big pð Þ

This gives:

pi ¼ f pð Þ 1

bihi
1� 1

big pð Þ
� �

ð3Þ

To evaluate g pð Þ, we multiply both sides of (3) by βi and
sum:

X
i

bipi ¼
X
k

bkpk

 !X
i

1

bihi
bi �

1

g pð Þ
� �� �

which gives:

g pð Þ ¼
@i

1
bihi

@i
1
hi

� 	
� 1

> 0:

Also, from the constraint @ipi ¼ 1, we can express f pð Þ
(which is effectively a normalization constant) as

f pð Þ ¼
X
i

1

bihi
1� 1

big pð Þ
� �" #�1

For the equilibrium (3) to exist in a sensible way, we
need all pi > 0, so big pð Þ > 1.This leads to the existence
criterion:

bi >

P
j
1
hj

� 	
� 1P

j
1

bjhj

Fig. 2 Conceptual graphical model of the relationship between
equilibrium abundance (horizontal intercept), per-capita growth rate
when rare (vertical intercept), and strength of stabilization (magnitude
of the slope) for multiple coexisting species. For simplicity, the
relationship between the growth rate and abundance is assumed to be
linear for each species in the graphical model, as discussed in the text;

a shows four species with equal per-capita growth rate when rare but
different strengths of stabilization; b shows four species with different
per-capita growth rates when rare but equal strength of stabilization;
and c shows four species with different per-capita growth rates and
different strengths of stabilization
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which can be rearranged to give:

bi >

P
j 6¼i

1
hj

� 	
� 1P

j 6¼i
1

bjhj

: ð4Þ

The coexistence condition can also be expressed as:

X
j

1

hj
1� bmin

bj

 !
< 1; ð5Þ

where βmin=mini(βi). If there are only two species, the
existence criterion (4) reduces to s12>s22 and s21>s11. That
is, species 1 survives better under species 2 than species 2
does under itself, and similarly, species 2 survives better
under species 1 than species 1 does under itself. Each
species has a greater negative effect on itself than on the
other species, consistent with standard coexistence con-
ditions. Note that as we add more species, the left-hand side
of (5) increases monotonically, and conversely, as we
remove species, the left-hand side of (5) decreases
monotonically. One consequence of this is that if n species
can coexist, then so can any subset of these species.

From equation (3), it is immediately clear that a species’
equilibrium abundance is inversely related to the degree to
which the species inhibits its conspecifics (pi is proportional
to 1/ηi). Equilibrium abundance is also positive related to
competitive response, βi: if two species inhibit conspecifics
equally (ηi=ηj), then the one with the higher competitive
response will be more abundant (i.e., bi > bj ) pi > pj). To
see this, suppose β1>β2 and η1=η2=η and observe that g pð Þ
declines monotonically with the addition of more species to
the system (Appendix II), so that:

g pð Þ ¼
P

i
1

bihiP
i
1
hi

� 	
� 1

<

1
h

1
b1
þ 1

b2

� 	
1
h þ 1

h � 1
<

1

b1
þ 1

b2
¼

b1
b2
� b2

b1

b1 � b2

and then:

b1 � b2ð Þ < 1

g pð Þ
b1
b2

� b2
b1

� �

1

b1
1� 1

b1g pð Þ
� �

>
1

b2
1� 1

b2g pð Þ
� �

which, using the definition of pi, immediately leads to p1 >
p2 (remembering that η1=η2 by assumption).

Stability of the equilibrium

Let M be the Jacobian matrix of partial derivatives with

entries mij ¼ @Fi
@pj





p
, where pi;tþ1 ¼ Fi ptð Þ as defined above.

The equilibrium p defined by (3) is locally stable if and

only if all eigenvalues λi of the matrix M satisfy lij j < 1.
The one-species case is trivial because the initial condition
is p1 ¼ 1 and it immediately follows from (1) that p1;t ¼ 1
for all t. In the two-species case, the dynamics of the second
species are redundant because of the constraint that p1+p2=1,
so we only need to check that

l1j j ¼ @F1

@p1






p












 < 1

This reduces to:

�1 <
�2Bmþ A

A
< 1

where B ¼ a1 b2 � b1ð Þ þ a1b1h1ð Þ a2 b1 � b2ð Þ þ a2b2h2ð Þ
a2b

2
1a1h1 þ a1b

2
2a2h2 � a1a2 b1 � b2ð Þ2

� 	
> 0 and A ¼

2 a1a2b1b2 h1 þ h2 � h1h2ð Þð Þ2 > 0. So the conditions
become just m<A/B≡mcrit

. It can be shown (Appendix III)
that mcrit>1 and so the two-species equilibrium is always
locally stable, assuming only that it exists, because 0<m<1.
We conjecture that p is also locally stable for the n-species
case (see Appendix IV for the Jacobian for the n-species
case). Simulations further suggest that the equilibrium p
defined by (3) is in fact globally stable (e.g., Fig. 3).

Invasion growth rates

The expression for the growth rate of species i when rare in
our model is:

bri ¼ lim
pi;t!0

pi;tþ1 � pi;t
pi;t

¼ lim
pi;t!0

mbig pð Þ � mf pð Þ
f pð Þ � bihipi;t

� �
¼ mbig pð Þ � m

which depends only on the competitive response, or
intrinsic fitness, βi and not on the competitive effect ai or
conspecific inhibition ηi (ηi vanishes in the expression for
g pð Þ because we are assuming pi;t ! 0). Note that this is
consistent with our general framework, under which differ-
ences in invasion growth rates are expected to reflect
differences in intrinsic fitness. We require bri > 0, so:

bi >
1

g pð Þ ¼
1P

j6¼i
pj;t

f pð Þ�bjhjpj;t

If all of the other species j≠ i are at equilibrium, then the
invasion condition becomes:

bi >
1

g p�ið Þ ¼
@j 6¼i

1
hj

� 	
� 1

@j6¼i
1

bjhj

where g p�ið Þ is evaluated at the equilibrium for the n−1
species excluding species i, which is the same as the
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coexistence condition (4). So any species can invade when
rare, assuming that it can potentially coexist with the other
species and that the other species are at equilibrium.

Strength of stabilization

If species i invades a system in which the other n−1 species
are initially at their equilibrium, the relationship between
the growth rate and the abundance of species i can be
approximated by the linear equation:

ri � bri � bripi pi ð6Þ

The linear approximation appears to be reasonable for most
systems, as we will later show in simulations. The slope
represents the strength of stabilization and is given by:

Z � � bri
pi

¼ �mhib
2
i

g pð Þ
f pð Þ

big p�ið Þ � 1

big pð Þ � 1

� �
ð7Þ

As expected, the strength of stabilization is proportional to
the conspecific feedback (ηi). The relationship between the
strength of stabilization and the competitive response (βi) is
more subtle. For systems with many species (large n), the
ratio big p�ið Þ � 1ð Þ= big pð Þ � 1ð Þ approaches 1, in which
case the strength of stabilization should be proportional to
the square of βi, but this effect is difficult to reproduce in
simulations.

Assembling communities

Our model facilitates the theoretical coexistence of arbitrarily
many species, as we now prove by induction. Without loss of
generality, we add species to the community in order of
decreasing βi. First, we construct a community with only one
species for which the parameters a1, β1, and η1 for the first
species are set to any values, subject to the restriction a1, β1,
η1∈(0,1). We know from the work above that condition (4)
holds for this one-species system, so the equilibrium exists
and is stable (although only neutrally stable for the one-
species case). Now assume that we have a system with n
species for which condition (4) holds, which means that:

bL �
Pn

j¼1
1
hj

� 	
� 1Pn

j¼1
1

bjhj

< min bi : 1 � i � nf g � bU ð8Þ

Let us choose bnþ1 2 bL; bUð Þ and arbitrary αn+1 and hnþ1.
Now:Pn

j¼1
1
hj

� 	
� 1Pn

j¼1
1

bjhj

< bnþ1

)
Xn
j¼1

1

hj

 !
� 1þ 1

hnþ1
< bnþ1

Xn
j¼1

1

bjhj

 !

þbnþ1
1

bnþ1hnþ1

)
Pnþ1

j¼1
1
hj

� 	
� 1Pnþ1

j¼1
1

bjhj

< bnþ1

and so condition (4) holds for the system with n+1 species
also. As we add new species, it is easily shown that βL
increases and βU decreases, so the possible range for βn+1
shrinks but never to zero. We emphasize that this assembly
rule is general: any potential community of coexisting
species in our model can be assembled in this way.

We can also consider the special case of assembling
communities in which all species have the same conspecific
inhibition (i.e., ηi=ηj=η). In this case, we know from (5)
that the condition for coexistence is:

h > hmin ¼ n� bmin

X
j

1

bj
ð9Þ

The interpretation of this condition is that given a set of
competitive response parameters (βi), we can calculate the
minimum conspecific inhibition required to facilitate
coexistence of all species. It is quite possible for ηmin>1

Fig. 3 Trajectories of the relative abundances of individual species in
a typical community governed by the master equation (2). The
community of n=100 species was assembled using condition (4), with
β1=0.999 and subsequent βi=0.01βL+0.99βU. The parameters ai and
ηi were drawn from uniform random distributions on (0,1) Initial
abundances were also drawn from uniform random distributions on
(0,1) and then normalized to sum to 1. Only the 10 species with
highest equilibrium abundances (pi) are shown
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in (9), in which case coexistence is impossible because of
the restriction that η∈(0,1).

We can consider another special case in which conspe-
cific inhibition (ηi) is again constant and the competitive
responses (βi) are drawn from a uniform random distribu-
tion on [βlo, βhi]. In this case, the expected value of ηmin in
inequality (9) is:

E hminð Þ ¼ n� bmin

Xn
j¼1

E
1

bj

 !
� n� blo

Xn
j¼1

E
1

bj

 !

¼ n 1� lnðxÞ
x� 1

� �
> 0;

where x=βhi/βlo and the approximation is valid if n is
sufficiently large. The maximum number of species that can
coexist under this scheme is then given approximately by:

n < nmax � h

1� lnðxÞ
x�1

� 	

Determinants of abundance, invasion growth rate,
and stabilization in simulated communities

We constructed communities numerically according to the
rule given by (8) and confirmed that these communities do
indeed exhibit coexistence between arbitrarily many species
(to the limits of numerical precision) (e.g., Fig. 3). They
also exhibit the theoretical relationships between abundan-
ces pi and the model parameters discussed earlier: abun-
dance is uncorrelated with competitive effect (αi),
positively correlated with competitive response (βi), and
negatively correlated with conspecific inhibition (ηi)
(Fig. 4a–c).

The numerical simulations also confirmed that the
invasion growth rate is positively related to competitive
response (intrinsic fitness; βi) but unrelated to the other
parameters (Fig. 4d–f) and that strength of stabilization is
strongly correlated with conspecific inhibition (ηi) (Fig. 4g–i).
As expected, equilibrium abundance is then correlated with
both invasion growth rate and strength of stabilization
(Fig. 5). Furthermore, the relationship between the per-
capita growth rate and abundance was approximately linear
for most species in most simulated communities (confirming
the validity of (6)), although the linear approximation was
worse for the more abundant species (Fig. 6), especially in
species-poor communities (not shown).

It should be noted that the general patterns discussed
above can be sensitive to the method used to choose the ai,
βi, and ηi parameters: it is possible, for example, to make
abundance pi positively related to conspecific inhibition (ηi)
by introducing positive correlations between ηi and com-
petitive response (βi).

Discussion

The theoretical model that we have presented here
illustrates why, in practice, one might expect abundance to
be positively related to competitive ability and negatively
related to conspecific inhibition. We have built on previous
conceptual work that describes how species coexistence is
regulated by invasion growth rates and stabilization (Adler
et al. 2007; Chesson 2000), by observing that high
equilibrium abundances are generally associated with high
invasion growth rates and low stabilization and that, in turn,
invasion growth rates relate to competitive ability (or,
equivalently, intrinsic fitness) and stabilization relates to
conspecific inhibition. An important observation from our
model is that a species’ invasion growth rate and the
strength of the stabilization to which it is subjected are
contextual, in the sense that they are determined not only
by the species’ own parameters but also by those of all the
other species in the community. In real ecosystems,
invasion growth rates and the strength of stabilization of
individual species are also both expected to vary with
environmental conditions, in conjunction with variation in
equilibrium abundance and, ultimately, presence in the
community.

The theoretical work here was inspired in particular by
recent data from tropical plant communities (Comita et al.
2010; Mangan et al. 2010). Differences in juvenile survival
depending on the species identity of neighbors are the key
to our model and can be interpreted in terms of differential
seedling survival in soils under conspecific versus hetero-
specific adults as measured by Mangan et al. (2010), and to
differential seedling survival as a function of local
conspecific neighbor density as measured by Comita et al.
(2010). Our model characterizes conspecific inhibition with
one parameter per species and competitive ability with
another parameter per species. The competitive ability
parameter expresses a general influence of species traits
on survival. The model demonstrates how the two
parameters (local inhibition and competitive ability) can
jointly influence abundance. The relative importance of the
two parameters in determining relative abundances depends
on the degree to which each varies among species and on
how they covary.

A standard interpretation of conspecific inhibition in
models such as ours, as well as in the empirical studies that
inspired our model, is in terms of natural enemies, but there
are other possible causes of conspecific inhibition. Stronger
negative effects of conspecifics than of heterospecifics on
per-capita population growth are a general feature of all
stabilizing mechanisms (i.e., all niche mechanisms) and are
not unique to natural enemies (Chesson 2000). Differenti-
ation in resource use, for example, can also produce such
patterns. Thus, empirical observations of conspecific
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inhibition alone are not sufficient to implicate natural
enemies. Specific tests such as the disappearance of this
inhibition when enemies are removed are needed to
establish the role of enemies in maintaining abundances in
real ecosystems (Carson 2008; Klironomos 2002; Bell et al.
2006; Mangan et al. 2010). As noted above, our model was
formulated with plant communities in mind, but the model
is sufficiently abstract to generalize to any community of

organisms in which conspecific inhibition operates (e.g.,
animal communities; Amarasekare 2009).

Conspecific inhibition, in general, and host-specific
natural enemies, in particular, effectively create a niche
space that has as many dimensions as there are species
present. Theoretically, if there are no other fitness differ-
ences among species, conspecific inhibition can enable the
coexistence of arbitrary numbers of species (Armstrong

Fig. 4 Relationship of equilibrium abundances (pi; a–c), invasion
growth rate (bri; d–f), and strength of stabilization (Z; panels g–i) to
model parameters for the community described in the legend of Fig. 3.
a, d, g Strength of competitive effects (αi; note that low values of αi

indicate strong effects; R2=0.000, p=0.839;R2=0.008; p=0.371; R2=

0.007; p=0.398). b, e, h Strength of competitive response (βi; R
2=

0.294, p<0.001; R2=1.000, p<0.001, R2=0.003, p=0.612). c, f, i
Strength of conspecific inhibition (ηi; R

2=0.498, p<0.001, R2=0.001,
p=0.770; R2=1.000, p<0.001)
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1989). However, as we have shown here, theory also shows
that the contribution of conspecific inhibition to coexistence
is limited to a surprising degree by variation in fitness
among species. As the number of species increases,
conspecific inhibition is associated with ever weaker
stabilization because the average relative abundances of
each species in the community are necessarily lower and,
hence, individuals encounter fewer conspecifics. Conse-
quently, species with relatively low invasion growth rate
that could previously persist in the community can be
knocked out as species richness increases because the
stabilization forces acting on other, more abundant, species
become weaker. This decrease in the strength of stabiliza-
tion forces as species richness increases seems to be fairly
general. For example, species richness (n) is often in the

denominator in expressions for Chesson’s stabilizing forces
(Chesson 2000).

The near-linearity of per-capita growth versus abundance
observed in our model (Fig. 6) is a consequence of the
global nature of our spatially implicit model, in which the
probability that a recruit of one species lands near an
individual of another species is simply proportional to both
species’ overall relative abundance in the community. We
expect that a spatially explicit model with local dispersal
and local inhibition would result in a growth versus
abundance curve with a more concave shape because
individuals that were relatively rare overall would generally
not be as rare locally and so juveniles would be subject to
higher conspecific densities. The effects of localized
dispersal and inhibition on coexistence vary among models
and depend on the magnitude of conspecific inhibition as
well as the scales of dispersal and inhibition (Muller-
Landau and Adler 2007; Adler and Muller-Landau 2005).

In future, it would be interesting to conduct similar
analyses of other coexistence models to explore the
generality of our findings. The structure of our model is
essentially a competitive hierarchy in which negative
conspecific density dependence stabilizes coexistence
among species with inherent fitness differences. Conspe-
cific inhibition is, almost by definition, the only niche
mechanism that can lead to stabilization, but as noted
above, it can take a variety of forms and would need to be
measured differently in different models. For example, our
general framework could be applied to the classic Lotka–
Volterra competition model or to models based on it (Rees
and Westoby 1997; Adler et al. 2007) by making the
competition coefficients functions of species-specific com-
petitive effect, competitive response, and conspecific
inhibition. We expect that such analyses would exhibit
similar patterns to ours (e.g., positive relationships between
abundance and the magnitude of negative density depen-
dence). In other models, however, such as habitat partition-
ing models, the expected relationship of conspecific

Fig. 6 Growth rate versus relative abundance for the system described in
the legend of Fig. 3. Each solid curve represents the trajectory of an
individual species invading the system when the other n−1 species are
initially at their equilibrium relative abundances. Each dotted line is the
linear approximation (6) to the corresponding trajectory. Only the 10
most abundant (highest bpi) species are shown

Fig. 5 Relationship of equilib-
rium abundance (pi) to invasion
growth rate (bri) and strength of
stabilization (Zi) for the com-
munity described in the legend
of Fig. 3. a Equilibrium abun-
dance versus invasion growth
rate (R2=0.302, p<0.001). b
Equilibrium abundance versus
strength of stabilization
(R2=0.486, p<0.001)
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inhibition to model parameters is less obvious. Explicit
derivation of the invasion growth rates, strength of
stabilization, and equilibrium abundances for these models,
and examination of their relationships to model parameters
(similar to our analysis here), would provide insights into
the implications of the underlying mechanisms for commu-
nity assembly, structure, and dynamics. A goal of such
analyses should be to express invasion growth rates and
strength of stabilization in terms of parameters that are
empirically measurable. In our case, both competitive
response and conspecific inhibition can, in principle, be
measured experimentally (Levine and HilleRisLambers
2009) or estimated from observational data (Adler et al.
2010; Adler et al. 2006).

By using a model to show how abundances can be
related to competitive response and conspecific inhibition
(negative density dependence), we have provided a theo-
retical basis for recently observed empirical patterns
(Comita et al. 2010; Mangan et al. 2010) and we have laid
the framework for more realistic models. A major limitation
of our model is that it ignores issues of scale and spatial
variation that are critical for the maintenance of biodiversity
(Levin 2000). We can reasonably expect that competitive
response and conspecific inhibition (and hence invasion
growth rate and strength of stabilization) will vary across a
landscape and will also vary depending on the scale at
which we measure them. This variation in turn generates
spatial variation in abundances: a species may be common
regionally but rare locally, or rare at one location and
common in another. Exploring how these issues play out in
a more sophisticated spatially explicit model is a priority
for future research.
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Appendix I: Coexistence in the absence of negative
density dependence

We investigate coexistence in our model in the absence of
negative density dependence (i.e., ηi=0). In this case, the
master equation becomes:

pi;tþ1 ¼ 1� mð Þpi;t þ mpi;tbig pð Þ

It can be seen from this equation that βi represents intrinsic
fitness because it measures differences in relative growth
rates in the absence of stabilizing forces (Chesson 2000).

To solve for equilibrium, we let pi;tþ1 ¼ pi;t ¼ pi. Assuming
that pi 6¼ 0, we have:

big pð Þ ¼ 1

bi
X
j

pj;t
f pð Þ ¼ 1

bi ¼
X
j

bkpk

which means that every species that persists at equilibrium
must have an identical value of βi. The master equation
then degenerates to:

pi;tþ1 ¼ pi;t

meaning that species will persist at their initial abundances.
This model is clearly only neutrally stable.

Appendix II: Mathematical details from equilibrium
abundances section

We want to show that g pð Þ declines monotonically with the
addition of more (stably coexisting) species to the system
defined by (2). Start with a system of n (stably coexisting)
species with equilibrium relative abundances pn, so that:

g pnð Þ ¼
Pn

i¼1
1

bihiPn
i¼1

1
hi

� 	
� 1

Now add another (stably coexisting) species to the system
so that there are n+1 species and:

g pnþ1

� � ¼ 1
bnþ1hnþ1

þPn
i¼1

1
bihi

1
hnþ1

þ Pn
i¼1

1
hi

� 	
� 1

We know from the coexistence condition (4) that:

bnþ1 >

Pn
i¼1

1
hi

� 	
� 1Pn

i¼1
1

bihi

:

This in turn implies that:

1

bnþ1
<

Pn
i¼1

1
bihiPn

i¼1
1
hi

� 	
� 1

¼ g pnð Þ

and thus:

g pnþ1

� � ¼ 1
bnþ1hnþ1

þPn
i¼1

1
bihi

1
hnþ1

þ Pn
i¼1

1
hi

� 	
� 1

<

g pnð Þ
hnþ1

þPn
i¼1

1
bihi

1
hnþ1

þ Pn
i¼1

1
hi

� 	
� 1

¼ g pnð Þ;
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where the final equality follows from

a ¼ b

c
) a ¼

a
x þ b
1
x þ c

for any x.

Appendix III: Local stability analysis for the two-species
case

We complete the stability analysis for the two-species case
started in the main text. Let hi ¼ gi=aibi. We want to show
that

mcrit ¼ 2 a2b2g1 þ a1b1g2 � g1g2ð Þ2

a1 b2 � b1ð Þ þ g1ð Þ a2 b1 � b2ð Þ þ g2ð Þ a2b1g1 þ a1b2g2 � a1a2 b1 � b2ð Þ2
� 	 > 1:

Note that the three factors in the denominator of mcrit are
positive and the parenthetic expression in the numerator is
positive too because:

a2b2g1 þ a1b1g2 � g1g2 ¼ a2b2g1 þ g2s11

Now let:

A ¼ 2 a2b2g1 þ a1b1g2 � g1g2ð Þ2 > 0

B ¼ a1 b2 � b1ð Þ þ g1ð Þ a2 b1 � b2ð Þ þ g2ð Þ

� a2b1g1 þ a1b2g2 � a1a2 b1 � b2ð Þ2 > 0
�

So we have:

A� B ¼ 2 a2b2g1 þ a1b1g2 � g1g2ð Þ2
� a1 b2 � b1ð Þ þ g1ð Þ a2 b1 � b2ð Þ þ g2ð Þ a2b1g1 þ a1b2g2 � a1a2 b1 � b2ð Þ2

� 	
¼ � �a1a2 b1 � b2ð Þ2 þ a2 b1 þ b2ð Þg1 þ a1 b1 þ b2ð Þg2 � g1g2

n o
� �a1a2 b1 � b2ð Þ2 þ a1 �2b1 þ b2ð Þg2 þ g1 a2 b1 � 2b2ð Þ þ 2g2ð Þ
n o

The first factor in braces here is positive because:

�a1a2 b1 � b2ð Þ2 þ a2b1g1 þ a2b2g1 þ a1b1g2 þ a1b2g2 � g1g2
¼ a2b1g1 þ a1b2g2 � a1a2 b1 � b2ð Þ2
n o

þ a2b2g1 þ a1b1g2 � g1g2f g
¼ a1 b2 � b1ð Þ þ g1ð Þ a2 b1 � b2ð Þ þ g2ð Þf gþ2 a1b1a2b2 � a1b1 � g1ð Þ a2b2 � g2ð Þf g
¼ s21 � s11ð Þ s12 � s22ð Þ þ 2 a1b1a2b2 � a1b1 � g1ð Þ a2b2 � g2ð Þf g > 0

The second factor in the expression for A−B is negative
because:

�a1a2 b1 � b2ð Þ2 þ a1 �2b1 þ b2ð Þg2 þ g1 a2 b1 � 2b2ð Þ þ 2g2ð Þ
¼ a1b1 � g1ð Þ a2b2 � g2 � a2b1ð Þ þ a2b2 � g2ð Þ a1b1 � g1 � a1b2ð Þ
¼ s11 s22 � s12ð Þ þ s22 s11 � s21ð Þ < 0

and so A� B > 0. We know that B is positive, so
mcrit ¼ A=B > 1.

Appendix IV: Jacobian for the general case

We want to compute the Jacobian A evaluated at the
equilibrium (3) of the dynamical system defined by (2). Let
hi ¼ gi=aibi. To do this, we require the partial derivatives
of the expression on the right hand side of the master
equation (2):

Fi pð Þ ¼ 1� mð Þpi þ mpi
�gipi

aif pð Þ � gipi
þ big pð Þ

� �
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where

f pð Þ ¼
X
k

bkpk

and so

@f

@pi
¼ bi

and

g pð Þ ¼
X
j

ajpj
Σkajbkpk
� �� gjpj

¼
X
j

ajpj
aj f pð Þ � gjpj

and so

@g
@pi

¼ a2
i

ai f pð Þ�gipið Þ2 f pð Þ � pi
@f
@pi

� 	
� @f

@pi

P
j 6¼i

a2
j pj

aj f pð Þ�gjpjð Þ2

¼ a2
i f ðpÞ

ai f pð Þ�gipið Þ2 � bi
P
j

a2
j pj

aj f pð Þ�gjpjð Þ2

These expressions can be used to compute the partial
derivatives of Fi:

@Fi

@pi
¼ 1þ m

�ai f pð Þ
ai f pð Þ � gi pi

þ big pð Þ þ pi
aigi

ai f pð Þ � gi pið Þ2 pibi � f pð Þð Þ þ bi
@g

@pi

" #( )

and

@Fi

@pj
¼ mpi

aigi
ai f pð Þ � gi pið Þ2 pibj þ bi

@g

@pj

( )
for i 6¼ j. Note that:Xn
i¼1

@Fi

@pj
¼ 1

for any j. Intuitively, this follows because the Fi just
represent all of the pi and time t+1 and the net change in
these with a change in pj is just one.

Now at, p ¼ p, we have:

pi ¼ f pð Þ ai

gi
1� 1

big pð Þ
� �

and so:

@g

@pi






p

¼ b2i
g pð Þ2
f pð Þ � bi

g pð Þ
f pð Þ h pð Þ

where

h pð Þ ¼
X
k

akbk
gk

bkg pð Þ � 1ð Þ
� �

and:

@Fi

@pj






p

¼ m
ai

gi
� big pð Þ � 1ð Þbj bi þ bj

� �
g pð Þ � 1� h pð Þ
 �

for i≠ j, and

@Fi

@pi






p

¼ 1þ mpib
2
i

g pð Þ
f pð Þ big pð Þ � 1� gi

ai
g pð Þ

� �
þ bi

g pð Þ2
f pð Þ � g pð Þ

f pð Þ h pð Þ
 !( )

¼

¼ 1þ m
ai

gi
big pð Þ � 1ð Þbi 2bi �

gi
ai

� �
g pð Þ � 1� h pð Þ

� �

We can then write a general expression for the entries of the
Jacobian A:

aij¼ @Fi

@pj






p

¼ dij þ m
ai

gi
big pð Þ � 1ð Þ

bj bi þ bj � dij
gi
ai

� �
g pð Þ � 1� h pð Þ

� �

where δij is the Kronecker delta. Note that big pð Þ � 1 > 0
because this is a necessary and sufficient condition for
coexistence, as discussed in the main text.
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