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Abstract Many ecological systems experience periodic
variability. Theoretical investigation of population and
community dynamics in periodic environments has
been hampered by the lack of mathematical tools rela-
tive to equilibrium systems. Here, I describe one such
mathematical tool that has been rarely used in the
ecological literature but has widespread use: Floquet
theory. Floquet theory is the study of the stability of
linear periodic systems in continuous time. Floquet ex-
ponents/multipliers are analogous to the eigenvalues of
Jacobian matrices of equilibrium points. In this paper,
I describe the general theory, then give examples to
illustrate some of its uses: it defines fitness of struc-
tured populations, it can be used for invasion criteria
in models of competition, and it can test the stability of
limit cycle solutions. I also provide computer code to
calculate Floquet exponents and multipliers.

Keywords Nonequilibrium dynamics - Floquet theory

Introduction

Populations, communities, and ecosystems vary in
time, a truism obvious to natural historians (Thoreau
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1854) and well-quantified by empiricists (Kratz et al.
2003). The origin of these fluctuations can be exter-
nal (e.g., weather) or internal (e.g., predator—prey
cycles), and the fluctuations can be random, periodic,
or chaotic. Given the ubiquity of temporal variability
and its potential importance for structuring ecological
systems, theoreticians have been eager to incorporate
its effects in ecological models (Nisbet and Gurney
1982; De Angelis and Waterhouse 1987; Chesson 1994).
Despite these efforts, we still do not have a full un-
derstanding of the effect of temporal variability on
theoretical communities and ecosystems, much less real
ones. Why not?

First, temporal variability is a multifaceted phenom-
enon with complex and idiosyncratic effects on differ-
ent ecological processes. Details matter. For example,
some models of competition have shown that fluctua-
tions can increase diversity (Armstrong and McGehee
1980; Chesson 1994; Litchman and Klausmeier 2001),
while others have shown that they can decrease diver-
sity (May 1974). The effect of environmental noise has
been showed to strongly depend on the spectrum of the
noise (Steele and Henderson 1984; Kaitala et al. 1997).

Second, nonequilibrium dynamics are more difficult
to analyze mathematically than equilibrium situations
because fewer analytical tools are available. A number
of analytical techniques have been applied to ecological
models, but each has a limited range of applicability.
For example, Chesson’s decomposition of competitive
effects in a stochastic environment (Chesson 1994)
and Nisbet and Gurney’s use of transfer functions
(Nisbet and Gurney 1982) both assume small envi-
ronmental fluctuations. Elsewhere, we have developed
techniques that assume that environmental variability is
slow compared to population dynamics (Litchman and
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Klausmeier 2001; Klausmeier in preparation). When
these approximations are not valid, the typical ap-
proach to studying nonequilibrium dynamics is brute
force numerical solution of the model (e.g., Grover
1991; Hastings and Powell 1991; Brassil 2006). All of
these tools have their place in the theoretician’s tool-
box, but we could use more of them.

In this paper, I explain and illustrate one such tool:
Floquet theory. Although Floquet theory has a wide
range of potential uses in ecological and evolutionary
modeling and is relatively easy to implement, its use in
ecology has been extremely limited (Kooi and Troost
2006). The mathematics here is not novel or particularly
advanced; Floquet theory is typically taught in a second
course on ordinary differential equations (cf. Drazin
1992; Grimshaw 1993; Strogatz 1994). However, most
ecologists do not take one, much less two, courses
in differential equations. Instead, they learn modeling
techniques from a course in theoretical ecology, which
typically do not incorporate Floquet theory (cf. Nisbet
and Gurney 1982; Yodzis 1989; Hastings 1997). Given
the potential utility of Floquet theory, its lack of use
indicates that it needs better advertising. Therefore,
the goal of this paper is to promote the wider use of
Floquet theory as a useful tool for studying the effects
of temporal variability on ecological systems.

What is Floquet theory? It is the study of linear
systems of differential equations with periodic coeffi-
cients. What can you do with it? You can use it for
anything you would use linear stability analysis for,
when dealing with a periodic system. In particular,
it has three potentially important uses in ecological
theory: 1) defining fitness of structured populations in
periodic environments, 2) calculating invasion criteria
for interacting structured populations in periodic envi-
ronments, and 3) testing the stability of a limit cycle.
A structured population is one that can not be mod-
eled as a single state variable. Some different types of
population structure are physiological structure (Metz
and Diekmann 1986), age and stage structure (Caswell
2001), and spatial structure (Tilman and Kareiva 1997).

In the remainder of this paper, I outline the ideas
behind Floquet theory. I describe a numerical method
for calculating Floquet multipliers and define a Math-
ematica (Wolfram Research Inc. 2007) function to do
this calculation. Then, I give three ecological examples
of the utility of Floquet theory. First, I explore the
evolution of dispersal in a two-patch metapopulation
with spatiotemporal fluctuations. Second, I calculate in-
vasion criteria in a model of competing stage-structured
populations in a seasonal environment. Third, I calcu-
late the stability of a limit cycle in a tri-trophic food
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chain model (Hastings and Powell 1991). Finally, I
suggest other applications of Floquet theory and de-
scribe its generalization to environments with aperiodic
temporal variation (Metz et al. 1992).

Theory

Here, I largely follow Grimshaw (1993); the reader
who wants more details could consult it or another
differential equations text (e.g., Drazin 1992; Strogatz
1994). Consider a set of linear, homogeneous, time-
periodic differential equations

dx

where x is a n-dimensional vector and A(¢f) isan n x n
matrix with minimal period 7. Although its parame-
ters A(t) vary periodically, the solutions of Eq. 1 are
typically not periodic, and despite its linearity, closed-
form solutions of Eq. 1 typically cannot be found. The
general solution of Eq. 1 takes the form

xX() =) cie'pi(h) )

where ¢; are constants that depend on initial conditions,
p:(t) are vector-valued functions with period T, and u;
are complex numbers called characteristic or Floquet
exponents. Characteristic or Floquet multipliers are
related to the Floquet exponents by the relationship
pi =eMT. As can be seen from Eq. 2, the solution to
Eq. 1 is the sum of n periodic functions multiplied by
exponentially growing or shrinking terms. The long-
term behavior of the system is determined by the Flo-
quet exponents. The zero equilibrium is stable if all
Floquet exponents have negative real parts or, equiv-
alently, all Floquet multipliers have real parts between
—1 and 1. If any Floquet exponent has a positive real
part (equivalent to a Floquet multiplier with modulus
greater than one), then the zero equilibrium is unsta-
ble and ||x(¥)|]] = oo as t — oo. Thus, Floquet expo-
nents/multipliers can be interpreted in the same way as
eigenvalues are in models with constant coefficients in
continuous/discrete time, respectively; they represent
the growth rate of different perturbations averaged
over a cycle. Floquet exponents are rates with units
time~!, and Floquet multipliers are dimensionless num-
bers that give the period-to-period increase/decrease of
the perturbation.
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How can Floquet exponents/multipliers be calcu-
lated? While the eigenvalues of a matrix can be
calculated analytically, Floquet exponents/multipliers
typically must be calculated numerically. An efficient
approach is available. Solve the matrix differential
equation

dXx
— = AOX (3)

over one period (from ¢t = 0 to t = T'), with the identity
matrix as an initial condition (X (0) = 7). The matrix
X(T) is known as a fundamental matrix (Grimshaw
1993). Floquet multipliers, p;, are the eigenvalues of
X(T) and Floquet exponents, u; can calculated as
(log p;)/ T. Code to do these calculations in Mathe-
matica (Wolfram Research, Inc. 2007) is supplied in
the Electronic Appendix, which should be easily imple-
mented in other systems.

Example 1: fitness of structured populations
in periodic environments

Metz et al. (1992) showed that the general definition of
fitness is given by the asymptotic exponential growth
rate, which is determined by the dominant Lyapunov
exponent. Floquet exponents are the special case of
Lyapunov exponents applied to continuous-time pe-
riodic systems, so it follows that Floquet exponents
should be useful in the evolutionary ecology of struc-
tured populations. Frequency dependence can be in-
corporated in a nonlinear model, calculating fitness as
an invasion rate as in the next example (see also Metz
et al. 1992; Kooi and Troost 2006).

Here, I give an example of the evolution of dispersal
in a spatiotemporal mosaic environment. Consider a
population that lives in two patches, with densities
x; and x,. In each patch, the population grows or
shrinks exponentially at rate r;(t) with r|(¢) = sin2x¢
and r,(¢) = —sin2xt, so that the two patches change
from sources (r > 0) to sinks (r < 0) perfectly out of
phase with period T = 1. The patches are coupled
by random dispersal with rate d. The model for this
situation is

=ri(Ox; +d(x—x1)

dxl
dt
dx
7; =rMx; +d(x; — x2)

or, in the form of Eq. 1,

_ I’]([)—d d
Am_( d rz(t)—d> “

Before calculating the asymptotic population growth
rate (fitness) for arbitrary d, consider two special cases.
If the two patches are completely uncoupled (d = 0),
then the growth rate in each patch varies from —1 to 1,
with an average growth rate of zero. It is well known
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Fig. 1 Population dynamics in two patches governed by Eqgs. 1
and 4 with different dispersal rates. Initial conditions: x;(0) = 1,
x2(0) = 1. Solid line is density in patch 1, dotted line is density in
patch2.ad = 0.b d = 10* (effectively infinite). ¢ d = 3
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that an isolated population growing exponentially in a
time-varying environment grows according to its aver-
age growth rate. Therefore, for d = 0, we expect no net
growth or decline. A numerical solution of Eq. 1, with
A(t) given by Eq. 4, shows this to be correct (Fig. 1a).
Each subpopulation grows during the favorable part of
the period and declines the exact same amount during
the unfavorable part.

If the two patches are completely well-mixed
(d = 00), then we expect the population to experi-
ence both patches equally, averaging growth rates over
space. Because the two patches are out-of-phase, the
spatial-average growth rate is (r; +r;)/2 =0, so we
would again expect no net growth, this time without any
fluctuations. Again, the numerical solution of Egs. 1
and 4 with large d shows this to be correct (Fig. 1b).

Given the behavior of these two limiting cases and
the linearity of Eq. 1, one might expect no net growth
for any d. Numerical solution of Eqs. 1 and 4 shows this
to be incorrect; instead, the population grows without
bound (Fig. 1c). Evaluating the maximum Floquet ex-
ponent of Eq. 4 as a function of dispersal rate, d, verifies
that these numerical results are correct (Fig. 2): net
population growth is zero for d = 0 and d = oo, but it
is positive for intermediate d. Figure 2 shows that there
is an optimal dispersal rate d that maximizes fitness; in
this case, it is d = 3.132, which leads to a growth rate
of 0.03966. Thus, even with no explicit cost of dispersal,
there is an optimal dispersal rate in a spatiotemporal
mosaic environment. This is a simple example of the
phenomenon of inflation recently introduced by Holt
and colleagues (Gonzalez and Holt 2002; Holt et al.
2003; Roy et al. 2005); it complements their work be-
cause it considers multiple patches in continuous time
and with periodic variability, whereas existing work
focuses on a single patch (Gonzalez and Holt 2002;
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Fig. 2 Dominant Floquet exponent as a function of dispersal
rate, d. Fitness is maximized at an intermediate d = 3.132
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Holt et al. 2003) or stochastic variability in discrete time
(Roy et al. 2005).

Example 2: invasion criteria for interacting structured
populations

Invasion criteria are a powerful tool for analyz-
ing pairwise competitive interactions (Armstrong and
McGehee 1980). Each species is grown in monoculture,
then the other species is introduced at low density and
its invasion rate is calculated. If species one invades
species two, but not vice versa, then we say species one
outcompetes species two. If the reverse is true, species
two outcompetes species one. If each species can invade
a monoculture of the other, then we say the two species
coexist, and if neither species can invade a monoculture
of the other, then the system exhibits founder con-
trol. Complications can arise in systems with multiple
attractors (Namba and Takahashi 1993; Mylius and
Diekmann 2001), but invasion criteria have found wide-
spread use in studying real and apparent competition
(e.g., Armstrong and McGehee 1980; Chesson 1994;
Grover and Holt 1998; Litchman and Klausmeier 2001).
Invasion criteria are so popular because they focus on
the linear stability of monoculture attractors, which
eliminates the need to solve for a coexistence attractor.
This is analytically and computationally more tractable.
Because Floquet theory is the appropriate measure of
linear stability in periodic structured population, it has
a natural role in applying invasion criteria in these
cases.

Here, we give an example of the use of Floquet
theory in calculating invasion criteria, using the case
of competition of stage-structured populations in a sea-
sonal environment. This lets us look at how life-history
trade-offs can permit coexistence in a nonequilibrium
system with competition for a single limiting resource.

Each species i has two stages: juvenile (N;;) and
adult (N4,;). We assume the environment has two
distinct phases: a good season (proportion ¢ of the
time), where reproduction is possible, and a bad sea-
son (proportion 1 — ¢ of the time), where reproduc-
tion is impossible. These seasons alternate with period
T. We have previously used such a piecewise forc-
ing regime in a model of competition of unstructured
populations (Litchman and Klausmeier 2001). In both
seasons, juveniles mature into adults at rate m; and
juveniles and adults have density-independent mortal-
ity rates dj; and d 4 ;, respectively. In the good sea-
son, adults give birth to juveniles at rate f;(R), which
depends on the concentration of resource R through a
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type-II functional response, fi(R) = bpax.iR/(R+ K;).
The resource is treated algebraically, with R = R, —
> (Ny;+ Na;). During the bad season, reproduction
ceases. Taken together, these assumptions result in the
following model:

Ji(R)Na; —miNy; —djiNy,,
N, t € [iT, i+ )T
de —miNy;—djiNy,,
tel+o)T,G+ 1)T]

R =R, — Z(NJJ‘ + Na,) Q)

Because this is a model of pure resource competition
for a single limiting resource, in the absence of envi-
ronmental forcing, the competitive exclusion principle
holds (Levin 1970), with the winner of competition
the species with lowest break-even resource level R*
(Tilman 1982). This model is similar to the single-
species structured resource competition model of
Revilla (2000) but includes interspecific competition in
addition to intraspecific competition.

It is well-known that species exhibit a range of
ecological strategies, some of which are selected for
in equilibrium conditions (K-strategies) and some of
which are selected for during times of abundant re-
sources (r-strategies) (MacArthur and Wilson 1967).
In a nonequilibrium environment, species with these
two strategies may coexist if there is a trade-off be-
tween maximum growth rate (r-strategy) and competi-
tive ability as measured by R* (K-strategy) (Koch 1974;
Armstrong and McGehee 1980; Grover 1990; Litchman
and Klausmeier 2001). In a nonstructured population,
this trade-off is attained only if the functional responses
of two species cross. In structured populations, there
are more mechanisms that can set up an r—K trade-off.
For example, in a model of variable internal nutrient
stores, Grover showed that maximum nutrient uptake
rate, maximum growth rate, and nutrient storage abil-
ity could each trade-off with equilibrium competitive
ability (Grover 1991).

In our model, we assume both species have the same
functional response to the resource but differ in their
life-history parameters. Species one is a K-selected
species, with a slow rate of maturation from juvenile
to adult (m; = 0.01) but an efficient use of resources
to make new offspring (Y, = 20); species two is an r-
selected species, with a fast maturation rate (m, = 10)

and inefficient resource use (Y, = 1). All other para-
meters are set equal between species.

To show that these species do possess an r—K
trade-off, we will show that species one is a superior
equilibrium resource competitor but that species two
grows faster under low-density, nutrient-rich condi-
tions. Equilibrium competitive ability is measured by
the break-even resource level, R* (Tilman 1982). We
compute R* for each species by setting d N ;/dt = 0 and
dN, i/dt = 0 and numerically solving for R. We find
that R} = 0.00582 and Rj = 0.0112, so species one is
the superior competitor at equilibrium. The growth rate
of species i under low-density conditions is given by
the largest eigenvalue, A;y go0a, Of the stage-transition
matrix with R = R,,;. That matrix is

(—mi —dy; ﬁ'(Rtat)> (6)

m; —da,;

When R, = 1, we find Aj g goos = 0.321 and A2 g gooa =
0.739, so that species two grows faster in a low-density
environment. Therefore, these species exhibit an r—K
trade-off and have the potential to coexist in some
nonequilibrium environments.

To see if the species do coexist in some nonequi-
librium environments, we numerically solve the model
Eq. 5. Figure 3 shows the total population sizes and the
proportion adults for both species after a stable limit
cycle has been reached. Figure 3a uses a shorter period
for the environmental forcing (7' = 300) compared to
Fig. 3b (T = 10000), resulting in smoother dynamics. In
both cases, the two species coexist over the cycle.

We calculate invasion criteria using Floquet theory
to summarize the outcome of competition as a function
of ¢ and T (Fig. 4). Because there are four possible
attractors (no species persists, 1 outcompetes 2, 2 out-
competes 1, and 1 and 2 coexist), we need two types
of calculations: first, whether a species can invade the
empty system, and second, whether a species can invade
a monoculture of the other.

Whether a species can persist by itself is determined
by the dominant Floquet multiplier of the periodic
matrix corresponding to invasion of the empty system,

Ainv,good9 te [0, ¢)T]

A () = { Aimopads € [6T. T] @)

where

—Mjyy — d],inv finv(Rtot)> (8)

Ainv ood =
8 Miny _dA,im)
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0.0 ; I ; S Fig. 4 Outcome of competition between a K-selected (species 1)
0 100 200 300 and an r-selected species (species 2) in a seasonal environment
/ with period T and ¢ proportion “good” season, as determined by
invasion criteria using Floquet theory. Arrows on the top denote
b values for these boundaries when 7' — oo determined with a slow
1.0 fluctuation approximation
0.8
= 0.6 . . . .
+ 04 easily calculated numerically (see Electronic Appendix).
= ] When the dominant Floquet multiplier is greater than
0.2~ one, max(Re(p)) > 1, the species can persist in mono-
0.0 culture. The critical ¢ that allows growth for a given
1.0 - T can be found numerically using Newton’s method
= . (see Electronic Appendix). This approach gives the two
= 087 leftmost lines in Fig. 4.
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\Z: 0.4 - culture of the other species, we first find the limit cycle
E 02 - solution of the resident species alone then calculate the
= 0.0 ] Floquet multipliers of the matrix corresponding to the
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t
Fig. 3 Asymptotic dynamics of competition between a K-
selected (species 1, solid line) and an r-selected (species 2, dotted
line) species in a seasonal environment. a ¢ = 0.6 and 7 = 300.
b ¢ = 0.68 and T = 10000. Black bars denote the “bad” season

and

)

—Mijpy — dJ,inv 0
Ainv,bad = (

Miny _dA,inu

Because A;,, (¢) is a piecewise-constant matrix, we can
compute the fundamental matrix X (¢) using the matrix
exponential (Gokgek 2004). The fundamental matrix is
X(I) = exp((l - ¢) TAinv,bad) eXP(¢ TAinv,good)s (10)

whose eigenvalues are the Floquet multipliers corre-
sponding to invasion into the empty system and can be
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invader’s growth when rare. Here,

—Mipy — d],inv finv(Rres(t))>

Miny _dA,inv

Agood,inv - ( (11)
where “inv” denotes invader and “res” denotes resident
and R,.(t) is determined from the monoculture limit
cycle of the resident, which must be determined by nu-
merically integrating a single-species version of Eq. 5.
Apadiny 18 the same as above. Again, the critical ¢ is
where max(Re(p)) = 1, which gives the two right lines
bounding the coexistence region in Fig. 4.

For large periods, population dynamics become step-
like (Fig. 3b). Elsewhere, we have developed approxi-
mate analytical techniques for studying competition in
an alternating environment in this limit of slow fluc-
tuations (Litchman and Klausmeier 2001; Klausmeier
in preparation). That slow fluctuation approximation
can also be applied to this stage-structured model as
follows. Let A;p 6004 denote the dominant eigenvalue
of the matrix corresponding to species i invading the
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empty system in the good season, A;j gooa denote the
dominant eigenvalue of the matrix corresponding to
species i invading species j at equilibrium in the good
season, and A; g paa denote the dominant eigenvalue of
the matrix corresponding to species i declining in the
bad season. The critical ¢ for persistence of species i by
itself is

Aip,bad
p=—""F"" (12)
Aifhbad — Mig,g00d
and the critical ¢ for invasion of species i into a mono-

culture of species jis
p= (M,@,badk,’,m,good — Xig.good* j.¢,bad +Ai,{j},goodkj,m,bad)
/()\i,(é,bad)\j,ﬂ,good - )\i,{j},good)hj,(zi.good - )Li,ﬂ,good)hj,(é,bad

(13)

(Klausmeier in preparation). For the parameters used
here, the critical ¢ values for persistence in monocul-
ture are ¢ = 0.2373 and ¢, = 0.1192, and the critical ¢
values for coexistence are ¢, = 0.6231 and ¢, = 0.7606
(see Electronic Appendix). These values are noted with
arrows in Fig. 4, where they can be seen to agree with
the numerical results generated with Floquet theory as
the period T — oo.

This example shows that coexistence of an r- and a
K-selected species is possible if there is a life-history-
mediated trade-off between maximum growth rate and
competitive ability, even if both species share the same
functional response. Unlike the nonstructured pop-
ulation model we previously studied (Litchman and
Klausmeier 2001), there is no switch in competitive
dominance for small periods. Instead, the K-selected
species dominates for all ¢ for small 7. There is also a
small region of parameter space where founder control
occurs (Fig. 4).

+ ?»i,{j},good?»j,w,bad)

Example 3: Stability of a limit cycle

The most common use of Floquet theory is to test
the stability of a limit cycle solution. This is useful
in understanding how dynamics depend on parameter
values. Here, we illustrate this use on a classic model
of a three-species food chain that is known to have
limit cycle solutions that can become unstable as model
parameters are changed (Hastings and Powell 1991;
Kuznetsov and Rinaldi 1996).

The Hastings—Powell food chain model consists of
three species (basal x, intermediate predator y, and
top predator z). The basal species grows logistically,
every resource—consumer pair is coupled by a type-

IT functional response, and the intermediate and top
predators experience density-independent mortality
(Hastings and Powell 1991). The resultant nondimen-
sionalized model is

dx arx

— =x(1 —x) — = 14
T x(1—x) 1+b1xy fi (14)
dy — ax ay diy = f (15)
dr 1+b1xy 1—|—bgyZ y=7

dz ay

L . dyr= 16
& Tby. PR (16)

(Hastings and Powell 1991).

Following Hastings and Powell (1991), we focus on
the nondimensional parameter b,. Using brute force
numerical solution of the model, Hastings and Powell
showed that, as b; increased from 2.25 to 2.4, the model
undergoes the period-doubling route to chaos (Fig. 4c
in Hastings and Powell 1991, our Fig. 5a, b). Here,
we investigate the first period doubling using Floquet
theory.

Before we can study the stability of the limit cycle
solution, first we have to locate it, which we must do
numerically. We must locate one point on the limit

a b
0.2 A S 02 ‘
T
0.1 UJL\,H ‘\,'H'V»\,i‘vr’v’ 0.1 A‘LMAVVPH‘M\/\”V\}’\-&VPWA\
0.0 ‘ T 1T T 1T T 7T T 1 7T ‘ 0.0 ‘ T T T T T 7T L ‘
9000 10000 9000 10000
C by
2.27 2.28 2.29 2.30 2.31
—08 | | | |

max(Re(p;))

Fig. 5 Stability of a limit cycle solution in the Hastings and
Powell (1991) food chain model. Parameters are: a; = 5.0, ay =
0.1, b, =2.0, d; = 0.4, and d, = 0.01. a-b Dynamics of y. a A
limit cycle with by =2.28. b A period-doubled limit cycle with
b =2.3. ¢ Dominant Floquet multiplier of the limit cycle as a
function of b;. Around b; = 2.291, there is a period-doubling
bifurcation
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cycle, as well as its period 7T, such that x(t + T) = x(¢),
yt+T) =y, and z(t + T) = z(¢t). We do this using
Newton’s method through Mathematica’s FindRoot
command (see Electronic Appendix).

Once the limit cycle is in hand, we test its stability
by asking if small perturbations away from the limit
cycle grow or shrink over a complete period. This cor-
responds to finding the stability of the periodic system
obtained by linearizing the full model Eq. 10 around
the limit cycle (Grimshaw 1993). Define the Jacobian
matrix of Eq. 10 as
dx dy 0z
dx dy 0z
o 0fs of
dx dy 0z

J(@t) = (17)

(x (@), y (), 2(1)timit cycle

The Floquet multipliers of J(f) determine the stability
of the limit cycle. Figure 5c shows that the dominant
Floquet multiplier of J(¢) as b, is increased from 2.28 to
2.32. Near b; = 2.291, the dominant Floquet multiplier
passes through —1, signifying a period-doubling bifur-
cation of the limit cycle. This corroborates the brute
force numerical analysis of Hastings and Powell (1991).

Discussion

The three examples in this paper demonstrate that
Floquet theory is a versatile tool for studying the ecol-
ogy and evolution of periodic systems. Floquet theory
defines fitness in periodic environments, can calculate
invasion criteria for competing species, and can be used
to test the stability of limit cycle solutions. Given these
diverse uses and the ubiquity of both structured popu-
lations and periodic systems in nature, Floquet theory
should be a useful addition to theoreticians’ toolboxes.
Although Floquet theory is a linear theory, nonlinear
models can be linearized near limit cycle solutions to
enable the use of Floquet theory.

An alternative way to compute Floquet exponents
and multipliers is to use numerical continuation soft-
ware such as AUTO (Doedel et al. 2001), XPPAUT
(Ermentrout 2002), CONTENT (Kuznetsov and
Levitin 1996), or MATCONT (Dhooge et al. 2003).
These programs provide powerful environments for
analyzing the behavior of nonlinear dynamical systems.
See van Coller (1997) for an ecological introduction to
continuation software.

Floquet theory deals with continuous-time systems.
The theory of periodic discrete-time systems is closely
analogous (Caswell 2001, chapter 13). In that case,

@ Springer

one can multiply the T transition matrices together to
determine how a perturbation changes over a period,
which is similar to finding the fundamental matrix.

One limitation of Floquet theory is that it applies
only to periodic systems. Although many systems ex-
perience periodic forcing, others experience stochastic
or chaotic forcing. In these cases, the more general
Lyapunov exponents described by Metz et al. (1992)
play the role of Floquet exponents (see also Ferriere
and Gatto 1995). Conceptually similar to Floquet ex-
ponents (and therefore to eigenvalues of the Jacobian
matrix associated with an equilibrium point), Lyapunov
exponents are more challenging to compute numeri-
cally because, instead of calculating how a perturbation
grows or shrinks over one period, this must be done in
the limit at 7 — oo. For a practical algorithm for this in
continuous systems, see Wolf et al. (1985).
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