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Abstract
Tsukushi is a small, leucine-rich repeat proteoglycan that interacts with and regulates essential cellular signaling cascades 
in the chick retina and murine subventricular zone, hippocampus, dermal hair follicles, and the cochlea. However, its func-
tion in the vestibules of the inner ear remains unknown. Here, we investigated the function of Tsukushi in the vestibules and 
found that Tsukushi deficiency in mice resulted in defects in posterior semicircular canal formation in the vestibules, but 
did not lead to vestibular hair cell loss. Furthermore, Tsukushi accumulated in the non-prosensory and prosensory regions 
during the embryonic and postnatal developmental stages. The downregulation of Tsukushi altered the expression of key 
genes driving vestibule differentiation in the non-prosensory regions. Our results indicate that Tsukushi interacts with Wnt2b, 
bone morphogenetic protein 4, fibroblast growth factor 10, and netrin 1, thereby controlling semicircular canal formation. 
Therefore, Tsukushi may be an essential component of the molecular pathways regulating vestibular development.
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Introduction

Tsukushi (TSK) is a small leucine-rich repeat proteoglycan 
that functions as an extracellular signaling molecule in vari-
ous developmental processes in vertebrates (Ahmad et al. 
2018; Dellett et al. 2012; Ohta et al. 2004). The diverse func-
tions of TSK depend on its ability to bind and interact with 
the intermediates of some major signaling pathways, includ-
ing bone morphogenetic protein (Bmp), fibroblast growth 
factor (FGF), transforming growth factor-beta (Tgf-β), and 
Wnt (Ahmad et al. 2018; Hocking et al. 1998; Merline et al. 
2009; Schaefer and Iozzo 2008). TSK reportedly affects the 
central nervous network development (Hossain et al. 2013; 
Ito et al. 2010) and wound healing (Niimori et al. 2012). It 
is expressed in the chick retina (Ohta et al. 2004, 2006) and 
mouse subventricular zone (Ito et al. 2021, in press), hip-
pocampus (Ahmad et al. 2020; Ito et al. 2010), dermal hair 
follicles (Niimori et al. 2012), and the cochlea (Miwa et al. 
2020). However, its function, vestibular localization, and the 
molecular mechanisms underlying vestibular development 
have not yet been investigated.

The development of the inner ear is a complex process 
involving the three-dimensional growth of labyrinth struc-
tures. The embryological origin of the inner ear is the ear 
vesicle (Langman and Sadler 2008), which is composed of a 
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ventral part, comprising the sacculus and ductus cochlearis, 
and a dorsal part, called the utriculus. Three semicircular 
canals (SCs) develop from the growth and fusion of three 
flattened protuberances of the utriculus. The first step of SC 
formation is the appearance of a dorsal and lateral pouch 
(diverticula) in the otic vesicle. The dorsal pouch gives rise 
to the anterior and posterior canals and crus commune, and 
the lateral pouch gives rise to the lateral (horizontal) canal. 
Pouch formation and growth are driven by the rapid thin-
ning of the dorsolateral otocyst epithelium, rather than a 
local increase in cell proliferation (Lang et al. 2000). Ini-
tially, a loss of epithelial morphology occurs in the side of 
the pouch, with a concomitant disruption of the underlying 
basement membrane (Martin and Swanson 1993). Cell pro-
liferation in the periotic mesenchyme then pushes the sides 
of pouch together to form the fusion plate. Once the fusion 
plate is formed, the cells are cleared from the area by apop-
tosis, leaving the canal duct formed from the surrounding 
pouch rim. Some fusion plate cells are resorbed back into the 
duct epithelium (Martin and Swanson 1993), whereas other 
cells undergo an epithelial–mesenchymal transition (EMT) 
and become a part of the periotic mesenchyme. Programmed 
cell death has also been shown to play an important role in 
eliminating these cells in the chicken embryo (Fekete et al. 
1997).

Previous studies have shown that the expression of the 
laminin-related protein NTN1 is restricted to the fusion 
plate, where it is required for the expression of laminin and 
the breakdown of the basement membrane via the prolifera-
tion of the surrounding mesenchyme, subsequently push-
ing the fusing epithelial sheets together (Salminen et al. 
2000). NTN1 is involved in a signaling cascade leading to 
the local production of matrix metalloproteinases to digest 
basement membrane proteins. These proteases are required 
to remodel the extracellular matrix during morphogenesis, 
angiogenesis, cell migration, and axonal migration (Werb 
and Chin 1998). The extent of cell clearance and resorption 
at the fusion plate correlates with the expression of NTN1. 
In Ntn1 mutants, the mitotic index is reduced in the sur-
rounding mesenchyme, and the fusion plates fail to form 
(Salminen et al. 2000).

NTN1 interacts with leucine-rich repeats and immuno-
globulin-like domain 3 (LRIG3) to form the lateral semicir-
cular canal (LSC) duct, and with Distal-Less Homeobox 5 
(DLX5) to form the anterior semicircular canal (ASC) and 
the posterior semicircular canal (PSC) (Martin and Swan-
son 1993; Rakowiecki and Epstein 2013). The expression 
of DLX5 in the rims of the ASC and PSC is dependent on 
a signaling cascade involving sensory-dependent extra-
cellular Wnt, Bmp, and FGF (Chang et al. 2008; Kiernan 

et al. 2006; Pauley et al. 2003; Shibata et al. 2016b; Wu 
and Kelley 2012). Notably, changes in the Bmp expression 
in the developing inner ear cause dysmorphogenesis (Li 
et al. 2005; Ohyama et al. 2010). As a Wnt signal inhibitor, 
Bmp plays a crucial role in the development of the periph-
eral eye and inner ear (Dellett et al. 2012; Ohta et al. 2011; 
Rakowiecki and Epstein 2013). Bmp also serves as an FGF 
signal inhibitor and is thus necessary for vestibular develop-
ment (Morris et al. 2007; Uejima et al. 2010). Wnt signaling 
in the non-sensory epithelial integrity of the anterior and 
posterior canal rims is necessary to induce Bmp4, thereby 
facilitating EMT (Chang et al. 2008; Huang et al. 2009; 
Postigo 2003; Vervoort et al. 2010). In addition, previous 
studies have suggested that prolonged exposure to Bmp4 sig-
nals is necessary for DLX5 activation in the SCs and NTN1 
suppression, resulting in resorption (Chang et al. 2008). The 
redistribution of DLX5 and NTN1 is slightly upregulated, 
thereby causing fusion plate over-resorption. Furthermore, 
FGF10 is required to remove fused cells after semicircular 
plate formation, especially during PSC formation (Ohuchi 
et al. 2005). Bmp post-transcriptionally represses SOX2, as 
observed during cardiac development (Rao et al. 2016), and 
previous studies have shown that the loss of SOX2 induces 
hair cell loss. Mutant SOX2 mice have ears that lack one or 
more ampullae and cristae; however, the crus commune and 
canal ducts are present (Kiernan et al. 2005, 2006). These 
findings indicate a degree of independence from sensory 
signaling during the development of non-sensory elements 
of the semicircular canal system (Kiernan et al. 2005, 2006).

Tsukushi directly binds to the CRD region of Fzd4 and 
competes with Wnt2b for binding to the same domain, 
thereby preventing Wnt activation (Ohta et al. 2011). We 
hypothesized that TSK may be involved in the development 
of the vestibules based on its role in the development of 
cochlear sensory cells (Miwa et al. 2020). In this study, we 
investigated the expression and functions of TSK during 
inner ear morphogenesis and after birth, and its interaction 
with Bmp, whose signaling is crucial for inner ear develop-
ment. We also examined SOX2 expression in the prosensory 
regions.

Materials and methods

Generation of a TSK‑knockout (KO) mouse model

TSK-KO C57BL/6J mice (Mus musculus domesticus) were 
produced by inserting a LacZ/Neo cassette into the TSK-
coding exon (Ito et al. 2010). Wild-type littermates (WT) 
confirmed by genotyping were used as the control group. 
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Heterozygous littermates identified by genotyping were used 
in LacZ expression experiments. The mice were housed in 
an air-conditioned room, maintained at approximately 25 °C 
and 50% humidity. The acclimatization period was 1 week. 
The mice were fed a standard commercial pellet diet and 
water ad libitum. Embryonic day 0.5 (E0.5) was designated 
as the day when a vaginal plug was observed at noon. All 
animal experiments in this study were approved by the Com-
mittee on the Use and Care of Animals of the Kumamoto 
University (approval number H28-053) and complied with 
veterinary standards.

Quantitative gait assessment

Quantitative gait assessment was performed as described 
previously with slight modifications (Fernagut et al. 2002). 
The mice were placed in 4.5 cm × 40 cm acrylic clear boxes 
for 20–40 s. Paw movement was recorded using an iPhone X 
camera (1080 p at 30 fps, Apple, Cupertino, CA, USA) from 
underneath and later analyzed using the freeware motion-
analysis software Kinovea (version 0.8.15; Open source by 
Joan Charmant). Gait patterns within 5 cm of the start and 
5 cm of the end of the movement were excluded because of 
velocity changes. Images in which the mice made stops or 
obvious decelerations were also excluded from the analy-
sis. Gait parameters including stride length (cm), variabil-
ity in stride length, the base of support, cadence, and aver-
age speed were measured; the results are shown in Online 
Resource 1 Supplementary Information.

Tissue processing

At E9.5, E11.5, E12.5, E13.5, E15.5, and postnatal day 0 
(P0), embryo heads were dissected and fixed with 4% para-
formaldehyde (PFA) in phosphate-buffered saline (PBS) 
for 12 h at 4 °C. For postnatal assessments, the mice were 
anesthetized by an intraperitoneal injection of 4 mg/kg xyla-
zine (Bayer, Shawnee Mission, KS, USA) and 120 mg/kg 
ketamine-HCl (Daiichi Sankyo, Tokyo, Japan) in 0.9% NaCl, 
and were fixed by cardiac perfusion of 4% PFA in PBS. The 
inner ears were dissected from the temporal bones and decal-
cified in 0.5 M EDTA (Wako, Osaka, Japan) for 3 days at 
25 °C. The cochleae were embedded in optimal cutting tem-
perature (OCT) compound (Sakura Finetek Japan, Tokyo, 
Japan) and serially sectioned to 12-μm thickness using a 
cryostat (Microm HM 505 E Cryostat, GMI, Ramsay, MN, 
USA).

Β‑Galactosidase staining

To investigate TSK expression, the inner ears of the mice 
heterozygous for LacZ insertion in TSK were examined at 
E9.5, E11.5, E13.5, E15.5, P0, and P30 by staining accord-
ing to the manufacturer’s instructions (X-gal Staining Assay 
Kit; Genlantis, San Diego, CA, USA). The slides were dried 
for 30 min at 25 °C, fixed with 2% glutaraldehyde for 10 min 
at 25 °C, and then stained with 400 mg/mL X-gal and incu-
bated for 18 h at 37 °C. The sections were washed twice and 
imaged at 1360 × 1024 pixels using a BZ-9000 microscope 
(Keyence, Osaka, Japan) with uniform photographic expo-
sure parameters (n = 5 at each stage) (Miwa et al. 2020).

Anatomical studies of the inner ear

The inner ears of mice at P30 were dissected from the tem-
poral bones and fixed with 4% PFA in PBS for 12 h at 4 °C. 
The surrounding soft tissue and mastoid air cells were care-
fully removed using a pair of fine forceps. Sample images 
were captured digitally using an SMZ1500 microscope 
(Nikon, Tokyo, Japan) at a resolution of 1360 × 1024 pixels 
(n = 5).

Hematoxylin and eosin staining

Histological analysis was performed by Hematoxylin and 
eosin (HE) staining to assess gross morphology. Images 
were obtained using a BZ-9000 microscope (n = 5 for each 
genotype).

Immunostaining

Sections at E12.5 and E13.5 were blocked with 10% normal 
goat serum in PBS containing 0.1% Triton X-100 (IBI Sci-
entific, Peosta, IA, USA) for 10 min at 25 °C and labeled 
using a rabbit antibody against Myosin 7a (Myo7a, #PA1-
936, 1:500; Thermo Fisher Scientific, Rockford, IL, USA), a 
rabbit antibody against laminin (#NB300-144, 1:100; Novus, 
Centennial, CO, USA), a chicken antibody against netrin 
1 (#NB100-1605, 1:100; Novus), a rabbit antibody against 
DLX5 (#ABIN6258115, 1:100; Antibodies online.com, 
Aachen, Germany), and a rabbit antibody against SOX2 
(#14962S, 1:200; Cell Signaling, CA, USA) in a humidified 
chamber for 1 h at 25 °C. Subsequently, the sections were 
washed and incubated with secondary antibodies conjugated 
with Alexa Fluor 594 (1:500; Thermo Fisher Scientific, 
Rockford, IL, USA) and Alexa Fluor 488 (1:500; Thermo 
Fisher Scientific) for 1 h at 25 °C. After washing with PBS, 
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the tissue sections were counterstained with Hoechst 33342 
(Molecular Probes, OR, USA) with the use of each antibody.

The samples were then labeled with 3,3′-diaminobenzi-
dine tetrachloride (DAB) using the HRP-DAB Cell & Tis-
sue Staining Kit (#CTS019; R&D, Minneapolis, MN, USA). 
After incubation with a sheep antibody against FGF10 
(#AF6224, 1:1000, R&D) at 4 °C overnight, the slides were 
rinsed with PBS and incubated with labeled HRP according 
to the manufacturer’s instructions for 30 min. Color reac-
tions were developed using DAB chromogen solution, and 
all slides were counterstained with hematoxylin and imaged 
at 1360 × 1024 pixels, using a BZ-9000 microscope with 
uniform photographic exposure parameters. Sections repre-
sentative of at least five mice were selected.

In situ hybridization

The cochleae collected at E13.5, E15.5, and P0 were exam-
ined by in situ hybridization with antisense riboprobes for 
Wnt2b and Bmp4 labeled with digoxigenin using the DIG 
RNA Labeling Kit (Roche, Indianapolis, IN, USA). The 
probes were produced using the corresponding DNA con-
structs. Detailed protocols have been previously described 
(Miwa et al. 2019; Shibata et al. 2016a, b) and are avail-
able upon request. A minimum of five samples was pre-
pared for each time point.

Quantification of vestibular hair cells

In the P30 specimens, Myo7a-positive vestibular hair cells 
were identified and counted in all crista ampullae (CA), 
macula saccule (MS), and macula utricle (MU). All counts 
were performed using the Cell Counter function in ImageJ 
(NIH) (Schneider et al. 2012).

Laser microdissection

At E13.5, whole heads were dissected and incubated with 
4% PFA in PBS for 1 h at 25 °C. The samples were then 
embedded in OCT compound, sectioned to 10-μm thick-
ness along the cochlear modiolus long axis plane, mounted 
on uncharged slides (Leica Microsystems, Wetzlar, Ger-
many), and dried at 25 °C. The sections were incubated 
in 95% acetone at − 20 °C and dried at room temperature 
immediately before laser microdissection using an LMD7 
system (Leica Microsystems) as previously described 
(Pagedar et al. 2006; Takeda et al. 2019). Cell samples 
were obtained from vestibular cells. Each slide contained 

multiple adjacent sections, and all cells were pooled onto 
a single cap.

Quantitative reverse‑transcription polymerase 
chain reaction

The total RNA was extracted from each sample, obtained by 
laser microdissection using microRNA extraction kits (Qia-
gen, Valencia, CA, USA), quantified using GeneQuant100 
(GE Healthcare, Amersham, UK), and diluted as needed to 
achieve uniform concentrations. cDNA was then synthesized 
using the One-Step PrimeScript RT-PCR Kit (Takara Bio, 
Otsu, Japan) according to the manufacturer’s instructions, 
with primers for Wnt2b, Bmp4, Sox2, and GAPDH (Applied 
Bionics, Foster City, CA, USA). Targets were amplified 
using Takara Dice TP960 over 40 cycles of denaturation at 
95 °C for 15 s and annealing at 60 °C for 1 min. Relative 
gene expression was calculated using the standard curve 
method and normalized to the GAPDH signal.

Statistical analysis

Data are presented as mean ± standard deviation. Two 
groups were compared using Mann–Whitney U test. Statis-
tical analyses were performed using Microsoft Excel (Red-
mond, WA, USA). Results with a P value of < 0.05 were 
considered statistically significant.

Results

TSK expression in the sensory and non‑sensory 
epithelium of the developing inner ear

To elucidate the expression pattern of TSK in the inner ear, 
embryos expressing the lacZ reporter gene within the coding 
exon of TSK were stained with X-gal. At E9.5 and E11.5, 
TSK-LacZ-expressing cells were observed in the whole epi-
thelium of the otocyst (Fig. 1a, b). At E13.5, E15.5, and P0, 
they were found in the Common SC (C-SC) duct, MS, MU, 
PSC ampulla (PA), and LSC ampulla (LA) (Fig. 1c–e). At 
P30, they were detected in the C-SC duct, MS, MU, and PA 
(Fig. 1f). Negative controls of X-gal staining are shown in 
Online Resource 2 Supplementary Information.
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Fig. 1   Spatiotemporal expression of TSK in the inner ear of TSK het-
erozygous mice. a, b At E9.5 and E11.5, TSK-LacZ-expressing cells 
were localized in the whole epithelium of the otocyst. c–f Upper part 
of the vestibules at E13.5 (c), E15.5 (d), P0 (e), and P30 (f). TSK-
LacZ-expressing cells were localized at the C-SC duct (indicated with 
asterisks). At P0 and P30, TSK-LacZ-expressing cells were localized 
at MS and MU (asterisks in e, f). c′–f′ PSC levels at E13.5 (c′), E15.5 
(d′), P0 (e′), and P30 (f′), with TSK-LacZ-expressing cells localized 

at PA (asterisks in c′–f′). c″–f″ Lower part of the vestibules at E13.5 
(c″), E15.5 (d″), P0 (e″), and P30 (f″), with TSK-LacZ-expressing 
cells detected at MU and LA (asterisks in c″–f″). C-SC duct, com-
mon semicircular canal duct; ASC, anterior semicircular canal; LSC, 
lateral semicircular canal; MS, maculae saccule; MU, macula utricle; 
PSC, posterior semicircular canal; PA, posterior ampullae; LA, lateral 
ampullae. Scale bar: 100 μm (a, b) or 50 μm (c–f″)
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Abnormal gait performance and a lack of posterior 
semicircular canal in TSK‑KO mice

The TSK-KO mice exhibited a wide-based ataxic gait 
(Online Resource 3 Supplementary Information). As shown 
in Online Resource 4 Supplementary Information, the stride 
length, coefficient of variation (CV) of stride length, base 
of support, cadence, and average speed were significantly 
different between the WT and TSK-KO mice, with the WT 
performing better (P < 0.001, P < 0.001, P < 0.001, P = 0.03, 
and P = 0.006, respectively). To determine whether disequi-
librium was associated with vestibular morphologies, we 

removed the cochleae and vestibules of mice and found that 
the cochlea of the TSK-KO mice was smaller than that in 
the WT mice, as previously reported (Yano et al. 2017). In 
addition, PSC was defective in the TSK-KO mice (Fig. 2a). 
Cross-sections of the cochleae and vestibules of WT mice 
showed that all three epithelial ducts are surrounded by car-
tilaginous cells derived from the periotic mesenchyme, thus 
forming the SCs (Fig. 2a). In contrast, in all TSK-KO mice, 
only the anterior and lateral ducts were surrounded by a 
bony canal (Fig. 2b).

We found that in the vestibular sensory regions, particu-
larly in the CA, MS, and MU, there were no significant dif-
ferences in the number of hair cells between the WT and 
TSK-KO mice in any region (Fig. 3g; P = 0.29, P = 0.06, and 
P = 0.48, respectively).

TSK is required for normal fusion plate formation 
of posterior semicircular canal

We investigated the mechanism of vestibular development 
in the TSK-KO mice. At E12.5, in the normal mouse ear, 
although the epithelial wall had become thinner in the PSC 
outpocketing, the vestibular epithelial cells did not lose their 
epithelial morphology or the sharp boundary of the mes-
enchyme (Fig. 4a). In PSC outpocketing in TSK-KO mice, 
the fusion plate was not formed and vestibular epithelial 
cells were maintained (Fig. 4b). Next, we examined laminin 
and NTN1 expression. At E13.5, laminin expression was 
upregulated around the vestibular epithelium in both upper 
part of vestibules (Fig. 4c, d) and PSC levels (Fig. 4c′, d′) in 
the TSK-KO mice. At E13.5, NTN1 expression was slightly 
upregulated around the vestibular epithelium in the upper 
part of both vestibules (Fig. 4e, f) and PSC levels (Fig. 4e′, 
f′) in the TSK-KO mice.

TSK‑KO enhanced Wnt2b, thinly spread 
Bmp4, and upregulated DLX5 and FGF10 
in the non‑sensory regions

To determine the cause of the non-formation of the fusion 
plate in TSK-KO vestibules, we examined the expression of 
Wnt2b, Bmp4, and FGF10 at E13.5 and that of DLX5. Wnt2b 
was detected by in situ hybridization in the MS, LSC, ASC, 
PA, and PSC in WT mice (Fig. 5a). In the TSK-KO mice, 
Wnt2b was detected in the same regions and the C-SC duct 
(Fig. 5b). Finally, qRT-PCR following laser microdissec-
tion (LMD) of whole vestibule tissues revealed that Wnt2b 
mRNA expression was significantly increased in TSK-KO 
vestibules compared with that in the WT mice (Fig. 5c, 
P = 0.01). By in situ hybridization, Bmp4 was detected in 
the MS, C-SC duct, LSC, ASC, PA, and PSC in WT mice 
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Fig. 2   Loss of TSK signaling in the vestibules caused defects in the 
posterior semicircular canal. a The cochlea in TSK-KO mice were 
smaller than that in WT mice at P30. PSC was defective in TSK-KO 
mice at P30 (indicated with asterisks). b, c Representative HE-stained 
cross-sectional images through the cochleae and vestibules in WT 
mice show that all three epithelial ducts were surrounded by periotic 
mesenchyme-derived cartilaginous cells, forming the SCs at P30. 
In contrast, PSC was absent in all TSK-KO mice (indicated with an 
asterisk; n = 5). SC, semicircular canal; ASC, anterior semicircular 
canal; LSC, lateral semicircular canal; PSC, posterior semicircular 
canal. Scale bar: 100 μm
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(Fig. 5d), whereas it was similarly localized in TSK-KO 
mice, albeit at slightly decreased levels (Fig. 5e). The results 
of the quantitative PCR analysis showed that there were no 
significant differences in Bmp4 mRNA expression between 
the WT and TSK-KO mice (Fig. 5f, P = 0.28). FGF10 was 
weakly detected in the WT mice vestibules (Fig. 5f); in the 
TSK-KO mice, it was enhanced in the MS, C-SC duct, ASC, 
LSC, and PA (Fig. 5g). DLX5 was slightly upregulated in 
the MS, C-SC duct, ASC, LSC, and PA in the vestibular 
epithelium of TSK-KO compared with that in WT (Fig. 5h, 
i). We used ISH and IHC, as ISH did not work in this experi-
ment. For the same reasons, we separated fluorescence and 
DAB.

TSK‑KO suppressed SOX2 and thinly spread Bmp4, 
but did not change Wnt2b in the prosensory regions

SOX2 was detected by immunolabeling in the prosensory 
regions, such as the MS, MU, and LA in WT mice, but was 
decreased in the TSK-KO mice at E13.5 (Fig. 6a, b). Sox2 
mRNA in the prosensory regions of vestibules was signifi-
cantly decreased in the absence of TSK (Fig. 6c, P = 0.04). 
Wnt2b mRNA was not detected in the prosensory regions 
of either group (Fig. 6d, e). In WT mice, Bmp4 mRNA was 
detected in the MS, MU, and LA (Fig. 6f), whereas in the 
TSK-KO mice, it was more widely distributed (Fig. 6g). 
Negative controls of Wnt2b, Bmp4, DLX5, FGF10, and 
SOX2 staining are shown in Online Resource 5 Supplemen-
tary Information.
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Fig. 3   Number of vestibular hair cells in the vestibules at P30 in WT 
and TSK-KO mice. Representative immunostaining images of CA (a, 
b), MS (c, d), and MU (e, f), using the anti-Myo7a antibody, counter-
stained with Hoechst in WT (top) and TSK-KO (bottom) mice. g The 

number of vestibular hair cells did not significantly differ between the 
groups in all regions (n = 5; P = 0.29 at CA, P = 0.06 at MS, P = 0.48, 
N.S., not significant). CA, crista ampullae; MS, maculae saccule; 
MU, macula utricle. Scale bar: 100 μm
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Discussion

Appropriate morphogenesis of the inner ear SCs requires 
the precise regulation of cellular proliferation, EMT, and 
fusion of epithelial plates (Wu and Kelley 2012). Under-
standing the coupling of signaling pathways and the tran-
scription factor network activity of cell behavior and the 
physical force that affects these morphogenetic events is 
one of the major challenges in understanding inner ear 
development (Alsina and Whitfield 2017). As TSK has 
been previously shown to inhibit Bmp (Ohta et al. 2004), 
Wnt (Dellett et al. 2012; Ohta et al. 2011), and FGF sign-
aling (Morris et al. 2007; Uejima et al. 2010), and it is a 
factor associated with the matrix metalloproteinase sign-
aling cascade (Ni et al. 2014; Pietraszek-Gremplewicz 
et al. 2019), we investigated its roles in the development 
of semicircular canals and vestibular sensory regions.

TSK is required for posterior semicircular canal 
formation and normal gait performance

Our study revealed that PSC was defective and gait per-
formance deteriorated in TSK-KO mice (Online Resource 
1, 3 and 4). The malformation of PSC has been described 
in several human diseases (Higashi et al. 1992; Irie et al. 

1990; Wiener-Vacher et al. 1999; Wright et al. 1985); how-
ever, abnormal gait has not been reported to date. Studies 
in animal models of these disorders (Baynash et al. 1994; 
Motohashi et al. 1994; Owens et al. 2005) have not reported 
gait performance and vestibular function. Clinically, patients 
with PSC dehiscence syndrome, secondary to the absence of 
a bony covering of the PSC, suffer from chronic vestibular 
symptoms (Di Lella et al. 2007). Therefore, we speculate 
that bilateral PSC defects caused a loss of rotational and 
balance senses, resulting in an abnormal gait.

TSK is crucial for the local disruption 
of the basement membrane and fusion plate 
formation

During semicircular duct formation, the epithelial walls des-
tined to form fusion plates first become thinner, and then 
the cells lose their epithelial morphology due to the local 
disruption of the underlying basement membrane (Martin 
and Swanson 1993). Our study revealed that upregulated 
laminin expression around the vestibular epithelium in the 
TSK-KO mice resulted in basement membrane disruption 
and fusion plate formation failure (Fig. 7a). However, the 
NTN1 level was slightly higher in the TSK-KO vestibules. 
Both NTN1 and TSK bind to secreted frizzled (Fzd)-related 
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proteins (Bovolenta et al. 2008), which modulate Wnt and 
Bmp signaling. TSK also inhibits the local production of 
matrix metalloproteinases (Ni et al. 2014; Pietraszek-Grem-
plewicz et al. 2019). Therefore, we propose that NTN1 and 
TSK function together to induce proliferation of the periotic 
mesenchyme.

TSK participates in a resorption cascade 
including epithelial–mesenchymal signaling

Our data showed that in the absence of TSK, the Wnt2b 
level was higher in the C-SC duct, the origin of posterior 
canal rims. We found that the TSK-KO mice showed slightly 
decreased Bmp4 expression “thinly spread” throughout the 
vestibules, indicating that Bmp4 is expressed in not only the 
original region of expression, but also in other vestibular 
epithelium; however, it was not upregulated. We speculated 
that TSK regulated Wnt and Bmp signaling and induced 
PSC morphogenesis.

FGF10 expression was upregulated in the entire vestibular 
epithelium of the TSK-KO mice. As FGF10 is an extracel-
lular protein with a high affinity to heparin, we hypothesize 
that FGF10 secreted from the developing crista affects the 
neighboring prospective canal epithelium via proteins with 
heparin-binding domains, such as NTN1.

TSK is not required in the development 
of the sensory regions of vestibules

We observed that SOX2 was suppressed in the vestibular 
prosensory regions at the early embryonic stage. Generally, 
SOX2 promotes the generation of hair cells via the upregula-
tion of the transcription factor Atoh1, which is involved in 
generating sensory hair cells (Dabdoub et al. 2008; Kemp-
fle et al. 2016; Puligilla et al. 2010; Zheng and Gao 2000). 
However, we did not observe any decrease in the number of 
vestibular hair cells in the CA, MS, or MU in the TSK-KO 
mice.

Hair cells consist of the cell body and stereocilia. They 
are susceptible to Atoh1, which dose-dependently controls 
the stereocilia formation and organization (Jahan et  al. 
2013). Previous studies have suggested that the level and 
duration of SOX2 expression affect stereocilia formation 
and length (Jahan et al. 2013; Pan et al. 2013). Thus, the 
vestibular hair cells of the TSK-KO mice may have abnormal 
stereocilia although we did not observe them.

Conclusions

We confirmed that TSK is expressed in the sensory and 
non-sensory regions of the ear during inner ear morphogen-
esis and is required for the development of PSC and gait in 
mice. Its deletion caused disequilibrium and complete PSC 
defect in line with the Wnt2b level, redistributing Bmp4 and 
enhancing FGF10 signaling. Moreover, NTN1-dependent 
resorption through the otic epithelium of the semicircular 
duct outpocketing could not form normal fusion plates in the 
TSK mutant. Our results suggest a new morphogenetic role 
of TSK in the development of the mouse vestibular system. 
This study had a few limitations. First, we did not investigate 
the stereocilia of the vestibular hair cells. Second, we did 
not observe other sensory regions, such as the vestibular 
ganglion cells and the central nervous system. Finally, the 
relationship between sensory signaling during development 
and the non-sensory elements of the semicircular canal sys-
tem was not investigated.
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