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Abstract Many species are responding to global cli-
mate change by shifting their ranges poleward in
latitude or upward in elevation. We analyze an inte-
grodifference equation that combines growth, disper-
sal, and a constant-speed, climate-induced range shift
and find that a shifting population can die out, even
if the width of its range remains constant. We show
how to determine the critical range-shift speed (for
extinction) and study the effects of the growth rate
and of the shape and scale of the dispersal kernel on
persistence.

Keywords Climate change · Population persistence ·
Range shift · Integrodifference equation

Introduction

The Earth’s climate is warming. Global average tem-
peratures have increased by 0.13 ◦C per decade over
the last 50 years (1956–2005). Further warming, at an
even faster rate, is expected over the next 50 years
(IPCC 2007). This warming is expected to cause species
to shift their ranges poleward in latitude or upward in
elevation (Parmesan et al. 1999; Hughes 2000; McCarty
2001; Walther et al. 2002; Lovejoy and Hannah 2005).
Ecologists must now face the challenge of predicting
the range-shifting responses of the Earth’s biota.
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Bioclimate envelope models are commonly used to
assess the impacts of climate change on species distri-
butions (Box 1981; Jeffree and Jeffree 1996; Bakkenes
et al. 2002; Guisan and Thuiller 2005). These statistical
models correlate the current distribution of a species
with climatic variables such as degree-days, maximum
and minimum temperatures, and water balance. Ide-
ally, scientists can combine a species’ climate envelope
with projections of climate change to predict a species’
new distribution.

The use of bioclimate envelope models has, how-
ever, been contentious (Kadmon et al. 2003; Pearson
and Dawson 2003). One (of several) criticisms is that
bioclimate envelope models do not account for species
dispersal (Gaston 2003; Pearson and Dawson 2003;
Mitikka et al. 2008). Rather, they predict the potential
ranges of species. Poor dispersers may, in general, fail
to live up to their potential.

Can a species keep pace with climate-induced range
shifts? We believe that one must use a mathematical
model that incorporates growth, dispersal, and climate-
driven spatial shifts to answer this question.

There are many mathematical models that de-
scribe the growth and dispersal of biological popu-
lations (Kareiva 1990; Keeling 1999; Shigesada
and Kawasaki 2002). The use of reaction-diffusion
equations (Fisher 1937; Skellam 1951; Okubo 1980;
Shigesada and Kawasaki 1997; Cantrell and Cosner
2003) is especially common. For reaction-diffusion
models, space and time are continuous. Growth and
diffusion, moreover, are assumed to occur simul-
taneously. Recently, Potapov and Lewis (2004) and
Berestycki et al. (2009) used reaction-diffusion models
to study the effects of climate change on the ranges
of plants and animals. Berestycki et al. (2009), in
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particular, showed that if a habitat shifts too rapidly,
species may go extinct.

Many species have distinct growth and dispersal
stages. Summer annuals, for example, may germinate
in spring, flower in summer, and disperse their seeds
in autumn. Insects typically disperse as adults, and only
less so as larvae (Osborne et al. 2002). For these species,
ecologists increasingly use integrodifference equations
(Kot and Schaffer 1986; Hastings and Higgins 1994;
Neubert et al. 1995; Kot et al. 1996; Van Kirk and Lewis
1997; Latore et al. 1998; Neubert and Caswell 2000;
Lockwood et al. 2002; Lewis et al. 2006; Lutscher 2008)
instead of reaction-diffusion models. Integrodifference
equations are discrete-time, continuous-space models.
In the simplest case, with discrete, nonoverlapping gen-
erations, one writes

nt+1(x) =
∫

�

k(x, y) f
[
nt(y)

]
dy. (1)

Here, nt(x) is the population density in generation t at
location x, � is the spatial domain, f (n) is the recruit-
ment or growth function, and k(x, y) is the redistribu-
tion or dispersal kernel.

Integrodifference equations can, because of their
protean kernel, handle a diverse assortment of dispersal
mechanisms (Neubert et al. 1995). These equations
have, as a result, been used for a wide variety of applica-
tions. Two of these applications are especially relevant
to the current problem. The first application is the
study of population persistence (Kot and Schaffer 1986;
Van Kirk and Lewis 1997, 1999; Latore et al. 1998, 1999;
Lockwood et al. 2002). Latore et al. (1998, 1999), for
example, studied persistence on a finite, homogeneous,
one-dimensional patch of size or length L using the
integrodifference equation

nt+1(x) =
∫ L

2

− L
2

k(x, y) f
[
nt(y)

]
dy. (2)

Since individuals disperse and are lost across patch
boundaries, there is a critical patch size below which
the patch’s population cannot persist. This critical size
depends on both the population’s growth rate and on
the kernel k(x, y), which implicitly defines the bound-
ary conditions.

The other application is the study of invasive or-
ganisms (Kot et al. 1996; Neubert and Caswell 2000;
Neubert and Parker 2004; Fagan et al. 2005; Lewis
et al. 2006). These studies typically start with an inte-
grodifference equation on an infinite domain,

nt+1(x) =
∫ ∞

−∞
k(x, y) f

[
nt(y)

]
dy. (3)

Integrodifference equations can, like reaction-diffusion
equations, generate constant-speed traveling waves
(Weinberger 1978, 1982; Lui 1983; Kot 1992; Hart and
Gardner 1997). They may, however, also generate ac-
celerating invasions (Kot et al. 1996; Lewis 1997; Clark
1998).

The problem we consider involves both popula-
tion persistence and invasion. We examine an inte-
grodifference equation in which all growth occurs on
a finite domain that moves at a constant speed, mim-
icking a climate-driven range shift. (In future work, we
also hope to examine accelerating range shifts.) Warm-
ing may, of course, affect different parts of the life
cycle. In this paper, we focus on the impact of warming
on reproductive processes because of the demonstrated
effect of climate change on phenology and reproductive
biology (Gaston 2003; McCarty 2001; Walther et al.
2002; Parmesan 2006; Letcher 2009). We do not, in
contrast, consider direct effects of warming on disper-
sal since this is thought to be less important (but see
“Application”).

In the next section, we describe our model in detail,
provide mathematical background, and give a numer-
ical example of how the speed with which a patch
shifts affects persistence. The “Analysis of population
persistence” section contains mathematical analyses
that explain the phenomena observed in “Model” sec-
tion. “A simple, separable example” and “Numerical
methods” sections focus on analytically and numeri-
cally tractable examples. In the “Application” section,
we illustrate our ideas using data for Fender’s blue but-
terfly (Icaricia icarioides fenderi), an endangered sub-
species of Oregon’s Willamette Valley (Schultz et al.
2003). Finally, the “Discussion” section contains our
discussion and concluding remarks.

Model

We begin by considering the integrodifference
equation

nt+1(x) =
∫ L

2 +ct

− L
2 +ct

k(x, y) f
[
nt(y)

]
dy. (4)

This equation differs from a model on a stationary
domain, Eq. 2, in its limits of integration, and hence,
its habitat boundaries. Our population is no longer re-
stricted to an immobile one-dimensional patch. Rather,
our population reproduces on an interval, initially
[−L/2, L/2], that moves, because of climate change,
to the right, at constant speed c. We will use this
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formulation for both latitudinal and elevational range
shifts.

Equation 4 maps the density of the population in
generation t, nt(x), x ∈ (−∞, ∞), to the density in the
next generation, nt+1(x), in two stages. The first stage
accounts for the sedentary part of the organism’s life
cycle. During this stage, individuals inside the inter-
val [−(L/2) + ct, (L/2) + ct] grow, reproduce, and die.
The local density inside the interval, nt(x), is replaced
by a new density, f [nt(x)], of propagules. Individuals
outside the interval fail to reproduce.

The function f is the growth or recruitment func-
tion. Well-known choices for f include the right-hand

sides of the Beverton–Holt (1957) stock-recruitment
curve,

nt+1 = R0nt

1 + [
(R0 − 1)/K

]
nt

, (5)

the logistic difference equation (Maynard Smith 1968;
May 1973),

nt+1 = (1 + r)nt − r
K

n2
t , (6)

and the Ricker (1954) curve,

nt+1 = nter(1− nt
K ). (7)

Fig. 1 Simulations of the
distribution of a population
on a one-dimensional patch
of size L = 1 show that the
population will die out when
the speed c is large. For this
simulation, we used Laplace
dispersal kernel (10), with
b = 2.5, and Beverton–Holt
stock-recruitment curve (5),
with R0 = 1.7 and K = 100.
The initial distribution,
marked t = 0, was obtained
by iterating convolution
equation (9), with c = 0, for a
point release of 50 individuals
at x = 0 for 120 generations,
so that the population
converged to a steady
distribution. We then iterated
Eq. 9 with a c = 0.1 and
b c = 0.2. In a, the population
persisted. In b, the population
went extinct. The distribution
is displayed every ten
generations and was
computed using an
FFT-assisted implementation
of the extended trapezoidal
rule with 216 nodes
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Here, K is the carrying capacity of the environment, R0

is the net reproductive rate, and r is the intrinsic rate
of growth. In this paper, we only consider nonnegative
growth functions that satisfy

f (n) ≤ f ′(0) n. (8)

That is, we explicitly exclude growth functions with
Allee (1938) effects.

In the second (or dispersal) stage, propagules dis-
seminate. This movement is described by the dispersal
kernel k(x, y). For a fixed source y, we may think of the
kernel as the probability density function for the desti-
nation, x, of the propagules. In this paper, we consider
dispersal to be homogeneous and isotropic. We thus
assume that our dispersal kernel is both a difference
kernel, k(x, y) = k(x − y), and symmetric. Equation 4
can now be written as the convolution equation

nt+1(x) =
∫ L

2 +ct

− L
2 +ct

k(x − y) f
[
nt(y)

]
dy. (9)

Our difference kernel acts as a probability density
function for the displacement of the propagules. Well-
known examples of symmetric difference kernels in-
clude the Gaussian, Laplace, and Cauchy distributions.
The convolution integral tallies all propagules within
the shifted patch [−(L/2) + ct, (L/2) + ct] that have x
as their final destination.

The presence of a shifting or moving range can have
a profound effect on the dynamics of a population.
Figure 1 shows that an increase in the speed c can cause
extinction. This figure was obtained by simulating Eq. 9
with the Laplace kernel,

k(x − y) = 1

2
b exp (−b |x − y|), (10)

and the Beverton–Holt stock-recruitment curve, Eq. 5.
For L = 1, b = 2.5, R0 = 1.7, K = 100, and a small
speed of translation (c = 0.1), the population persists
(Fig. 1a). When we increase the speed to c = 0.2,
however, the population cannot keep up with cli-
mate change and goes extinct (Fig. 1b). Berestycki
et al. (2009) observed similar events for their reaction-
diffusion model.

Our simulations suggest that there is an upper limit
on the speed, c = c∗, with which a population can move.
Beyond this critical speed, a population cannot persist
unless other parameters also change. Increasing the net
reproductive rate or the patch size permits a larger crit-

ical speed. Changing the shape or scale of the dispersal
kernel has, in contrast, a less consistent effect.

What is the relationship between the critical speed
and the other parameters in our model? To answer
this question, we turn to a mathematical analysis of the
condition for population persistence.

Analysis of population persistence

Since the habitat is moving with constant speed c, we
will look for a traveling pulse,

nt(x) = n∗(x̄
) ≡ n∗(x − ct). (11)

After substituting this solution into convolution
Eq. 9, we find that

n∗(x − ct − c) =
∫ L

2 +ct

− L
2 +ct

k(x − y) f [n∗(y − ct)] dy. (12)

If we change variables, so that ȳ = y − ct and x̄ = x −
ct, and shift x̄ by c, we find that our traveling pulse must
satisfy the integral equation

n∗(x̄) =
∫ L

2

− L
2

k
(
x̄ + c − ȳ

)
f
[
n∗(ȳ)

]
dȳ. (13)

For the growth functions for the Beverton–Holt
curve, Eq. 5, the logistic equation, Eq. 6, and the Ricker
curve, Eq. 7, n∗(x̄) = 0 is a trivial solution. We would
like to study the stability of this solution, since popu-
lation persistence is equivalent to the instability of the
trivial solution.

In general, the stability of a traveling pulse can be
studied by adding a small perturbation, ξt(x), to the
pulse,

nt(x) = n∗(x̄
) + ξt(x). (14)

Because restriction (8) excludes Allee effects, we may
linearize the right hand side of Eq. 9 about the traveling
pulse to obtain

ξt+1(x) =
∫ L

2 +ct

− L
2 +ct

k(x − y) f ′[n∗(ȳ)
]
ξt(y) dy. (15)

For the trivial solution, Eq. 15 reduces to

ξt+1(x) = f ′(0)

∫ L
2 +ct

− L
2 +ct

k(x − y) ξt(y) dy. (16)
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We now write our perturbation as

ξt(x) = λt u(x − ct). (17)

After substituting this expression into Eq. 16, we
change variables, so that ȳ = y − ct and x̄ = x − ct, and
shift x̄ by c, to obtain

λ u
(
x̄
) = f ′(0)

∫ L
2

− L
2

k
(
x̄ + c − ȳ

)
u
(
ȳ
)

dȳ. (18)

λ is an eigenvalue of the integral operator with eigen-
function u(x̄).

The stability of the trivial solution is determined by
the dominant eigenvalue, i.e., by the eigenvalue λ with
largest magnitude. The trivial solution loses stability
when the magnitude of the dominant eigenvalue ex-
ceeds one.

We now restrict our domain to (x̄, ȳ) that satisfy
x̄ ∈ [−L/2, L/2] and ȳ ∈ [−L/2, L/2]. If our dispersal
kernel is continuous on this domain and if the interval
[−L/2, L/2] is finite, then the linear integral opera-
tor on the right-hand side of Eq. 18 is compact (or
completely continuous). The eigenvalues of a compact
linear operator form a discrete set. This set may be
finite, countably infinite, or empty (Karlin 1964; Hutson
and Pym 1980). Each eigenvalue is of finite multiplicity
and zero is the only possible accumulation point for the
eigenvalues. In general, the eigenvalues are complex.
If, moreover, the kernel is positive, we may invoke
Jentzsch’s (1912) theorem (see also Krzemiński 1977;
Horiguchi and Fukui 1996). Jentzsch’s theorem is an
extension of the Perron–Frobenius theorem for posi-
tive matrices to integral equations with positive kernels.
The theorem guarantees the existence of a simple and
positive dominant eigenvalue with positive eigenfunc-
tion. If the conditions of the theorem are satisfied,
persistence is gained or lost as the dominant eigenvalue
passes through λ = 1.

Continuous dispersal kernels with infinite support,
such as the Laplace and Gaussian distributions, always
satisfy Jentzsch’s theorem for [−L/2, L/2] finite. Con-
tinuous dispersal kernels with compact support may
also satisfy this theorem, but only if the radius of their
support is sufficiently large relative to the patch size L
and speed c.

A simple, separable example

Eigenvalue problem (18) simplifies to a finite-
dimensional problem in linear algebra if its kernel
is separable (or degenerate). A kernel is separable
(Pipkin 1991; Latore et al. 1998) if it can be written as a

finite, linear combination of products of a function of x
alone and a function of y alone,

k(x, y) =
N∑

i=1

gi(x) hi(y). (19)

Consider, for example, the kernel

k(x − y) =

⎧⎪⎨
⎪⎩

ω

2
cos ω(x − y), |x − y| ≤ π

2ω
,

0, |x − y| >
π

2ω
,

(20)

with finite radius of dispersal π/(2ω). If we assume, for
convenience, that this radius of dispersal is larger than
the patch size,

π

2ω
> L, (21)

and that the speed c is small,

c <
π

2ω
− L, (22)

eigenvalue problem (18) reduces to an equation,

λ u(x̄) = f ′(0)

∫ L
2

− L
2

ω

2
cos ω

(
x̄ + c − ȳ

)
u
(
ȳ
)

dȳ, (23)

that has a kernel that is positive for all (x̄, ȳ) such that
x̄ ∈ [−L/2, L/2] and ȳ ∈ [−L/2, L/2].

The kernel is also separable, since

ω

2
cos ω

(
x̄ + c − ȳ

)

= ω

2

[
cos ωx̄ cos ω

(
ȳ − c

) + sin ωx̄ sin ω
(
ȳ − c

)]
. (24)

Our eigenvalue problem now takes the form

λ u
(
x̄
) = ωR0

2

[∫ L
2

− L
2

cos ω
(
ȳ − c

)
u
(
ȳ
)

dȳ

]
cos ωx̄

+ ωR0

2

[∫ L
2

− L
2

sin ω
(
ȳ − c

)
u
(
ȳ
)

dȳ

]
sin ωx̄,

(25)

where R0 = f ′(0).
Equation 25 implies that the eigenvector u(x̄) can

be written as a linear combination of cos ωx̄ and
sin ωx̄,

u
(
x̄
) = c1 cos ωx̄ + c2 sin ωx̄, (26)
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where c1 and c2 are constants. Inserting this expression
into Eq. 25 and equating the coefficients of cos ωx̄ and
sin ωx̄ on each side, we obtain the linear system

λ c1 = a11 c1 + a12 c2, (27a)

λ c2 = a21 c1 + a22 c2, (27b)

where

a11 = ωR0

2

∫ L
2

− L
2

cos ω
(
ȳ − c

)
cos ω ȳ dȳ

= R0

4
(ωL + sin ωL) cos ωc, (28a)

a12 = ωR0

2

∫ L
2

− L
2

cos ω
(
ȳ − c

)
sin ω ȳ dȳ

= R0

4
(ωL − sin ωL) sin ωc, (28b)

a21 = ωR0

2

∫ L
2

− L
2

sin ω
(
ȳ − c

)
cos ω ȳ dȳ

= R0

4
(−ωL − sin ωL) sin ωc, (28c)

a22 = ωR0

2

∫ L
2

− L
2

sin ω
(
ȳ − c

)
sin ω ȳ dȳ

= R0

4
(ωL − sin ωL) cos ωc. (28d)

Linear system (27) has the characteristic equation

λ2 − (
a11 + a22

)
λ + (

a11a22 − a12a21
) = 0, (29)

which reduces to

λ2 −
(

R0 ωL
2

cos ωc
)

λ + R2
0

16

(
ω2L2 − sin2 ωL

) = 0.

(30)

Separable kernel (20) is continuous and nonnegative.
If conditions (21) and (22) for the patch size, radius
of dispersal, and shift speed are satisfied, the kernel is
positive and Jentzsch’s theorem guarantees us a sim-
ple and positive dominant eigenvalue. Stability of the
trivial solution is then lost through λ = 1. Setting λ = 1
allows us to determine the critical speed c∗. Thus,

1 −
(

R0 ωL
2

cos ωc∗
)

+ R2
0

16

(
ω2L2 − sin2 ωL

) = 0.

(31)

The added condition

R2
0

16

(
ω2 L2 − sin2 ωL

)
< 1 (32)

ensures that λ = 1 is, in fact, the dominant eigenvalue.
The critical speed c∗ occurs within just one function of
Eq. 31 and, if we solve for c∗, we quickly find that

c∗ = 1

ω
cos−1

[
16 + R2

0

(
ω2 L2 − sin2 ωL

)
8 R0 ωL

]
, (33)

for

4

ωL + sin ωL
< R0 < Rmax . (34)

The critical speed is zero for smaller values of R0. The
upper limit on R0 for our analysis, Rmax, is determined
by the more stringent of conditions (22), for c = c∗,
or (32).

For separable kernel (20) and conditions (21) and
(22), we can also say something about the shape of
any traveling pulses. Pulse equation (13) now takes the
form

n∗(x̄) = ω

2

∫ L
2

− L
2

cos ω
(
x̄ + c − ȳ

)
f
[
n∗(ȳ

)]
dȳ, (35)

which, because of our separable kernel, reduces to

n∗(x̄) = ω

2

{∫ L
2

− L
2

cos ω
(
ȳ − c

)
f
[
n∗(ȳ

)]
dȳ

}
cos ωx̄

+ ω

2

{∫ L
2

− L
2

sin ω
(
ȳ − c

)
f
[
n∗(ȳ

)]
dȳ

}
sin ωx̄.

(36)
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0
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0.6

0.8

1
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c*

Fig. 2 A plot of the critical speed (for extinction) as a function
of the net reproductive rate R0 for a population with Beverton–
Holt growth, Eq. 5, and separable kernel (20). We used critical-
speed equation (33) with patch size L = 1 and ω = π/4 to draw
this graph. Condition (22) requires c < 1
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Fig. 3 Shape coefficients a1 and a2 of traveling pulse (37) plotted
as functions of the speed c. The coefficient a1 is proportional to
the total within-patch population while a2 introduces asymmetry
into the traveling pulse. Here, L = 1, R0 = 4, ω = π/4, K = 100

It is clear from this last equation that any traveling
pulse n∗(x̄) is a linear combination of cos ωx̄ and sin ωx̄.
We thus let

n∗(x̄
) = a1 cos ωx̄ + a2 sin ωx̄, (37)

with constant coefficients a1 and a2. After substituting
this expression into Eq. 36 and equating the coefficients
of cos ωx̄ and sin ωx̄ on each side, we discover that a1

and a2 must satisfy

a1 = ω

2

∫ L
2

− L
2

cos ω
(
ȳ − c

)
f
(
a1 cos ω ȳ + a2 sin ω ȳ

)
dȳ ,

(38a)

a2 = ω

2

∫ L
2

− L
2

sin ω
(
ȳ − c

)
f
(
a1 cos ω ȳ + a2 sin ω ȳ

)
dȳ .

(38b)

For an arbitrary growth function, solving this nonlin-
ear system for a1 and a2 is hard. These two equations
do, however, provide a useful numerical scheme for
calculating these coefficients. Begin by guessing a1 and
a2, evaluate the right-hand sides of the two equations,
and use these values as your new best guesses of a1 and
a2. Repeat as needed. In our next example, this iterative
scheme rapidly converges to the true a1 and a2.

To make the above discussion concrete, we focus
on a population that obeys the Beverton–Holt stock-
recruitment curve, Eq. 5; that has a patch size of one,
L = 1; and that obeys dispersal kernel (20) with a
radius of dispersal of two, so that ω = π/4. Because
of condition (22), we assume that c < 1. We plot the
critical speed c∗ as a function of the net reproductive
rate R0 (see Fig. 2) using Eq. 33. (For higher speeds,
the trivial equilibrium is stable and the population goes
extinct.) The plotted curve increases monotonically and
is concave down. Thus, as the critical speed c∗ increases,
a population must increase its net reproductive rate
faster and faster to persist.

In Fig. 3, we use system (38) to determine and plot
the shape coefficients a1 and a2 of traveling pulse (37)
as a function of the speed c for 0 ≤ c ≤ 1, L = 1, ω =
π/4, and R0 = 4. For the traveling pulse, the total pop-
ulation within the moving patch is proportional to the
parameter a1 and we see that this coefficient decreases
monotonically as the speed c increases.

Fig. 4 Phase lag φ, as defined
by Eq. 41, plotted as a
function of the speed c. As
the speed c increases, the
phase lag increases more or
less linearly. The phase lag
was computed for L = 1,
R0 = 4, and ω = π/16, π/8,
and π/4
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The coefficient a2 introduces asymmetry into the
pulse. To see this, we rewrite traveling pulse (37) as

n∗(x̄
) = A cos

(
ωx̄ + φ

)
(39)

with amplitude

A ≡
√

a2
1 + a2

2 (40)

and phase lag

φ ≡ tan−1

(−a2

a1

)
. (41)

As c increases, the phase lag (see Fig. 4) increases
and the distribution of organisms within the habitat is
increasingly asymmetric: individuals pile up near the
lagging edge of the patch.

Numerical methods

Although separable kernels are tractable, they are also
relatively rare. For most kernels, we need numerical
methods.

The most useful numeric procedures for analyzing
eigenvalue problem (18) all start with the Nyström
method (Delves and Walsh 1974; Press et al. 1992).
That is, these procedures all begin by discretizing the
integral using a quadrature rule.

The simplest quadrature rule is the repeated trape-
zoidal rule, which reduces Eq. 18 to

λ u
(
x̄i

) = f ′(0)
�x̄
2

N−1∑
j=1

[
k
(
x̄i + c − ȳ j

)
u
(
ȳ j

)

+ k
(
x̄i + c − ȳ j+1

)
u
(
ȳ j+1

)]
(42)

for i = 1, . . . , N. Here, the domain of integration is dis-
cretized into N − 1 equal subintervals of length �x̄ =
L/(N − 1). The variables x̄ and ȳ in Eq. 18 are each
replaced by grid points that range from −L/2 to L/2
in units of �x̄ and that are labeled x̄i and ȳ j. If we let
ci = u(x̄i),

Ai1 = �x̄
2

k
(
x̄i + c − ȳ1

)
, (43a)

Aij = �x̄ k
(
x̄i + c − ȳ j

)
, 2 ≤ j ≤ N − 1, (43b)

AiN = �x̄
2

k
(
x̄i + c − ȳN

)
, (43c)

we now obtain the finite-dimensional linear system

λ ci = f ′(0)

N∑
j=1

Aij c j, (44)

where i = 1, . . . , N.
We can now analyze linear system (44) in one of

two ways. The first approach starts by determining the
eigenvalues of system (44) directly. The eigenvalues
may be obtained using commands such as eigs, eigen,
or spec in computing environments such as MATLAB,
R, or Scilab or by using well-known routines from
numerical libraries such as Numerical Recipes (Press
et al. 1992), LAPACK (Anderson et al. 1999), or the
GNU Scientific Library (Galassi et al. 2009). These
commands and routines commonly balance a matrix,
reduce the balanced matrix to Hessenberg form, and
find the eigenvalues of the Hessenberg matrix using
a QR algorithm. (See Press et al. 1992 for details.)
Choose the dominant eigenvalue. Since this eigenvalue
depends continuously on the parameters of the model,
one can find the critical value for a parameter, such as
c, corresponding to an important root, such as λ = 1,
using a standard root-finding algorithm, such as the
method of bisection or Brent’s method (Brent 1973;
Press et al. 1992).

As an alternative, set λ, in linear system (44), equal
to one; use an efficient algorithm, such as LU decom-
position (Press et al. 1992), to evaluate the determi-
nant of the system; and use a numerical root finder to
find the value of a chosen parameter that makes the
determinant zero. This approach has the advantage of
being simpler to implement from scratch, but has the
disadvantage that you are not guaranteed that λ = 1 is
always the dominant eigenvalue.

Using these numerical methods, we extended Fig. 2
for values of R0 (R0 = f ′(0) for growth function (5))
and c∗ that violate smallness condition (22) (for c = c∗).
The resulting curve (not shown) continues as before; it
is monotonically increasing and concave down. A plot
of the critical speed c∗ as a function of the radius of
dispersal, π/(2ω), for separable kernel (20) and L = 1
and R0 = 4, in turn, shows (see Fig. 5) that c∗ increases
with the dispersal radius when the radius is small, but
decreases when the radius is large. When the radius
is small, most propagules land within the old patch
and increasing the radius helps propagules colonize the
newly avaiable habitat in front of the old patch. In
contrast, for large radii, most propagules already land
outside of the old patch; increasing the radius now leads
to overdispersal as more individuals land behind the old
patch or in front of the newly available habitat.
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Fig. 5 A plot of the critical speed as a function of the dispersal
radius π/2ω for separable kernel (20). The eigenvalue problem,
Eq. 18 with kernel (20), was discretized using Nyström’s method
for L = 1 and R0 = 4. For each radius of dispersal, we used a
root finder (the method of bisection) with tolerance 10−8 to de-
termine the critical speed c∗ that made the dominant eigenvalue
equal to 1

The above numerical methods also allow us to de-
termine the critical speed for kernels that are not
separable. We will see examples of this in the next
section.

Application

Fender’s blue butterfly (I. icarioides fenderi) is endemic
to the Willamette Valley of Oregon and is listed as
endangered by the US Fish and Wildlife Service (2000).
This subspecies is, in many ways, poorly suited to our
model: it is a habitat specialist, is not vagile, and does
not disperse passively. (We will address these issues
towards the end of this section.) Populations are, how-
ever, univoltine and do live in either isolated patches
or in small, isolated clusters of patches (Schultz 1998;
Crone and Schultz 2003; Schultz et al. 2003). In addi-
tion, we found good data regarding the critical patch
size, growth, and dispersal of this butterfly.

The butterfly is restricted to prairie fragments that
contain Kincaid’s lupine (Lupinus sulphureus ssp. kin-
caidii) and other larval food plants (Schultz et al. 2003).
Prairie has all but disappeared from the Willamette
Valley because of the termination of annual burning by
Kalapuya Indians (Wilson et al. 2003). This change in
the historical fire regime allowed shrubs and trees to in-
vade and shade out low-growing prairie species. Schultz
and Crone (1998) recommended controlled burns as
a means of restoring Fender’s blue butterfly habitat.
Since wildfires are expected to increase with global
warming (Westerling et al. 2006), we believe that global
warming could have an effect on the distribution of

prairie species such as Kincaid’s lupine and Fender’s
blue butterfly.

The sizes of I. icarioides fenderi habitat patches vary
from “quite small” (less than 2 ha) to over 50 ha
(Schultz et al. 2003, Figure 5). (Small patches often
belong to small, isolated clusters.) Crone and Schultz
(2003) estimated the minimum patch size for butterfly
persistence to be 6 ha. To illustrate the effects of habitat
shift, we will consider a patch of 25 ha, a size substan-
tially larger than the estimated minimum patch size.
Since we are working in one dimension, we will also
assume that our 25 ha patch is square, with a width of
0.5 km.

Fender’s blue butterflies display interesting move-
ment patterns. Adult butterflies tend to stay within
lupine patches, but occasionally wander out of these
patches. Diffusion rates outside of lupine patches are
many times greater than those inside lupine patches
(Schultz 1998, Table 2). In addition (Schultz and Crone
2001; Crone and Schultz 2008), butterflies exhibit “an
intriguing and distinctive looping behavior” at patch
boundaries so that movement may, in fact, be a bi-
ased, correlated random walk (Turchin 1998), with bias
towards habitat patches. These behaviors violate the
assumptions underlying our use of a simple difference
kernel, that dispersal is homogeneous and isotropic.

Even so, because our goals in this paper are ex-
ploratory rather than prescriptive, we will follow Clark
(1998) and consider the exponential power distribution

k(x − y) = β

2α�(1/β)
exp

[
−

( |x − y|
α

)β
]

(45)

for dispersal, where � denotes the gamma function and
α and β are positive scale and shape parameters. β

controls the kurtosis of the kernel: for β < 2, the kernel
is leptokurtic; for β > 2, it is platykurtic. For fixed
β, α can then be estimated from the mean (absolute)
deviation δ1 since

δ1 = α�(2/β)

�(1/β)
. (46)

For the mean deviation, we used Schultz’s (1998, Table
2) estimate of the net lifetime movement distance for
females within lupine of 0.4 km.

Figure 6 shows the critical speed c∗ (for extinction)
as a function of the net reproductive rate R0 for a
leptokurtic dispersal kernel (β = 1) and a platykurtic
dispersal kernel (β = 8). We determined the critical
speeds using eigenvalue equation (18) and the nu-
merical methods in the “Numerical methods” section
for R0 = f ′(0), size L = 0.5 km, and mean deviation
δ1 = 0.4 km. Butterflies with the leptokurtic kernel do
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Fig. 6 Plots of the critical speed c∗ as a function of the net
reproductive rate R0 for a leptokurtic and a platykurtic exam-
ple of exponential power distribution (45). The solid curve is
for a leptokurtic kernel (β = 1); the dot-dashed curve is for a
platykurtic kernel (β = 8). The two curves were computed for
mean (absolute) deviation δ1 = 0.4 km and patch width L = 0.5
km. For each net reproductive rate (and kernel), we used a root
finder (the method of bisection) with tolerance 10−8 to determine
the critical speed c∗ that made the dominant eigenvalue of linear
system (44) (as found in MATLAB) equal to 1. The effect of
kurtosis on the critical speed c∗ was different at small, medium,
and large values of R0

better at low and high levels of R0 (i.e., for lower and
higher speeds) while butterflies with the platykurtic
kernel cope better at intermediate levels of R0. This is
consistent with the fact that the leptokurtic distribution
has more probability in the center peak and in the tails
(i.e., for small and large distances) while the platykurtic
distribution has more probability in the shoulders.

Schultz and Hammond (2003) surveyed Fender’s
blue butterfly populations across the range of the sub-
species and measured growth rates between 0.99 to 2.66
(see their Table 2). The high values of R0 in Fig. 6
suggest that most extant populations of Fender’s blue
butterfly would do poorly with even small amounts of
range shift.

The above model, as previously stated, ignores the
fact that Fender’s blue butterfly is a habitat specialist
whose movement is strongly affected by the presence of
its host plant, Kincaid’s lupine, a long-lived perennial
(Wilson et al. 2003). We can construct a more real-
istic model at the expense of simplicity. Dwyer and
Morris (2006) have considered integrodifference equa-

tions, built around consumer–resource models, that
include resource-dependent dispersal. One can also
construct such models for Fender’s blue butterfly and
Kincaid’s lupine.

Discrete-time consumer–resource models often take
the form of host–parasitoid models. For these models,
the exact order of events is extremely important (May
et al. 1981; Kang et al. 2008). In the case of Fender’s
blue butterfly, adult females lay their eggs on appropri-
ate host plants, plants not overgrown or shaded by taller
plants, from May to June (Schultz et al. 2003). Newly
hatched larvae feed for a short time, but then enter
diapause until February or March. Most feeding thus
takes place after the host has set seed. Larvae spend
most of their time on the food plant; they seldom crawl
to the ground (due, perhaps, to a large, predaceous tiger
beetle) (Schultz et al. 2003). For convenience, we will
assume that larvae feed only on the plant on which they
were oviposited.

A more detailed model for the butterfly–lupine sys-
tem might thus take the form

Rt+1(x) = σ f
(
x, Rt(x), Ct(x)

)
Rt(x)

+ λ

∫ L
2 +ct

− L
2 +ct

k(x − y) Rt(y) g
(
Rt(y)

)
dy , (47a)

Ct+1(x) = γ σ
[
1 − f

(
x, Rt(x), Ct(x)

)]
Rt(x) . (47b)

Here, Rt(x) is the density of the lupine population
(the resource) before reproduction, Ct(x) is the density
of the feeding larvae, σ is the survivorship of adult
plants in the absence of consumers, λ is the number
of offspring per adult plant in the absence of density
dependence, γ is a factor that accounts for the con-
version of consumed lupines into butterflies, k(x − y)

is the dispersal kernel for the lupine, g(Rt) accounts
for density dependence in lupine reproduction, and
f (x, Rt(x), Ct(x)) is the fraction of adult lupine that
survive herbivory. As before, we assume that all repro-
duction takes place in a patch of size L moving with
constant speed c.

The fraction of lupine that survive herbivory ulti-
mately depends on the density and spatial distribution
of butterfly eggs. We may thus write

f (x, Rt(x), Ct(x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

[
−a

∫ L
2 +ct

− L
2 +ct

h
(
x − y, Rt(y)

)
Ct(y) dy

]
, x ∈

[
− L

2
+ ct,

L
2

+ ct
]

1, x /∈
[
− L

2
+ ct,

L
2

+ ct
]

.

(48)
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Here, a is the area of discovery (Nicholson 1933) and
h(x − y, Rt(y)) is a dispersal kernel for the butterfly.
This kernel now depends on the distribution of host
plants as well as on distance. (See Dwyer and Morris
(2006) for examples of resource-dependent kernels and
for other models.)

The analysis of system (47) is beyond the scope of
this paper, but this example does show how one can
extend our basic approach to include more biology.
This example also highlights the fact that a species’
ability to keep pace with range shifts may, in fact,
depend on the dispersal ability of its host.

Discussion

All species have limits to how frequently and how
far they disperse. If these limits are severe, climate
change can take a heavy toll. In the “Model” section,
we introduced a simple model for population growth on
a shifting domain. We showed (see Fig. 1b) that a rapid,
climate-induced, shifting species range can cause a pop-
ulation to die out. Even if the population persists (see
Fig. 1a), it may be greatly reduced. Approaches that
neglect dispersal, such as bioclimate envelope models,
can overestimate the ability of species to survive in the
presence of climate change.

For our model, the speed of the range shift deter-
mines the toll on the population. For a given growth
function, dispersal kernel, and patch size, there is a
critical speed beyond which the population cannot
survive. In the “Analysis of population persistence”
section, we related population persistence to a simple
(integral equation) eigenvalue problem. In “A simple,
separable example” section, we determined the critical
speed for a simple separable kernel analytically . In
Section “Numerical methods”, we showed how to de-
termine the critical speed for general dispersal kernels
numerically. Other critical values, such as critical patch
size and critical growth rate, can also be determined
numerically.

Larger growth rates and patch sizes (graph not
shown) increase population persistence. Changing the
shape or scale of a dispersal kernel has a less consistent
effect (see Figs. 5 and 6). Since a population’s vulnera-
bility to climate change displays a complicated relation-
ship to its dispersal behavior, we encourage ecologists
to use detailed dispersal information in managing pop-
ulations for conservation. Integrodifference equation
are especially useful in this regard since they are built
around dispersal kernels and can accommodate varied
dispersal mechanisms (Neubert et al. 1995; Neubert and
Parker 2004).

In this paper, we started with the simplest rea-
sonable model: we constructed and analyzed a
deterministic model with discrete, nonoverlapping
generations; compensatory growth; and homogeneous
and isotropic dispersal. These assumptions can be
relaxed. Instead of a compensatory (Beverton–Holt)
growth function, we can easily imagine using growth
functions with overcompensation, such as the logistic
curve or the Ricker curve. With overcompensation,
we expect traveling time-periodic or chaotic pulses.
Another alternative is to use a growth function with
critical depensation or a strong Allee effect (e.g.,
Wang et al. 2002; Taylor and Hastings 2005). Our
model might then exhibit bistability and dangerous
fold bifurcations. Integrodifference equations have also
been extended to accommodate time-periodic, stochas-
tic, density-dependent, and resource-dependent growth
and dispersal (Neubert et al. 2000; Kot et al. 2004;
Hastings et al. 2005; Dwyer and Morris 2006; Lutscher
2008) and age and stage structure (Neubert and Caswell
2000). We hope to incorporate these effects into range-
shift models in the future.
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