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Abstract
Prostaglandin signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and
resolution thereof to the perception of pain to cell survival. Disruption of normal prostanoid signaling is implicated in numerous
disease states. Prostaglandin signaling is facilitated by G-protein-coupled, prostanoid-specific receptors and the array of associ-
ated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of prostanoid
receptors with particular emphasis on human isoforms.
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Introduction

Prostaglandins are amphipathic, bioactive signalingmolecules
derived from the oxidation of arachidonic acid. They are in-
volved in a wide range of roles from homeostasis of blood
pressure and blood flow, the initiation and resolution of in-
flammation, the perception of pain, cell survival, and the pro-
gression of numerous disease states. These biomolecules act
most often as autocrine or paracrine signaling agents and most
have relatively short half-lives. Prostanoid signaling is accom-
plished through specific G-protein coupled receptors
(Figure 1). With the exception of a few isoforms with un-
known biological function, all known biologically competent
receptors are heptahelical, multi-pass membrane proteins,
members of the G-protein coupled receptor 1 family
(GPCR) and are among the most abundant membrane proteins
(Binda et al. 2004). The diversity of prostanoid action is not
only defined by specific receptors and their regulated ex-
pression, but also to the diversity of G-proteins that most
receptors are able to couple to, leading to actuation of
different signaling pathways by the same receptor.
Although the actions of these receptors are diverse, many

show commonalities in their regulation. Each display
agonist-induced desensitization that is usually found to
be associated with receptor phosphorylation by various
protein kinases. Phosphorylation by G-protein receptor
kinases (GRK) can lead to arrestin binding that promotes
receptor uptake into clatherin-coated pits leading to se-
questration into punctate vesicles. This review focusses
primarily on human receptors but discusses receptors
from other species when information about the human
receptors is lacking.

Prostaglandin D2 Receptors

Introduction

There are two distinct types of prostaglandin D2 receptors
found in humans, the prostanoid DP1 receptor (PGD receptor,
PGD2 receptor, Gene: PTGDR) and the DP2 receptor
(CRTH2, G-protein coupled receptor 44, CD294, Gene:
PTGDR2). Both are coupled to G-proteins and upon binding
to PGD2 or its PGJ2 series metabolic products, they affect
intracellular concentrations of cAMP and Ca2+ concentrations
either directly or indirectly depending on the receptor.
Activation is responsible in part for immune regulation,
allergic/inflammation responses, mobilization of dendric
cells, and impaired PGD2-induced sleep to name a few.
Although the DP1 amino acid sequence is closely related to
other prostaglandin receptors it shares only a 22% percent
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identity with DP2 which is more closely related to
chemoattractant receptors such as the N-formylmethionly-
leucyl-phenylalanyl (fMLP) and anaphylatoxin C3a receptors
(Wang et al. 2018; Hirai et al. 2003).

DP1 receptor

Introduction

The human prostaglandin D2 receptor DP1 (PTGDR,
UniprotKB-Q13258) is translated as a 359 amino acid poly-
peptide with a calculated molecular weight of 40.3 kDa. There
is one additional reported isoform based only on expressed
sequence tag (EST) data (Q13258-2) and four coding single
nucleotide polymorphic (SNP) variants (R7C, G198E,
E301A, and R332Q) (https://genecards.org, Stelzer et al.
2016), none of which involve any known clinical
significance or condition. There are no reported X-ray struc-
tures, but there are several G-protein coupled receptor data-
base (GPCRdb, https://gpcrdb.org, Pándy-Szekeres et al.
2018) models proposed based on similar proteins (PDB refer-
ence 4UHR and 3VG9). Morii and Watanabe (1992) exam-
ined the effect of a variety of exo- and endo-glycosidases on

the binding of PGD2 to the DP1 receptor on P2 membrane
prepared from porcine temporal cortex. They found that the
exoglycosidases neuramidase, α-manosidase, β-galactosi-
dase, and β-N-acetylhexoamidase reduced the binding of
PGD2 by 6%, 33%, 62%, and 66% respectively, indicating
that the integrity of the glycosyl chains was important for
ligand binding. Further, Scatchard analysis of the data re-
vealed that modification of the glycosyl chain reduced the
affinity of the DP1 receptor for the ligand rather than the
maximal binding capacity. Treatment of the P2 membrane
with endoglycosidase N-glycohydrolase F which cleaves the
N-glycosyl linkage between the carbohydrate and protein re-
duced PGD2 binding by 66%, confirming the presence of N-
linked carbohydrate. Extracellular N-linked glycosylation is
predicted for N10 with high probability by NetNGlyc analysis
(http://www.cbs.dtu.dk/services/NetNGlyc/, Blom et al.
2004). Extracellular N-linked glycosylations are also predict-
ed for N90, and N297 by sequence analysis, but none of these
predictions have yet to be confirmed experimentally
(Apweiler et al. 2017). Interestingly, treatment with endo-α-
N-acetylgalactosamidase, which cleaves only O-linked carbo-
hydrate from proteins, reduced PGD2 binding by 52%,
confirming the presence of O-linked glycosyl chains as well.
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Fig. 1 Prostanoid metabolic pathway. Gene designations are given for
the participating enzymes (rounded boxes), accepted acronyms given for
metabolites (ovals), and accepted acronyms for receptors (grey boxes).
Receptor binding only indicated for metabolites with an EC50 in the nM
range. Enzymes: AKR1B1, aldo-keto reductase 1B1; AKR1C3, aldo-
keto reductase 1C3; CBR1, carbonyl reductase 1; FAM213B,
prostamide/prostaglandin F synthase; HPGDS, Hematopoietic

prostaglandin D synthase; HSA, human serum albumin; PTGDS,
prostaglandin D2 synthase; PTGES, prostaglandin E synthase;
PTGES2, prostaglandin E synthase-2; PTGES3, prostaglandin E
synthase-3; PTGIS, prostacyclin (PGI2) synthase; PTGS1,
Prostaglandin G/H Synthase 1; PTGS2, Prostaglandin G/H Synthase 2;
TBXAS1, Thromboxane A Synthase 1. Note: Figure 1 is in color
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NetOGlyc analysis (http://www.cbs.dtu.dk/services/
NetOGlyc/, Steentoft et al. 2013) predicts potential O-
glycosylation at S238, S254, T240, and S350, all of which
are located on the cytoplasmic side of the membrane. Here
and throughout this document N-linked and O-linked glyco-
sylation is predicted with these web services. Although the
data is strongly suggestive of the presence of both O- and N-
glycosylations on the DP1 receptor, one cannot rule out the
possibility that at least a portion of the glycosylations may be
present on a yet-to-be identified protein associated with the
DP1 receptor that served modify the binding affinity for
PGD2.

There are numerous potential phosphorylation sites on the
human DP1 based on motifs but none are specifically con-
firmed experimentally. Utilizing the NetPhos 3.1 server
(http://www.cbs.dtu.dk/services/NetPhos/, Blom et al. 1999),
a conservative minimum score of 0.9 and the availability of
sites based on topology predictions (UniProtKB), nine
potential sites of phosphorylation are predicted: S145 and
S300 on extracellular loops, S254 on a cytoplasmic loop,
and S347 on the cytoplasmic, C-terminal domain. There are
also additional potential G protein-coupled receptor kinases
(GRK) phosphorylation sites on the C-terminal domain pre-
dicted by the GPS server (http://gps.biocuckoo.cn/, Xue et al.
2011): S347, S350, S352, T353, S357, and S358. There is
experimental evidence for GRK-mediated phosphorylation
of the N-terminal of the receptor (see below) (Gallant et al.
2007). The aforementioned methodologies for phosphoryla-
tion prediction are used throughout the remaining document.

Expression and Characterization

The DP1 receptor is expressed primarily in the gastrointestinal
tract, bone marrow and the immune system, and the gall blad-
der, but is found in many other tissues such as the retinal
choroid, ciliary epithelium, longitudinal and circular ciliary
muscles, iris, and brain cerebral cortex (Town et al. 1983;
Sharif et al. 2000a; http://www.proteinatlas.org, Uhlén et al.
(2015)). Although found in many tissues, this receptor is the
least abundant of the prostanoid receptors (Boie et al. 1995).

Ligand binding properties for DP1 have been characterized
with human recombinant DP1 expressed in human embryonic
cell line HEK293 (Wright et al. 1998; Sawyer et al. 2002),
mammalian COS-M6 cells (Boie et al. 1995), and a human
immortalized myelogenous leukemia cell line K562 (Hirai
et al. 2001), as well as human platelets (Table 1). Binding
properties for recombinant mouse DP1 expressed in
HEK293 cells (Hata et al. 2005; Hata et al. 2003) as well as
combined DP in bovine embryonic tracheal cells have also
been examined (Sharif et al. 2003). Although prostanoid re-
ceptors exhibit preferences with respect to ligand binding,
promiscuous cross reactivity has been reported for several
receptors (Abramovitz et al. 2000; Narumiya et al. 1999).

Both ligand affinities and efficacies have been examined.
[H3]-PGD2 equilibrium competition assays provide a good
measure of relative ligand binding affinities (Table 1).
Binding affinities for recombinant receptor show the highest
affinity while binding to human platelets is the lowest of all.
Binding of PGE2 and PGF2α is several orders of magnitude
poorer than PGD2 for all systems examined, supporting the
selectivity of the receptor. Binding of the non-enzymatic de-
hydration product of PGD2, PGJ2 is 2-10 times weaker than
PGD2. Signal efficacy upon binding has been measured as the
extent of induced cAMP synthesis as compared to the maxi-
mal amount produced by PGD2 at saturation and expressed as
the concentration of ligand necessary to produce 50% of the
maximal PGD2 levels (EC50). The relative values for the dif-
ferent ligands binding to the same receptor shown in Table 1
compare well with those for the binding assays indicating that
affinity is comparable to efficacy.

Examination of the cellular effects resulting from a partic-
ular agonist binding to a specific receptor are frequently
discerned through judicious use of highly selective agonists
and antagonists for a particular receptor. The most frequently
used selective agonists for DP1 are BW245C and TS-022, and
there are three commonly used selective antagonists,
BWA868C, MK-0524, and S-5751. A listing of agonists
and antagonists is given in Table 2.

The expression of DP1 from post-translational folding and
processing in the Golgi to its expression in the plasma mem-
brane has been examined in detail by Binda et al. (2004).
Utilizing recombinant proteins expressed in a HEK293 sys-
tem, they found that lipocalin-type prostaglandin 2 synthase
(L-PGDS) (Binda and Parent 2015) helps facilitate the cell
surface expression of DP1. Following glycosylation and mat-
uration in the Golgi, DP1 forms a complex with Hsp90 which
then interacts directly with L-PGDS as a requirement for cell
surface expression, independent of PGD2 binding. In addition,
L-PGDS associates directly with the co-expressed DP1 in the
perinuclear region, but not on the plasma membrane, and this
association increases the production of PGD2 by L-PGDS
which may represent an intracrine signaling system.

Mechanism of Cell Activation

Signal transduction from the DP1 receptor is reported to occur
via a Gαs protein signaling system (see Table 3), resulting in
an increase in intracellular concentrations of cAMP (Ito et al.
1990; Boie et al. 1995; Sugama et al. 1989 ; Hirata et al.
1994a; Schratl et al. 2007) which in turn activates protein
kinase A (PKA), setting off a number of cellular events.
Several studies also report a concomitant increase intracellular
Ca2+ (Xue et al. 2007; Okuda-Ashitaka et al. 1993), but with-
out an increase in inositol 1,4,5-trisphosphate (IP3) concentra-
tion (Boie et al. 1995). The authors suggest that the increase in
in t race l lu lar ca lc ium could occur through PKA
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phosphorylation of the L-type Ca2+ channel (LTCC) and the
ryanodine receptor (RyR) (Maher et al. 2015; Zaccolo 2009).

Regulation

As is typical for most G-coupled receptors, regulation of
the DP1 receptor is accomplished through desensitiza-
tion and internalization. The regulation of recombinant
human DP1 in HEK293 kidney cells with and without
recombinant GRKs, arrestins or Ras related proteins
(Rab) in the presence or absence of PGD2 has been
examined by Gallant et al. (2007). GRKs are known
to mediate G-protein receptor desensitization through
phosphorylation of the receptor, leading to high affinity
binding to arrestins. Bound arrestins are known to in-
hibit receptor binding to the associated G-protein and at
the same time promote receptor uptake into clatherin-
coated pits where the receptors are either degraded or
recycled back to the membrane, recycling being

controlled by Rabs. When stimulated with 1 μM
PGD2, Gallant et al. (2007) observed that DP1
expressed alone undergoes approximately 25% internal-
ization, leading to a concomitant reduction of activity.
When DP1 is co-expressed with GRK2, PGD2-induced
internalization increases by 25% after 2 hours following
stimulation but is unaffected by co-expression of either
GRK5 or GRK6. In addition, co-expressed GRK2 re-
duces DP1 signaling as measured by cAMP production
by 45% within 15 minutes post-stimulation, whereas co-
expressed GRK5 requires 60 minutes to achieve a max-
imum reduction in cAMP production of 35% and with-
out internalization. Co-expressed GRK 6 has little effect
on the signaling. Co-expression with arrestin-3 or
arrestin-2 promotes internalization by 53% and 43% re-
spectively. On the other hand, co-expression of Rab4
with DP1 decreases internalization by 64% whereas
co-expression with Rab11 has no effect on internaliza-
tion. These data are consistent with rapid GRK2

Table 2 Prostanoid receptor synthetic agonists and antagonists

Receptor agonist reference antagonist reference

DP1 BW245C Rangachari et al. 1995 BWA868C Rangachari et al. 1995

TS-022 Arai et al. 2007 MK-0524 Chang et al. 2007

- - S-5751 Arimura et al. 2001

DP2 Indomethacin Hirai et al. 2002 Ramatroban Sugimoto et al. 2003

L-888,607 Gervais et al. 2005 - -

EP1 ONO-DI-004 Sugimoto and Narumiya 2007 ONO-8713 Sugimoto and Narumiya 2007

17-phenyl trinor PGE2 Dey et al. 2006 - -

EP2 ONO-AE1-259 Sugimoto and Narumiya 2007 PF-04418948 af Forselles et al. 2011

butaprost Kashmiry et al. 2018 - -

EP3 ONO-AE-248 Norel et al. 2004 enprostil Abramovitz et al. 2000

SC-46275 Savage et al. 1993 M&B 28767 Abramovitz et al. 2000

MB28767 Kotani et ai. 2000 - -

Sulprostone Jin et al. 1997, Abramovitz et al. 2000 - -

EP4 ONO-AE1-329 Sugimoto and Narumiya 2007 ONO-AE3-208 Sugimoto and Narumiya 2007

tetrazolo PGE1 Jones et al. 2009 CJ-042794 Jones et al. 2009

IP Cicaprost Jones et al. 2009 RO-1138452 Jones et al. 2009

Carbacyclin Jones et al. 2009 RO-3244794 Jones et al. 2009

iloprost Jones et al. 2009 - -

19(S)-HETE Tunaru et al. 2016 - -

TP U-46619 Abramovitz et al. 2000 AH-23848 Jones et al. 2009

STA2 Hirata et al. 1996 Ramatroban Jones et al. 2009

I-BOP Hirata et al. 1996 Vapiprost Jones et al. 2009

- - SQ29548 Wright et al. 1998

- - S-145 Ushikubi et al. 1989b

FP Fluprostenol Sharif et al. 2000b OBE022 Pohl et al. 2018

Cloprostenol Anderson et al. 1999 THG113 Peri et al. 2002

Latanoptost Abramovitz et al. 2000 AS604872 Jones et al. 2009
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phosphorylation of DP1 leading to a slower internaliza-
tion via arrestins that may be reversed with Rab4, a
protein known to be involved in fast endocytic
recycling (Wang et al. 1995). Phosphorylation by
GRK5 reduces DP1 signaling without subsequent inter-
nalization, indicating that the site of phosphorylation
may not promote proper arrestin binding but may in-
stead simply reduce G-protein interaction with DP1.

DP2 receptor

Introduction

The human prostaglandin D2 receptor DP2 (PTGDR2,
CRTH2, DL1R, GPR44, UniprotKB-Q9Y5Y4) is translated
as a 395 amino acid polypeptide with a calculated molecular
weight of 43.3 kDa (Nagata and Hirai 2003). There are no

Table 3 Signaling pathways and
G-protein association for
prostanoid receptors

Receptor/cell line signaling pathway G-protein mediation reference

DP1 cAMP↑ Ca2+↑† Gαs Sawyer et al. 2002; Wright et al. 1998

DP2 cAMP↓ Ca2+↑ Gαi Hirai et al. 2001; Xue et al. 2007

EP1 IP3↑ Ca2+↑ Gαq Tang et al. 2005; Markovič et al. 2017

PI3K/AKT/mTOR Gαi/o Ji et al. 2010

EP2 cAMP↑ Gαs Regan et al. 1994a

IP3↑ Ca2+↑ Gαq/11 Kandola et al. 2014

EP3-I cAMP↓ Gαi Kotani et al. 1995

IP3↑ Ca2+↑ Gαq Kotani et al. 1995

EP3-II cAMP↓ Gαi Kotani et al. 1995; Kotani et al. 1997

IP3↑ Ca2+↑ Gαq Kotani et al. 1995; Kotani et al. 1997

cAMP↑ Gαs Kotani et al. 1995; Kotani et al. 1997

EP3-III cAMP↓ Ca2+↑ Gαi Kotani et al. 1995; Kotani et al. 1997

EP3-IV cAMP↓ Gαi Kotani et al. 1995; Jin et al. 1997

cAMP↑ Gαs Kotani et al. 1995; Jin et al. 1997

EP3-V cAMP↓ Gαi Kotani et ai. 2000

EP3-VI cAMP↓ Gαi Kotani et ai. 2000

cAMP↑ Gαs Kotani et ai. 2000

EP4 cAMP↑ Gαs Nishigaki et al. 1996; Regan 2003

IP3↑ Ca2+↑ Gαq Fujino et al. 2002

cAMP↓ Gαi Leduc et al. 2009

IP cAMP↑ Gαs Smyth et al. 1996

IP3↑ Ca2+↑ Gαq Smyth et al. 1996

Ca2+↑† Gαs Vassaux et al. 1992

TP

α & β IP3↑ Ca2+↑ Gαq Kinsella et al. 1997; Walsh et al. 2000b

α & β Na+/H+ exchange↑ Gα12,13 Becker et al. 1999

α & β Ca2+↑† Gα12,13 Walsh et al. 2000b

α & β Rho signaling Gα12,13 Feng et al. 1996

α only cAMP↑ Gαs Hirata et al. 1996

α only IP3↑ Ca2+↑ Gαh Feng et al. 1996

β only unknown Gαh Feng et al. 1996

β only cAMP↓ Gαi Hirata et al. 1996; Ushikubi et al. 1994

FP IP3↑ Ca2+↑ Gαq Liang et al. 2008a

Rho signaling Gα12,13 Pierce et al. 1999

cAMP↓ Gαi Hébert et al. 2005; Ohmichi et al. 1997

cAMP↑ Gαs Tachado et al. 1993

† Ca2+ is indirectly increased. See text.
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additional reported isoforms and three coding SNP variants
reported, V204A (Nagata et al. 1999), F179V, P197T (Hsu
et al. 2002) and L281F (https://www.ncbi.nlm.nih.gov/
clinvar, Landrum et al. 2016), none of which have any
reported effect on function. There are two reported X-ray
structures (6D26 and 6D27). Extracellular N-linked glycosyl-
ations are predicted for N4 and N25 by sequence analysis
(http://www.cbs.dtu.dk/services/NetNGlyc/, Blom et al.
2004) and numerous O-linked sites on both the cytoplasmic
and extracellular domains (http://www.cbs.dtu.dk/services/
NetOGlyc/, Steentoft et al. 2013), none of which have been
confirmed experimentally. However, Nagata et al. (1999)
have shown that treatment of DP2 with endo F increases its
mobility on sizing gels, indicating a decrease in mass of 20-
30 kDa and confirming the presence of N-linked
glycosylation.

There are numerous potential phosphorylation sites on the
human DP2 based on motifs, but none are specifically con-
firmed experimentally (http://www.cbs.dtu.dk/services/
NetPhos/, Blom et al. 1999). Eleven potential sites of
phosphorylation are predicted: S22 and S27 on the
extracellular N-terminal domain, T172 and T174 on extracel-
lular loops, T64 on a cytoplasmic loop, and S318, T344, S345,
S346, S352, and S391 on the cytoplasmic, C-terminal domain.
There are also additional potential GRK phosphorylation sites
in the C-terminal domain predicted for T321, S325, T344,
S345, S346, S358, S376, S380, T383, S391, S392, T393,
S394, S395 (http://gps.biocuckoo.cn/, Xue et al. 2011).

Expression and Characterization

The DP2 receptor is expressed primarily in the gastrointestinal
tract, brain, endocrine system and muscle, but is also found in
many other tissues such as immune tissue (eosinophils, baso-
phils and Th2 lymphocytes in particular), gall bladder, ciliary
and both male and female reproductive tissue (http://www.
proteinatlas.org, Uhlén et al. (2015)).

Ligand binding properties for DP2 have been characterized
with human recombinant protein expressed in both HEK293
(Sawyer et al. 2002; Hata et al. 2005) and K562 (Hirai et al.
2001) cell lines, and mouse recombinant protein in a HEK293
cell line (Hata et al. 2003). Ligand affinities as measured by
[3H]PGD2 equilibrium competition assays and ligand effica-
cies as measure by the reduction of [cAMP] in either
isoproterenol- or forskilin-stimulated cells are given in
Table 1. As observed for the DP1 receptor, the DP2 receptor
shows a preference for PGD2, but also cross-reactivity with
other ligands such as PGF2α and 9α,11β-PGF2α. The relative
cross-reactivities are similar to those observed for the DP1
receptor. The most frequently used selective agonists for
DP2 are Indomethacin and L-888,607. There is one common-
ly used selective antagonist, Ramatroban (Sugimoto et al.
2003) (Table 2).

Mechanism of Cell Activation

Signal transduction from the DP2 receptor occurs via a Gαi

protein signaling system (see Table 3) resulting in a decrease
in intracellular [cAMP] and an increase in intracellular [Ca2+]
(Sawyer et al. 2002; Hirai et al. 2001; Pettipher et al. 2007).
Further, DP2 activation in Th2 cells is mediated through a
phosphatidylinositol 3-phosphate kinase (PI3K) and Ca2+/cal-
modulin/calcineurin signaling pathways (Xue et al. 2007).

Regulation

The regulation of DP2 has many similarities to that of DP1
discussed above with some notable exceptions. In addition to
their work with DP1, Gallant et al. (2007) also examined the
regulation of recombinant DP2 expressed in HEK293 kidney
cells. They found that internalization of the DP2 receptor in-
creases 20% in the presence of the PGD2 agonist, 5% less than
observed for the DP1 receptor. However, when co-expressed
with GRK2, the DP2 receptor’s agonist-induced internaliza-
tion is increased by 88% compared to an increase of 25% for
co-expression of GRK2 with DP1 and the rate desensitization
via phosphorylation is considerably slower than observed for
DP1. Further, co-expression of GRK5 or GRK6 with DP2
more than doubles the receptor internalization whereas co-
expression of either of these GRKs has no effect on DP1
internalization. Co-expression of DP2 with arrestin-2 results
in enhancement of agonist-induced internalization by 90%,
over twice that observed for DP1, but unlike DP1, co-
expression of DP2 with arrestin-3 has no effect on agonist-
induced internalization of DP2. As observed for DP1, co-
expressed GRKs reduces the DP2 receptor activity (measured
by changes in inhibition of forskolin-induced cAMP synthe-
sis) and to a similar degree. Lastly, both DP1 and DP2
recycling is enhanced by Rab proteins, however, for DP2 it
is the Rab11 protein that promotes recycling rather than the
Rab4 protein that enhances recycling of DP1. These data are
consistent with a slow phosphorylation of DP2 by all three
GRKs on a time scale comparable to internalization that is in
turn reversed by Rab11 activation.

Schröder et al. (2009) examined the effect of DP2’s C-
terminal tail on receptor internalization through comparison
of the activity of recombinant DP2 with the native 86 amino
acid C-terminal tail to that that of a recombinant truncated
version with an 8 amino acid tail. They found that the truncat-
ed version exhibits enhanced signaling compared to wild type
DP2, indicating that the wild type C-terminus inhibits interac-
tion with Gαi to reduce signaling activity. Further, they found
that the C-terminal is the site for β-arrestin-2 binding, a pre-
requisite for internalization, leading to a reduction in signal-
ing. Interestingly, they report that DP2 is not phosphorylated
upon agonist binding. This directly contrasts with the Gallant
et al. (2007) report where GRKs were found to significantly
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increase internalization, presumably through phosphorylation
of the receptor. Further, this report also indicates that inhibi-
tion of PKA with H-89 decreases internalization, again sug-
gesting a phosphorylation event. Further study is clearly re-
quired to rationalize these contrasting results.

Regulation on the transcription level has also been exam-
ined. MacLean Scott et al. (2018) revealed that the transcrip-
tion factor GATA3 enhances expression of DP2 during Th2
cell differentiation and within innate lymphoid cells. They
also report that over-expression of the NFAT1 transcription
factor reduces GATA3 promotor activity. They suggest that a
dynamic relationship between GATA3 and NFAT1 competi-
tion for the promotor site may play a role in DP-mediated
allergic inflammation.

Synergy and Opposing Actions of the DP1 and DP2
Receptors

PGD2 is generated by mast, Th2, and dendritic cells and is
found in high concentrations at sites of inflammation. The
DP1 and DP2 receptors act jointly in the development and
maintenance of the allergic response.

PGD2 stimulation of DP2 receptors is directly involved in
activation of Th2 lymphocytes, eosinophils and basophils,
with little effect on neutrophils (Emery et al. 1989), as well
as chemotaxis of these cells to the site of inflammation (Xue
et al. 2007; Schratl et al. 2007). Further, efficient synthesis of
the microvasculature permeability enhancer cystenyl LTs
(LTC4 LTD4 and LTE4) by eosinophils requires simultaneous
stimulation of the DP1 and DP2 receptors (Mesquita-Santos
et al. 2011). However, these two receptors have opposing
effects on eosinophil activation. Binding of PGD2 to the
DP2 receptor activates eosinophils by stimulating the produc-
tion of the leukocyte integrin CD11b, an event required for
adhesion, migration and accumulation at the site of inflamma-
tion (Maiguel et al. 2011). Binding of PGD2 to the DP1 re-
ceptor, however, negatively regulates the production of
CD11b, serving to modulate the activation of eosinophils
(Monneret et al. 2001).

Activation of both DP1 and DP2 receptors by PGD2 results
in the inhibition of apoptosis of particular immune cells, thus
prolonging the inflammatory burden in regions of
inflammation. Xue et al. (2009) have shown that binding of
PGD2 to DP2 receptors on Th2 cells suppresses annexin V
binding, mitochondrial cytochrome C release, and caspase
activities associated with cell apoptosis. Peinhaupt et al.
(2018) have shown that stimulation of DP1 inhibits the onset
of intrinsic apoptosis of eosinophils apparently though the
activation of anti-apoptotic proteins such as the Bcl2 family
of proteins. Further, they found that DP1 signaling induced
the serum response element (SRE) that regulates genes re-
sponsible for cytoskeleton production and survival.

Prostaglandin E2 Receptors

Introduction

There are four known distinct subtypes of PGE2 receptors: 1)
the EP1 receptor (PGE2 receptor EP1 subtype, Gene:
PTGER1), 2) the EP2 receptor (PGE2 receptor EP2 subtype,
Gene: PTGER2, 3) the EP3 receptor (PGE2 receptor EP3 sub-
type, PGE2-R, Gene: PTGER3), and 4) the EP4 receptor
(PGE2 receptor EP4 subtype, Gene: PTGER3). Sequence ho-
mology between the subtypes is in the 28-33% range
(Sugimoto and Narumiya 2007). Expression levels are both
tissue and receptor subtype dependent.

EP1 receptor

Introduction

The human prostaglandin E2 receptor EP1 (PTGER1,
UniprotKB-P34995) is translated as a 402 amino acid poly-
peptide with a calculated molecular weight of 41.8 kDa. There
are no additional reported isoforms and three coding SNP
variants (A71T, T223M and H256R) (https://genecards.org,
Stelzer et al. 2016), none of which involve any known
clinical significance or condition. There are no reported X-
ray structures. Extracellular N-linked glycosylations are pre-
dicted for N8 and N25 by sequence analysis (http://www.cbs.
dtu.dk/services/NetNGlyc/, Blom et al. 2004) and numerous
O-linked sites on both the cytoplasmic and extracellular do-
mains (http://www.cbs.dtu.dk/services/NetOGlyc/, Steentoft
et al. 2013), none of which have been confirmed
experimentally.

There are numerous potential phosphorylation sites on the
human PTGER1 based on motifs but none are specifically
confirmed experimentally (http://www.cbs.dtu.dk/services/
NetPhos / , Blom et a l . 1999) . Potent ia l s i tes of
phosphorylation are predicted for S69, S150, S238, S249,
S260, S262, S265, S282, S285 on cytoplasmic loops, and
S390, S393, S394, and S397 on the cytoplasmic, C-terminal
domain. There are also potential GRK phosphorylation sites
predicted for T382, S384, S389, and S400 (http://gps.
biocuckoo.cn/, Xue et al. 2011).

Expression and Characterization

The EP1 receptor is primarily expressed in the kidney and
spleen, but is also found in the gastrointestinal tract, lung,
smooth muscle, and the central nervous system (http://www.
proteinatlas.org, Uhlén et al. (2015)).

Ligand binding properties for recombinant human EP1
(Abramovitz et al. 2000; Sharif and Davis 2002; Ungrin
et al. 2001) and recombinant mouse EP1 (Kiriyama et al.
1997) have been characterized in HEK 293 and Chinese
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hamster ovary (CHO) cell lines respectively (Table 4). Ligand
efficacies for human EP1 were determined by the increase in
intracellular [Ca2+] accompanying agonist binding (Table 5).
The data show that the EP1 receptor exhibits the weakest
PGE2 binding of all EP receptors, but by most reports has
efficacy similar to other EP receptors. Interestingly, although
the binding of alternate ligands PGE1 and PGF2α are 10 and
40-fold weaker than PGE2 respectively, the differences in ef-
ficacies are much smaller. The most frequently used selective
agonists for EP1 are ONO-DI-004 and 17-phenyl PGE2

(Sugimoto and Narumiya 2007; Dey et al. 2006). There is
one commonly used selective antagonist, ONO-8713
(Sugimoto and Narumiya 2007) (Table 2).

EP1 has been found to form heterodimers or higher order
oligomers with the β2-androgenic receptor (β2AR) airway
smooth muscle (ASM) cells and when both are transfected

into COS-7 cells. Although EP1 stimulation alone does not
appear to have any significant effect onASM cells itself, in the
presence ofβ2AR the heterodimeric complex forms and stim-
ulation of EP1 serves to alter the β2AR structure leading to a
reduction in binding of β2AR to its Gαs protein, resulting in a
reduction β3AR-mediated ASM relaxation (McGraw et al.
2006).

Mechanism of Cell Activation

Signal transduction from the EP1 receptor has been contro-
versial with respect to the particular G-proteins involved and
the mechanisms that lead to the observed increase in intracel-
lular calcium (Sugimoto and Narumiya 2007; Tsuboi et al.
2002). It is now generally accepted that EP1 interacts with
Gαq (Table 3) which in turn activates phosphoinositol-

Table 4 Binding affinity (Ki) of
eicosanoids on the recombinant
EP receptors expressed in cell
cultures and in human duodenum
cells

Ki (nM)

Receptor/cell line PGE1 PGE2 PGF2α PGD2 PGI2 analog Reference

mEP1/CHO 36 20 1300 - - Kiriyama et al. 1997

mEP2/CHO 10 12 - - - Kiriyama et al. 1997

mEP2/CHO - 1.0 - - - Nishigaki et al. 1995

mEP3/CHO 1.1 0.85 75 - - Kiriyama et al. 1997

mEP4/CHO 2.1 1.9 - - - Kiriyama et al. 1997

mEP4/CHO - 1.0 - - - Nishigaki et al. 1995

hEP1/HEK293 - 9.1 547 5,820 - Abramovitz et al. 2000

hEP1/HEK293 110 9.9 380 6,040 - Ungrin et al. 2001

hEP1/HEK293 165 14.9 594 19,500 - Sharif and Davis 2002

hEP1/HEK293 - 26 594 >19,000 >15,000 Sharif et al. 2003

hEP2/HEK293 - 4.9 964 2,973 - Abramovitz et al. 2000

hEP3-I/COS7a 19 7.2 1150 - - Regan et al. 1994b

hEP3-I/COS7 3.8 1.2 - - - Kotani et al. 1995

hEP3-I/COS-M6a 0.4 0.4 135 1,310 - Adam et al. 1994

hEP3-I/COS-1a 0.8 0.8 250 250 - Kunapuli et al. 1994

hEP3-II/COS7 28 14 4648 - - Regan et al. 1994b

hEP3-II/COS7 3.9 1.6 - - - Kotani et al. 1995

hEP3-II/COS-M6a 0.33 0.4 85 951 - Adam et al. 1994

hEP3-III/COS7 11 8.2 599 - - Regan et al. 1994b

hEP3-III/COS7 2.6 1.3 - - - Kotani et al. 1995

hEP3-III/COS-M6a 0.28 0.4 36 277 - Adam et al. 1994

bEP3/HEK293 - 3 24 1,115 5,375 Sharif et al. 2003

hEP3-III/HEK293 - 0.33 38 421 - Abramovitz et al. 2000

hEP3-IV/COS7 5.5 1.7 - - - Kotani et al. 1995

hEP3-V/CHOb 5.0 5.0 10,000 3,200 - Kotani et ai. 2000

hEP3-VI/CHO 5.0 8.0 3,200 1,260 - Kotani et ai. 2000

hEP4/HEK293b - 0.79 288 1,483 - Abramovitz et al. 2000

hEP4/HEK293 - 0.9 433 2,139 8,074 Sharif et al. 2003
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phospholipase C (PI-PLC) causing the release of IP3 intracel-
lularly, and a subsequent increase in intracellular [Ca2+] (Tang
et al. 2005; Markovič et al. 2017). Ji et al. (2010) have not
only confirmed the interaction of Gαq/11 with EP1 for recom-
binant human EP1 in a HEK cell line, but have also shown
that EP1 can couple to Gαi/o and activate the PI3K/protein
kinase B (PKB or AKT)/mTOR kinase signaling pathway in
the same experimental system.

Regulation

The regulation of the EP1 receptor is facilitated by several
different mechanisms. Nasrallah et al. (2015) examined the
expression of EP1 in MCT cells and found this receptor is
constitutively expressed and the expression is enhanced fol-
lowing a 24 hr incubation with either PGE2 or transforming
growth factor beta (TGFβ). They found that PGE2 alone and
TGFβ alone increase expression 2.5- and 3.8-fold respective-
ly and combined they increased EP1 expression 7-fold.
Further, utilizing MCT cells transfected with EP1 siRNA the
effect of PGE2 on EP1 expression is reduced by 50%, sug-
gesting that the effect of PGE2 is on the transcriptional level.

Expression of EP1 can also be altered under conditions of
low oxygen. Under hypoxic conditions of 5% and 2%O2, Lee

et al. (2007) found that PGE2 release and EP1 receptor expres-
sion is strongly elevated when compared to 21% O2 condi-
tions. It is not known if the increase in EP1 expression results
from a localized increase in PGE2 levels as described above or
is due to another mechanism.

The expression of EP1 is regulated by co-expressed pro-
teins as well. Sood et al. (2014) have found that overexpres-
sion of COX-2 increases the membrane expression of EP1 and
does so non-transcriptionally. This mechanism provides a
feedback loop to resolve inflammation, as COX-2 expression
is down-regulated by EP1 stimulation of COX-2 degradation.

EP2 receptor

Introduction

The human prostaglandin E2 receptor EP2 (PTGER2,
UniprotKB-P43116) is translated as a 358 amino acid poly-
peptide with a calculated molecular weight of 39.8 kDa. There
are no additional reported isoforms and two coding SNP var-
iants (C83G and Y285C) (https://www.ncbi.nlm.nih.gov/
clinvar/, Landrum et al. 2016), both of which appear to be
benign. There are no reported X-ray structures. There are ex-
tracellular N-linked glycosylations predicted for N3 and N6

Table 5 Signaling efficiency
(EC50) of eicosanoids on the
recombinant EP receptors
expressed in cell cultures and in
human duodenum cells

EC50 (nM)

Receptor/cell line PGE1 PGE2 PGF2α PGD2 PGI2 analog Reference

hEP1/CHO - 1.98 - - Sekido et al. 2016

hEP1/HEK293 9.3 2.90 29 3,200 319 Ungrin et al. 2001

hEP2/CHO - 3.74 - - - Sekido et al. 2016

mEP2/CHO - 1.0 - - - Nishigaki et al. 1995

hEP2/COS7c - 50 - - - Regan et al. 1994a

hEP2/hNPE - 4.9 964 2973 - Sharif et al. 2003

hEP3/CHO - 1.60 - - - Sekido et al. 2016

EP3/gp - 5.4 - - - Savage et al. 1993

hEP4/CHO - 4.09 - - - Sekido et al. 2016

hEP4/hNPE - 46 >10,000 >10,000 >10,000 Crider et al. 2000

hEP4/human duodenum - 50 - - - Larsen et al. 2005

mEP4/CHO - 1.0 - - - Nishigaki et al. 1995

Abbreviations: h, human; m, mouse; b, bovine; HEK293 human embryonic kidney cells; COS M-6, Green
monkey kidney cells; COS7, monkey fibroblast-like cells; CHO. Chinese hamster ovary cells; COS-1, African
green monkey kidney fibroblast-like cells; hNPE human non-pigmented ciliary epithelial cells; gp, guinea pig
distal ileum tissue. The Ki values were determined from [3H]PGE2 displacement assays. The EC50 for recombi-
nant EP1 and EP3 receptors were determined from intracellular changes in [Ca2+ ] and the EC50 for recombinant
EP2 and EP4 receptors were determined from intracellular changes in cAMP. The EC50 values for hEP2 and hEP4
expressed in in hNPE cells were determined from intracellular changes in cAMP. The EC50 values determined for
gEP3 gp (guinea pig vas deferens) tissue were determined by changes in the inhibition of twitch contraction
values. The EC50 for hEP4 in human duodenum tissue was determined by changes in short circuit current. a) Ki

values determined from reported IC50 and Kd utilizing the Cheng-Prusoff equation (Suganami et al. 2016); b)
Values determined from IC50 estimated from binding curves and reported Kd utilizing the Cheng-Prusoff equa-
tions; c) Value estimated from a graph of [PGE2] vs. [cAMP].
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on the N-terminal and N96 and N287 on extracellular loops
(http://www.cbs.dtu.dk/services/NetNGlyc/, Blom et al.
2004). There are also O-linked sites predicted for S237 on a
cytoplasmic loop and S5 extracellular N-terminal domain
(http://www.cbs.dtu.dk/services/NetOGlyc/, Steentoft et al.
2013). None of these specific glycosylations are confirmed
experimentally, however, western blot analysis of HaCaT
and COS-7 cells reveal three EP2 reactive bands at 30 kDa,
43-45 kDa, and 51 kDa (Konger et al. 2002), consistent with
multiple glycoforms.

There are numerous potential phosphorylation sites on the
human EP2 based on motifs but none are specifically con-
firmed experimentally. Phosphorylation is predicted for S8
and S10 on the extracellular N-terminal domain, S291 on an
extracellular loop, S62, S63, S149, S151, S229, S232, S240,
and S255 on cytoplasmic loops, and T344 and S353 on the
cytoplasmic, C-terminal domain (http://www.cbs.dtu.dk/
services/NetPhos/, Blom et al. 1999). There are also
potential GRK phosphorylation sites predicted for the C-
terminal domain at S328, S335, T338, T342, S345, S347,
and S350 (http://gps.biocuckoo.cn/, Xue et al. 2011).

Expression and Characterization

The EP2 receptor is widely expressed, albeit in lower abun-
dance when compared to other receptors (http://www.
proteinatlas.org, Uhlén et al. (2015)). Ligand binding proper-
ties for recombinant human EP2 (Abramovitz et al. 2000) and
recombinant mouse EP2 (Kiriyama et al. 1997; Nishigaki
et al. 1995) have been characterized in HEK 293 and
Chinese hamster ovary (CHO) cell lines respectively
(Table 4). Ligand efficacies for human and murine EP2 were
determined by the increase in intracellular cAMP (Table 5).
The data show that the EP2 receptor exhibits moderate PGE2

binding, similar to EP3 (see below). The efficacy is like other
EP receptors in CHO cells, but exhibit much lower efficiency
in COS-7 cells. The most frequently used selective agonist for
EP2 is ONO-AE1-259. The most highly selective antagonist
for EP2 is PF-04418948 (af Forselles et al. 2011) with greater
than 10,000-fold selectivity for EP2 receptors than other pros-
tanoid receptors. There are also several moderately selective
antagonists, TG6-129, TG4-155 and TG6-10 available
(Ganesh 2014).

Mechanism of Cell Activation

Signal transduction for the EP2 receptor has been shown to
occur through both G-protein-dependent and G-protein-
independent pathways. The G protein-dependent pathway is
similar to that of DP1 (Table 3) in that it is coupled to Gαs

(Hirata and Narumiya 2011), leading to activation of adenyl-
ate cyclase and the production of cAMP (Honda et al. 1993;
Regan et al. 1994a) which in turn activates PKA (Chun et al.

2009; Regan 2003) and exchange proteins that are activated
by cAMP (Epacs) (Sands and Palmer 2008). EP2 can also
switch from signaling through Gαs to signaling through Gαq/

11 in human myometrium, leading to an increase in [Ca2+] and
pro-inflammatory pathways, promoting a pro-labor condition
(Kandola et al. 2014). The G-protein-independent pathway
involves the formation of an EP2-β-arrestin1-Src tyrosine
protein-kinase complex that leads to the activation of the epi-
dermal growth factor receptor (EGFR) which can then lead to
the activation of H-Ras (protein p21), PKB and the MAP
kinases ERK1/2 (Chun et al. 2009).

Regulation

The regulation of the EP2 receptor is facilitated by a number
of different mechanisms. The effect of various agonists on the
expression of prostanoid receptors have been presented.
Perchick and Jabbour (2003) examined the effect of upstream
prostanoid production on the expression of EP type receptors.
Here they overexpressed transfected human cyclooxygenase 2
(COX-2) into the Ishikawa human endometrial cell line to
increase the production of PGH2, the direct precursor for
PGE2. They found that not only was the production of PGE2

elevated, but that EP2 and EP3 receptor expression was in-
creased with no effect on EP1 and EP4 expression.

Agonist expression can also direct signaling pathways.
Agonist-induced conformational changes in the EP2 receptor
allows for phosphorylation of specific sites on the C-terminus
that alter the receptor response in a phosphorylation site de-
pendent manner (Tobin 2008). Phosphorylation may be ac-
complished by G-protein receptor kinases (GRK) (Ferguson
2007), protein kinase C (PKC), PKA, or PKB to name a few
and the sequence specificity of the kinase determines the site
or sites of modification, leading to a specific outcome (Tobin
2008). One such outcome is the binding of β-arrestin which
results in the displacement of Gαs, thus halting the cAMP
production pathway. Although β-arrestin binding is also
known to lead to desensitization through internalization of
GPCRs via a clatherin-mediated pathway, expression of re-
combinant EP2 in 293-EBNA cells (Invitrogen) and COS-1
cells produces little internalization (Desai et al. 2000; Penn
et al. 2001). However, when co-expressed with a modified
arrestin (ARR2 (R169E)), an arrestin that does not require
phosphorylation to bind to GPCRs, EP2 exhibits a four-fold
increase in internalization compared to cells co-expressing
wild type recombinant arrestin (Penn et al. 2001). These re-
sults indicate that the failure of wild type arrestin to cause
internalization of EP2 is due to the absence of specific phos-
phorylation and suggests that the required kinase was not ac-
tive under the experimental conditions.

Agonist-induced desensitization is a common feature of
GPCRs. EP2 is not readily desensitized through phosphoryla-
tion as noted above, but over time the formation of PGE2
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metabolic products which have considerably longer half-lives
than PGE2 and lower efficacies, accumulate to effectively
compete with PGE2 for the receptor and in doing so reduce
the response to PGE2 (Nishigaki et al. 1996).

Regulation of EP2 on the transcriptional level has also been
observed. It is well established that treatment of macrophages
with bacterial lipopolysaccharide (LPS) stimulates
macrophages and leads to their releasing large amounts of
PGE2. Ikegami et al. (2001) reported that LPS treatment of
cultured mouse macrophages results in a transient five-fold
up-regulation of EP2 mRNA at 3 hours after stimulation,
which returns to previous levels by 5 hours. They showed
further that no protein synthesis is required for the up-
regulation and suggest that up-regulation of EP2 mRNA is a
direct effect of LPS stimulation. They also observed that
changing media promotes up-regulation of EP2 mRNA, but
to a lesser degree than observed for LPS and suggest that
induction factors in the media may be responsible. Kashmiry
et al. (2018) reported that up-regulation of EP2 receptor
mRNA in human monocytes and THP-1 cells following
LPS stimulation is controlled by the PGE2 stimulation of the
EP4 receptor.

Steroid hormone regulation of the transcription of a large
number of genes is well established. Lim and Dey (1997)
examined EP2 mRNA expression in the mouse preimplanta-
tion uterus as a function of experimentally elevated progester-
one (P4) and 17β-estradiol (E2). They found that P4 up-
regulates EP2 mRNA and the presence of E2 enhances this
effect, while E2 alone down-regulates EP2 mRNA and sug-
gest that the synergy between P4 and E2 on EP2 expression is
essential in preparing the uterus for implantation.

EP3 receptor

Introduction

The human prostaglandin E2 receptor EP3 (PTGER3,
UniprotKB-P43115) is translated as a 390 amino acid poly-
peptide with a calculated molecular weight of 43.3 kDa. There
are 14 reported isoforms and 3 coding SNP variants (N366S,
T319M,M169L) (https://genecards.org, Stelzer et al. 2016) of
the canonical EP3A sequence, none of which have any
reported effect on function. Each of the isoforms is a splice
variant of the C-terminal tail and all are identical for the first
359 residues but differ in G-protein interactions and signaling.
There are two reported X-ray structures (PDB entry 6AK3 and
6M9T). Extracellular N-linked glycosylation are predicted for
N18 and N36 on the N-terminal and with lower confidence
N217 and N308 on extracellular loops (http://www.cbs.dtu.
dk/services/NetNGlyc/, Blom et al. 2004). There are O-
linked sites predicted with high confidence for S20, T22,
and S30 on the extracellular N-terminal domain and S369,
S371, S373, and S380 on the intracellular C-terminal tail

(http://www.cbs.dtu.dk/services/NetOGlyc/, Steentoft et al.
2013). None of these specific glycosylations are confirmed
experimentally, however, site-specific mutagenesis studies
of rat EP3 (UniProtKB-P34980) confirm N-glycosylation of
N16 and N194 (Böer et al. 2000) which correspond to N18
and N217 in human EP3. Further, the glycosylation for the rat
analog is required for correct sorting to the plasma membrane,
but not for correct folding of EP3.

There are numerous potential phosphorylation sites on the
human EP3 based on motifs but none are specifically con-
firmed experimentally (http://www.cbs.dtu.dk/services/
NetPhos/, Blom et al. 1999). For all known isoforms,
residues 1-359 are identical. High probability phosphorylation
sites are predicted for all isoforms at S43 on the extracellular
N-terminal domain, and S82, S258 and S270 on cytoplasmic
loops. There are also multiple potential GRK phosphorylation
sites on the C-terminal domain for all but isoforms EP3-III and
EP3-IV (http://gps.biocuckoo.cn/, Xue et al. 2011).

Expression and Characterization

The EP3 receptor is widely expressed in low abundance, but is
highly expressed in smooth muscle, kidney, endometrium,
and in adipose tissue (http://www.proteinatlas.org, Uhlén
et al. (2015)). Ligand binding properties for recombinant hu-
man EP3 isoforms have been characterized in HEK293
(Abramovitz et al. 2000), COS-1 (Kunapuli et al. 1994),
COS-7 (Kotani et al. 1995; Regan et al. 1994b) and COS-
M6 (Adam et al. 1994) cell lines (Table 4). Ligand efficacies
for human recombinant EP3 isoforms were determined in
CHO cells by the increase in intracellular [Ca2+] (Sekido
et al. 2016) and guinea pig vas deferens smooth muscle by
changes in twitch contraction values (Savage et al. 1993)
(Table 5).

The data show that the EP3 receptor on the average exhibits
PGE2 binding that is greater than most EP receptors, but
slightly less than observed for EP4. The average efficacy is
similar to other EP receptors. The most selective agonists for
EP3 in general are SC-46275, ONO-AE-248, MB28767 and
sulprostone (Norel et al. 2004; Savage et al. 1993; Kotani et al.
2000; Jin et al. 1997; Abramovitz et al. 2000) (Table 2). There
are two EP3 specific antagonists available, DG-041 and
ONO-AE3-240 (Abramovitz et al. 2000) (Table 2).

Mechanism of Cell Activation

Signal transduction by the EP3 receptor is dependent on the
isoform present (Table 3). As noted above, there are at least 14
different isoforms, each of which differs only in the composi-
tion and length of the C-terminal tail from residue 360 onward
(Kotani et al. 1995; Kotani et al. 1997). These differences
determine which G-proteins bind and hence determine the
signal pathway actuated.
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EP3-I (UniprotKB isoform EP3A, identifier P4535115-1)
the canonical isoform is coupled to two secondary messenger
systems, involving inhibition of cAMP and stimulation of
phosphoinositide turnover that is consistent with coupling to
Gαi and Gαq proteins respectively (Kotani et al. 1995).

EP3-II (UniprotKB isoform EP3C, identifier P4535115-2)
is functionally equivalent to bovine EP3D which is known to
be coupled to Gαi, Gαs, and Gαq (Kotani et al. 1995; Kotani
et al. 1997) that initiate cAMP repression, an increase cAMP
production, and an increase in both inositol 1,4,5-trisphos-
phate (IP3) and intracellular [Ca2+] respectively.

EP3-III (UniprotKB isoform EP3B, identifier P4535115-3)
is coupled to the inhibition of cAMP production (Regan et al.
1994b) with an increase in intracellular [Ca2+] (Schmid et al.
1995), does not stimulate IP3 production (Kotani et al. 1995),
and its activity is inhibited by the presence of pertussis toxin, a
known inhibitor of Gαi, all of which clearly indicate that it
couples to Gαi (Jin et al. 1997).

EP3-IV (UniprotKB isoform EP3D, identifier P4535115-
4) is coupled to both stimulation of cAMP production and
reduction in cAMP accumulation with no reports of IP3 gen-
eration (Kotani et al. 1995). The activity of this receptor is also
inhibited by the presence of pertussin toxin, indicating that the
reduction of cAMP is coupled through Gαi (Jin et al. 1997).
The production of cAMP is consistent with coupling to Gαs.

EP3-V (UniprotKB isoform EP3E, identifier P4535115-5)
is coupled to the inhibition of cAMP production. This fact and
the loss of activity in the presence of pertussis toxin indicates a
coupling to Gαi (Kotani et al. 2000). Associated changes in
intracellular [Ca2+] have not been reported.

EP3-VI (UniprotKB isoform EP3F, identifier P4535115-6)
like EP3-IV is also coupled to both stimulation of cAMP
production and reduction in cAMP accumulation with no re-
ports of IP3 generation (Kotani et al. 2000). Observed inhibi-
tion of cAMP reduction with pertussis toxin and stimulation
of cAMP production with the EP3-specific agonist
M&B28767 indicate coupling to Gαi and Gαs respectively.

There are eight additional EP3 isoforms reported in the
literature of which only EP3.e and EP3.f have been partially
characterized as reducing [cAMP] upon PGE2 activation
(Schmid et al. 1995). Interestingly sequences for these two
are not listed in UniProtKB, however, P435115-11 and
P435115-10 have identical sequences to EP3.e and EP3.f re-
spectively with the exception of an additional exon sequence
VANAVSSCSNDGQKGQPISLSNEIIQTEA (360-388) to
the N-terminal side of the defining C-terminal sequence.

Regulation

Regulation by receptor internalization is isoform dependent.
In HEK293 cells expressing human recombinant EP3-I, EP3-
II , EP3-III EP3-IV, EP3-V, EP3.e, and EP3.f, all receptors are
found to be located primarily on the cell surface under non-

stimulating conditions (Bilson et al. 2004). Isoforms EP3-III,
EP3-IV, EP3-V, EP3.f are also observed intracellularly.When
stimulated with PGE2, isoform EP3-I translocate robustly to
intracellular punctate vesicles along with β-arrestin. EP3.f be-
haves similarily to EP3-I but is internalized to a lesser extent.
Isoforms EP3-II, EP3-V, EP3-VI internalize upon stimulation
to a lesser extent than EP3-I and this is not accompanied byβ-
arrestin migration into the vesicles. Isoforms EP3-III and EP3-
IV do not internalize in response to PGE2 binding. This is
expected, as the C-terminal tails of these isoforms contain no
Ser of Thr residues, and thus the phosphorylation required for
β-arrestin facilitated internalization cannot occur.

Receptor response to agonist activation of EP3 isoforms I-
IV has been examined in detail in terms of inhibition of cAMP
production (Jin et al. 1997). Isoforms EP3-I and EP3-II exhibit
typical agonist concentration-dependent behavior whereas
EP3-III exhibits full constitutive activity and EP3-IV exhibits
partial constitutive activity. In contrast, agonist response for
both the EP3-III and EP3-IV receptors in terms of increased
intracellular [Ca2+] is agonist dependent (Regan et al. 1994b;
Schmid et al. 1995; Sekido et al. 2016).

Regulation of EP3 on the transcriptional level has been
reported without reference to specific isoforms. Human leu-
kemic T cells of the HSB.2 T cell line express EP2, EP3 and
EP4 receptor subtypes. Exposure of these cells to the T cell
mitogen concanavalin A (Con A) increases interleukin 6 (IL-
6) secretion in response to PGE2 while at the same time
downregulates the expression of EP3 mRNA (Zeng et al.
1998). In contrast, forced overexpression of the ERG tran-
scription factor in immortalized PCA cell line DU145 results
in the upregulation of EP3 while simultaneously increasing
IL-6 secretion (Merz et al. 2016).

EP4 receptor

Introduction

The human prostaglandin E4 receptor EP4 (PTGER4,
UniprotKB-P35408) is translated as a 488 amino acid poly-
peptide with a calculated molecular weight of 53.1 kDa. There
are no reported isoforms and one reported coding SNP variant
(V294I) which is not reported to have any effect on function
(https://www.ncbi.nlm.nih.gov/clinvar/, Landrum et al. 2016).
There are two reported X-ray structures (PDB 5YHL and
5YWY). Extracellular N-linked glycosylation is predicted
with high confidence for N7 and two with lower confidence,
N177 on an extracellular loop and N482 on the intracellular C-
terminal domain (http://www.cbs.dtu.dk/services/NetNGlyc/,
Blom et al. 2004). There are also numerous O-linked sites
predicted for both the N- and C-terminal domains as well as
on one extracellular loop (http://www.cbs.dtu.dk/services/
NetOGlyc/, Steentoft et al. 2013). None of these specific
glycosylations are confirmed experimentally. There are five
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known phosphorylation sites on the intracellular C-terminal
domain, S370, S374, S377, S379, and S382 found in various
combinations that are involved in to β-arrestin binding and
internalization (Neuschäfer-Rube et al. 2004). There are addi-
tional potential serine phosphorylation sites predicted for S11,
S13, S19 on the extracellular N-terminal, S222, S252, S259
on a cytoplasmic loop, and S371, S437, S440, S442, S443,
S448, S460, and S480 on the C-terminal domain (http://www.
cbs.dtu.dk/services/NetPhos/, Blom et al. 1999). Additional
potential GRK phosphorylation sites are predicted for S366,
S442, S443, S450, and S484 with high probability (http://gps.
biocuckoo.cn/ , Xue et a l . 2011) . None of these
phosphorylations have been confirmed experimentally.

Expression and Characterization

The EP4 receptor is widely expressed with the highest
amounts in smooth muscle, and the immune system (http://
www.proteinatlas.org, Uhlén et al. (2015)). Ligand binding
properties for recombinant human EP4 have been character-
ized in HEK293 cell lines (Abramovitz et al. 2000; Sharif
et al. 2003) (Table 4). Ligand efficacies for human recombi-
nant EP4 were determined in CHO cells by the increase in
intracellular cAMP obtained by enzyme immunoassay (Sharif
et al. 2003) and response to stimulated short circuit current
(SSC) and slope conductance (SG) in tissue from human du-
odenal biopsies (Larsen et al. 2005) (Table 5). The data show
that the EP4 receptor exhibits the tightest PGE2 binding of all
EP receptors, however, the average efficacy is significantly
less than observed for other EP receptors. The most selective
agonists for EP4 are ONO-AE1-329 and tetrazolo PGE1,
(Sugimoto and Narumiya 2007; Jones et al. 2009) and the
most selective antagonists are ONO-AE3-208 and CJ-
042794 (Sugimoto and Narumiya 2007; Jones et al. 2009)
(Table 2).

Mechanism of Cell Activation

Similar to EP2, signal transduction for the EP4 receptor has
been shown to occur through both G-protein-dependent
(Table 3) and G-protein-independent pathways. G protein-
dependent coupling to Gαs (Nishigaki et al. 1996), leads to
activation of adenylate cyclase and the production of cAMP
which in turn activates PKA (Regan 2003) that phosphory-
lates downstream proteins, including the cAMP response ele-
ment binding protein (CREBP) (Takayama et al. 2002). EP4
has also been shown to switch from signaling through Gαs to
signaling through a cAMP independent and PI3K- dependent
mechanism, that leads to phosphorylation of extracellular
signal-related kinases (ERKs), which in turn leads to the ex-
pression of early growth response factor-1 (EGR-1) that is not
observed in EP2 signaling (Fujino et al. 2003; Fujino and
Regan 2006). PI3K-dependent signaling may also result in

phosphorylation of PKB which in turn regulates cell survival
through protection from apoptotic stimuli (George et al.
2007). Similarly, EP4 stimulation also activates the T-cell-
factor (Tcf)/lymphoid enhancer factor (Lef), known to be ac-
tivated by the Gαq-coupled FPB prostanoid receptor through a
PI3K-dependent signaling pathway (Fujino et al. 2002). EP4
signaling can also occur through coupling with Gαi/o, resulting
reduction of intracellular cAMP via inhibition of adenylate
cyclase. Leduc et al. (2009) examined the differential
coupling of EP4 to various G-proteins and found that
selectivity was dependent on the identity of the agonist
binding to the receptor. They also found that PGE2 was
the most selective for Gαs signaling whereas PGF2 and
PGE1-OH were more selective for Gαi/o signaling and
β-arrestin binding.

Regulation

As observed for EP2, Nishigaki et al. (1996) found that EP4 is
desensitized through agonist-induced GRK-mediated phos-
phorylation. However, the two receptors differ in sensitivity
to agonist where EP4 is more rapidly desensitized than EP2
and is much less responsive to PGE2 metabolic products than
EP2, suggesting that EP4 is involved in a short-term and rapid
response while EP2 is involved in a more long-lasting re-
sponse. Similar to EP2, desensitization of EP4 leads to re-
placement of Gαs with a β-arrestin isoform that leads to inter-
nalization into punctate vesicles. However, the phosphoryla-
tion state of EP4 is not as critical to the internalization as it is
for EP2 (Penn et al. 2001). In fact, Desai et al. (2000) have
shown that mutant EP4 receptors with Ala substituted for each
and every Ser and Thr in the C-terminal domain internalized
to the same extent as wild type EP4 (Desai et al. 2000) indi-
cating that phosphorylation is unnecessary for internalization.
However the same study showed that EP4 mutants with C-
terminal tails truncated before residue 383 had a reduced in-
ternalization and those truncated at the proximal end of the C-
terminus (residue 350) did not internalize at all, indicating that
the presence of the C-terminal tail is necessary for
internalization.

Regulation of EP4 on the transcriptional level has also been
observed in mouse macrophages. As noted above for EP2,
LPS treatment of cultured macrophages results in changes in
EP receptor mRNA expression. However, the mechanisms
and results for EP4 are quite different. In contrast to the
LPS-induced upregulation of EP2, Ikegami et al. (2001) report
that EP4 is down-regulated within 3 hours of treatment and the
EP4 mRNA expression levels drop to less than 10% of the
control levels. The mechanism apparently involves the LPS-
induced over-production of PGE2 which in turn mediates EP4
stimulated cAMP production that results in a reduction of
gene expression. The likely regulatory mechanism under in-
flammatory conditions would involve an interaction of
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cAMP-induced CREBP and NFκB transcription factors with
the EP4 gene.

In human monocytes the transcriptional regulation is quite
different (Kashmiry et al. 2018). Here, LPS treatment alone
results in a nearly three-fold increase in EP4 mRNA rather
than the decrease observed in the mouse study and in the
presence of added PGE2 the increase is significantly lower at
25% above control.

In human glioblastomas EP4 transcription is regulated in
part by the specificity protein 1 (Sp-1) transcription factor
(Kambe et al. 2008). Phosphorylation of Sp-1 reduces its abil-
ity to bind to DNA which in turn leads to the suppression of
EP4 transcription. Phosphorylation of Sp-1 is known to be
facilitated by several kinases including ERK. The fact that
ERKs are known to be activated by EP4 signaling (Fujino
et al. 2003) suggests that this mechanism may represent a
negative feedback loop.

IP receptor

Introduction

The human prostacyclin (PGI2) receptor hIP (PTGIR,
UniprotKB-P43119) is translated as a 386 amino acid poly-
peptide with a calculated molecular weight of 41.0 kDa. No
X-ray structures have been reported. There are four other re-
ported isoforms of which three represent structures utilizing
fewer than the total exons found in the canonical sequence and
one with an additional exon not found in the canonical form.
All are predicted to have a least one transmembrane helix and
the biological functions are currently unknown. There are 18
reported SNP variants, eight of which exhibit various degrees
of biological dysfunction and represent less than 2% (n =
1,761) of the hIP receptors examined (Stitham et al. 2002;
Stitham et al. 2011). One N-linked extracellular glycosylation
is predicted with high confidence for N7 and with lower con-
fidence for N78 and N203 (http://www.cbs.dtu.dk/services/
NetNGlyc/, Blom et al. 2004) and one high confidence
cytosolic O-linked predicted for S337 (http://www.cbs.dtu.
dk/services/NetOGlyc/, Steentoft et al. 2013). Only
glycosylation at N7 and N78 have been experimentally
confirmed (Zhang et al. 2001). Although specific glycosyla-
tion of other residues has not been confirmed experimentally,
glycosylation at multiple unknown sites have been reported
(Miggin et al. 2002; Donnellan and Kinsella 2009) and gly-
cosylation of the C-terminal region, possibly S337, may be
involved in membrane localization (Smyth et al. 1998). One
prenylation site is predicted by PrePS ((http://mendel.imp.ac.
at/sat/PrePS/index.html, Maurer-Stroh et al. 2007) for C383,
and confirmed experimentally (Miggin et al. 2002).
Palmitoylation was originally reported for C308 and C311,
however, the publication has since been retracted (Miggin

et al. 2003). Predictions for palmitoylation with CSS-Palm
(http://csspalm.biocuckoo.org/, Zhou et al. 2006) reveal high
confidence predictions at C5, C308, C309, and C-311 with the
highest for C5. However, C5-C165 and C92-C170 disulfides
have been confirmed experimentally, potentially ruling out a
C5 palmitoylation (Giguère et al. 2004). Further, it has been
shown that formation of these disulfides is required for expres-
sion and may also be involved in dimerization and oligomer-
ization of the receptor. There are potential serine phosphory-
lation sites predicted for S14 on the extracellular N-terminal,
S268 and S269 on an extracellular loop, T230 on a cytoplas-
mic loop, and S328, S337, and S374 on the C-terminal do-
main (http://www.cbs.dtu.dk/services/NetPhos/, Blom et al.
1999). Only phosphorylation at S328 has been confirmed
experimentally (Smyth et al. 1998) and shown to be accom-
plished by PKC (Smyth et al. 1998; Smyth et al. 1996). There
are 11 potential high probability GRK phosphorylation sites
predicted but as yet not experimentally confirmed (http://gps.
biocuckoo.cn/, Xue et al. 2011).

Expression and Characterization

The human IP receptor (hIP) is widely expressed with the
highest amounts in lung, muscle, female tissues, and the im-
mune system (http://www.proteinatlas.org, Uhlén et al.
(2015)). Ligand binding properties for hIP have been charac-
terized in platelet membranes by displacement of [3H]iloprost,
an IP-specific agonist (Jones et al. 2009; Siegl et al. 1979; Tsai
et al. 1989; Crider et al. 2001) (Tables 2 and 6) instead of PGI2
due to the short half-life of the latter. Ligand efficacies for hIP
have been determined in platelet membranes (Fitscha et al.
1987; Stürzebecher and Losert 1987; Kobzar et al. 2001),
vascular smooth muscle (Angulo et al. 2002; Hadházy et al.
1986; Baxter et al. 1995, lymphocytes (Kilfeather et al. 1984),
and recombinant human IP expressed in COS-1 (Crider et al.
2001) and MEG-01 (Tunaru et al. 2016) cells (Table 6).
Although other PG receptors are present in the human tissue
samples, the EC50 values clearly indicate that any cross-
reactivity of PGI2 with the other receptors would result in
negligible response. The most selective agonists for IP are
cicaprost, carbacyclin, and iloprost, the former two being
slightly more potent than the latter (Jones et al. 2009)
(Table 2). Interestingly, the eicosanoid 19(S)-hydroxy-
eicosatetraenoic acid (19(S)-HETE) also serves as a moder-
ately potent hIP agonist and stimulates the production of
cAMP (Tunaru et al. 2016). The most selective antagonists
are RO-1138452 and RO-3244794 (Jones et al. 2009)
(Table 2).

hIP receptors have the ability to form homodimers,
homooligomers and heterodimers with other GPCRs.
Homodimerization and oligomerization occurs through disul-
fide linkages, specifically C5-C165 and C92-C170, and
monomers, dimers and oligomers are expressed on the cell
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surface in well-defined ratios (Giguère et al. 2004).
Furthermore, the polymerization process occurs intracellularly
and is independent of agonist stimulation. Whether polymer-
ization is a requirement for initial cell surface expression is
currently unknown. Heterodimers of hIP and the human
thromboxane receptor hTPα have been reported by Wilson
et al. (2004). Expression of both receptors in HEK293 and
human aortic smooth muscle cells (hAMSC) were demon-
strated and when activated with a TPα agonist, rather than
the expected increase in IP3 and intracellular [Ca2+] normally
associated with TPα stimulation, an intracellular cAMP in-
crease is observed as would be expected for the IP receptor.
Clearly the G-protein specificity of the heterodimer is defined
by the IP receptor subunit.

Mechanism of Cell Activation

Similar to EP2 and EP4 receptors, signal transduction for the
hIP receptor occurs through both Gαs and Gαq protein path-
ways (Table 3). Iloprost initiates cAMP production (EC50 =
0.1 ± 0.03 nM) and is favored over IP3 production (EC50 =
43.1 ± 10 nM) in HEK293 cells expressing recombinant hIP,

resulting in the activation of PKA and PKC and their associ-
ated pathways respectively (Smyth et al. 1996). Further, basal
receptor phosphorylation rapidly occurs and does so only
when agonist concentrations exceeds 1 nM, well above that
required for cAMP production, indicating that the PKC and
not the PKA pathway is responsible. Phosphorylation assays
in the presence of PKA- and PKC-specific inhibitors confirm
these observations. Although not specifically proven, these
results strongly suggest that phosphorylation alters the G-
protein specificities and hence the preferred pathway (Smyth
et al. 1998).

hIP signal transduction in preadipocytes is somewhat dif-
ferent (Vassaux et al. 1992). Both systems produce cAMP at
low concentrations of IP agonist, carbaprostacyclin (cPGI2) in
the case preadipocytes. However, in preadipocytes, the cPGI2
also produces a transient increase in intracellular [Ca2+] that
does not depend on cAMP production, extracellular [Ca2+] or
calcium channel blockers, and is independent of IP3 produc-
tion. The pathway for the increase in [Ca2+] is not currently
known, but the latter observations suggest that the mechanism
for this increase differs from the IP3-independent pathway
suggested for DP1.

Table 6 Binding affinity (Ki) and signaling efficiency (EC50) of eicosanoids on the recombinant IP receptors expressed in cell cultures and in human
platelets, lymphocytes and smooth muscle

Ki (nM)

Receptor/cell line 19S-HETE PGI2 analog PGE2 PGF2a PGD2 Reference

hIP/plateletsa - 1600 > 1 x 107 > 1 x 107 > 1 x 107 Siegel et al. 1979

hIP/plateletsa - 470 > 1 x 105 - 6,300 Tsai et al. 1989

hIP/plateletsb - 22 - - - Tsai et al. 1989

hIP/platelet membrane - 1,398 ± 724 53,708 ± 2,136 50,000 >140,000 Crider et al. 2001

hIP/MEG-01a 660 - - - - Tunaru et al. 2016

EC50 (nM)

Receptor/cell line 19S-HETE PGI2 analog PGE2 PGF2a PGD2 Reference

hIP/human plateletsc - 5.4-11.6 - - - Fitscha et al. 1987

hIP/human plateletsc - 0.81 - - - Stürzebecher et al. 1987

hIP/human plateletsc - 1.9 ± 0.2 - - - Kobzar et al. 2001

hIP/smooth muscled - 32 - - - Angulo et al. 2002

hIP/smooth musclee - 15 - - - Hadházy et al. 1986

hIP/smooth musclef - 12.7 - - - Baxter et al. 1995

hIP/lymphocytesf - 6.3 - - - Kilfeather et al. 1984

hIP/COS-1g - 40 - - - Tunaru et al. 2016

hIP/MEG-01g,h 567 - - - - Tunaru et al. 2016

Abbreviations: h, human; m. mouse; MEG-01, Human megakaryoblastic leukaemia cells; COS-1, African green monkey kidney fibroblast-like cells.
The Ki values were determined from IP specific agonist [3 H]iloprost displacement assays, as PGI2 itself has a very short half-life. The EC50 were
determined from intracellular changes in cAMP concentrations or a physical change. a) Ki calculated from reported IC50 of agonist vs. [

3 H]iloprost using
Cheng-Prusoff equation (Suganami et al. 2016); c) Ki corrected for PGI2 hydrolysis, value was 470 nM without correction; c) EC50 determined from
ADP-induced platelet aggregation; d) EC50 determined from arterial relaxation; e) EC50 determined from femoral artery relaxation; f) EC50 determined
from uterine artery relaxation g) EC50 determined from increase in cAMP; h) EC50 estimated from fluorescence of cAMP probe vs. [PGI2] for
recombinant hIP expressed in MEG-01 cells.
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Regulation

Zhang et al. (2001) show that the regulation of expressed hIP
is modulated by the glycosylation state of the hIP receptor.
They found that the extent of glycosylation at both N7 and
N78 and in particular the glycosylation of N78 is paramount to
the efficient binding of receptor agonist. Lack of glycosylation
at N7 itself has little effect (≤ 10%) on iloprost binding.
However, lack of glycosylation at N78 increases the iloprost
Kd seven-fold and lack of glycosylation at both N7 and N78
increases the Kd to undetectable levels, effectively inhibiting
binding. Glycosylation also has an effect on signaling effi-
ciency. Similar to the pattern observed for the binding effi-
ciency, lack of glycosylation at N7 reduces cAMP production
efficiency by increasing the EC50 value nearly 10-fold, lack of
glycosylation at N78 increases EC50 over a 1000 fold, and
lack of glycosylation at both sites eliminates cAMP signaling
altogether. Interestingly, although the wild type receptor ex-
hibits activation of phospholipase C (PLC) and IP3 produc-
tion, deglycosylation at either N7 or N78 eliminates this signal
pathway.

The isoprenylation state of C383 also has a direct effect on
hIP signaling (Miggin et al. 2002). Although the
isoprenylation state does not alter iloprost binding,
isoprenylation is required for efficient binding of both Gαs

and Gαq proteins and for this reason is required for competent
signaling through both the cAMP and IP3 pathways.

Regulation of hIP also occurs through independent path-
ways that are agonist stimulated and typically involve phos-
phorylation of the C-terminal as well. As noted above, elevat-
ed concentrations of the hIP agonist iloprost stimulate the
activation of PKC, resulting in the phosphorylation of the
hIP receptor and the production of IP3 (Smyth et al. 1996).
Later work reveals that the PKC release results in the phos-
phorylation of S328 and that this event reduces the production
of cAMP to effectively basal levels while increasing the pro-
duction of IP3 2-3 fold (Smyth et al. 1998). These results
strongly suggest that this phosphorylation alters the G-
protein affinity from Gαs to another G-protein, presumably
Gαq. It should be noted that phosphorylation at S328 does
not account for all agonist-induced receptor phosphorylation
and the function of these phosphorylation sites is currently
unknown.

G-protein preferences also depend on interactions with oth-
er regions of the receptor. Chimeric constructs of IP and TP
receptors reveal that the 116-134 intracellular loop of the IP
(intracellular loop 2) receptor is necessary for Gαs-mediated
cAMP production and that deletion of the YLYAQ sequence
from this region not only drastically reduces cAMP produc-
tion, but also enhances the intracellular [Ca2+] through a Gαq

signaling pathway (Chakraborty et al. 2013). Further, the in-
tracellular loop 209-235 (intracellular loop 3) is involved in
both Gαs and Gαq binding.

Sequestration of hIP through internalization is another
known pathway for regulation (Giovanazzi et al. 1997).
Although internalization of other PG receptors is mediated
by GRK-mediated phosphorylation and β-arrestin binding,
hIP receptor internalization has been shown to be independent
of GRK-2, -3, -5, -6 and arrestin-2 (Smyth et al. 2000).
Further, iloprost-induced internalization requires agonist con-
centrations (EC50 = 27.6 ± 5.7 nM) similar to that required for
PKC-induced phosphorylation of S328 but is independent of
this phosphorylation event. Sequestration of hIP proceeds
through a dynamin-dependent clathrin-coated vesicular endo-
cytotic pathway and a dynamin-independent pathway (Smyth
et al. 2000). One mechanism explaining the dynamin-
dependent hIP internalization pathway involves the Rab5a
protein, a Ras-like GTPase (O'Keeffe et al. 2008). Upon bind-
ing GTP, the now active Rab5a binds to agonist (circaprost)-
bound hIP and in concert with dynamin, internalizes the
Rab5a-receptor complex into punctate endocytotic vesicles
until 30-40% of hIP is internalized. The internalization is
clearly directed by Rab5a, as over co-expression of Rab5a
with hIP significantly increases internalization. Rab5a is re-
leased upon hydrolysis of GTP and the hIP receptor remains
internalized for several hours post-stimulation. By 4 hours
after stimulation, 50% of the sequestered receptor returns to
the surface. Upon prolonged stimulation (4-8 h), 50% of the
internalized hIP fails to return to the surface and thus likely
undergoes degradation through trafficking to lysosomes.
Interestingly, the C-terminal tail, directly involved in other
PG receptor internalizations, is not involved in facilitating
Rab5a-mediated endocytosis itself, but instead appeared to
play a role in hIP sorting following the Rab5a-mediated en-
docytosis. Additional mechanisms have been presented show-
ing the involvement of the related Rab11a and Rab4a proteins
(Wikström et al. 2008). hIP has been shown to localize to both
Rab11a- and Rab4a-positive vesicles in response to cicaprost
binding. As observed for Rab5a, Rab11a also interacts direct-
ly with hIP, however, the C-terminal tail of hIP is required for
interaction with Rab11a, unlike the Rab5a interaction. On the
other hand, Rab4a does not directly interact with hIP, nor does
it direct hIP to Rab4a positive vesicles.

Although the precise pathway for sequestration is currently
unknown, it has been shown that glycosylation of the extra-
cellular N7 and not the extracellular N78 is required for inter-
nalization (Zhang et al. 2001). Internalization is also affected
by the prenylation state of C383. Farsenyl or geranylgeranyl
prenylation of C383 is also required for efficient internaliza-
tion of the IP receptor, possibly by allowing the insertion of
the prenyl group into the membrane thus forming a fourth
cytoplasmic loop that aids internalization (Miggin et al. 2002).

As noted above, hIP undergoes internalization in response
to agonist stimulation and a portion of the internalized recep-
tors are later recycled back to the membrane while some are
transported to lysosomes for degradation. As reported for
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other proteins, including other GPCR receptors (Hanyaloglu
and von Zastrow 2008), targeting to lysozomes requires prior
polyubiquitination of the protein. Polyubiquitinated hIP has
been observed in HEK cells and is required for transport to
lysozomes, but it is not known if polyubiquitination occurs
prior to internalization or post-internalization (Donnellan and
Kinsella 2009) [99].

Regulation at the transcriptional level has also been report-
ed. Turner and Kinsella (2010) report that estrogen signifi-
cantly increases the transcription of hIP in primary aortic
smooth muscle cells and that the increase is modulated
through the binding of the ERα nuclear estrogen receptor to
the hIP promotor region on the DNA itself. The ERβ nuclear
receptor is apparently not involved. The authors postulate that
this interaction in part explains the vasodilatory effect of es-
trogen as well as its anti-atherogenic effects (see also Tostes
et al. 2003). Eivers and Kinsella (2016) report that androgens
also confer cardioprotective effects through stimulation of hIP
transcription in human erythroleukemia (HEL) cells and hu-
man endothelial cells (EA.hy926). Utilizing dihydrotestoster-
one (DHT) as stimulus, hIP mRNA levels were significantly
increased, 3.9-fold in the case of HEL cells. Further, in com-
bination with low serum cholesterol, DHT enhances the bind-
ing of the sterol regulatory element binding protein (SREBP1)
to the hIP promoter thus increasing transcription. The mecha-
nism bywhich low cholesterol also helps facilitate this process
is thoroughly discussed by Heemers et al. (2006).

TP receptor

Introduction

The human thromboxane A2 (TXA2) receptor is expressed as
two isoforms referred to as hTRXα and hTRXβ. hTRXα
(TBXA2R, UniprotKB-P21731) is translated as a 343 amino
acid polypeptide with a calculated molecular weight of
37.5 kDa whereas hTRXβ (UniprotKB-P21731-2) is translat-
ed as a 407 amino acid polypeptide with a calculated molec-
ular weight of 44.2 kDa (Hirata et al. 1996). The two isoforms
are identical for the first 328 amino acids and differ in their C-
terminal tails due to differential splicing of exon 3, leading to
vastly different intracellular signaling. There are numerous
coding SNP variants reported (R60L, P28S, C68S, V80E,
E94V, A160T, V176E, V217I, D238G, V241G, S283C, and
D304N) of which several result in receptor dysfunction. R60L
results in a receptor with a defective response to its natural
agonist TXA2 (Hirata et al. 1994a). R60L, V241G, and
D304 N result in susceptibility to platelet-type bleeding dis-
order 13 (https://www.ncbi.nlm.nih.gov/clinvar, Landrum
et al. 2016). S283C and D238G lead to impaired platelet
aggregation (https://www.ncbi.nlm.nih.gov/clinvar, Landrum
et al. 2016). Both receptors are seven helix transmembrane

proteins. There are no reported X-ray structures and one re-
ported structural model for the alpha isomer (PDB reference
1LBN). Two N-linked extracellular glycosylations are pre-
dicted with high confidence for N4 and N16 (http://www.
cbs.dtu.dk/services/NetNGlyc/, Blom et al. 2004) and
confirmed definitively for hTRXα and potentially for
hTRXβ by Walsh et al. (1998). Confirmation for hTRXα
was obtained through examination of N to Q site directed
mutagenesis of recombinant receptor. Treatment of HEK293
cells expressing individual isomers with tunicamycin, a potent
inhibitor of N-glycosylation, reduces the expression of both
isomers indicating that glycosylation is not only present on
both isomers but is also required for proper folding in the
ER. Further, treatment of the same cell lines individually with
endo-H, an enzyme that cleaves off the glycol portion of N-
linked sugars, reduces the ligand binding efficiencies by ap-
proximately 50%, confirming the presence of N-linked glyco-
sylation on both isoforms and indicating that the glycosylation
is involved in ligand binding. There are also numerous high
confidence cytosolic O-linked sites predicted (http://www.
cbs.dtu.dk/services/NetOGlyc/, Steentoft et al. 2013).
Specific sites for these glycosylations have not been
expe r imen t a l l y con f i rmed . The r e i s po t en t i a l
phosphorylation predicted for both isomers, T286 on the
second extracellular loop, S139 and S239 on cytoplasmic
loops, and S324 on the C-terminal domain. Both isomers have
additional and different phosphorylation sites predicted for the
C-terminal tail (hTRXα: S329 and S331; hTRXβ: S330,
S355, S360 and S404) (http://www.cbs.dtu.dk/services/
NetPhos/, Blom et al. 1999). Although in vivo and in vitro
phosphorylation of both receptors has been confirmed
(Kinsella et al. 1994; Habib et al. 1999), not all potential sites
have been confirmed experimentally. Deletion and substitu-
tion mutants have confirmed hTRXα phosphorylation at
T337 (Kelley-Hickie and Kinsella 2004) and S329 (Walsh
et al. 2000a) and hTRXβ phosphorylation at S145, S239,
S357 (Kelley-Hickie and Kinsella 2006), and T399 (Kelley-
Hickie and Kinsella 2004). Numerous additional GRK phos-
phorylations are also predicted but not experimentally con-
firmed (http://gps.biocuckoo.cn/, Xue et al. 2011).

Expression and Characterization

The human TP receptor (hTP) is widely expressed with the
highest amounts in the endocrine system, female tissues, and
the immune system (http://www.proteinatlas.org, Uhlén et al.
(2015)). Most tissues express both isoforms with hTRXα
predominating over hTRXβ. Levels of hTRXα mRNA ex-
pression are relatively constant throughout most tissue types
while mRNA levels of hTRXβ vary significantly (Miggin and
Kinsella 1998).

Many ligand binding and efficacy studies do not specify
which particular isoform was under study, albeit hTRXα is
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the likely candidate. Further, tissue studies of TP receptors
would be sampling both isoforms simultaneously. For such
studies hTP is used to designate either or both human iso-
forms. Fortunately, the ligand binding properties of the two
isoforms were found to be identical (Hirata et al. 1996) and
thus differentiation between isoforms is unnecessary for li-
gand binding studies (Table 7). Efficacy studies are a bit more
complex, as these receptors can couple to an array of G-
proteins and in a isoform-dependent manner for which the
cellular response may differ. Ligand binding properties for
hTP have been characterized with recombinant receptor in
HEK293 (Abramovitz et al. 2000; Capra et al. 2013) and
COS-m6 (Hirata et al. 1996) cell lines as well as in human
platelet membranes (Modesti et al. 1989; Miki et al. 1992;
Armstrong et al. 1993; Dorn 1989) by displacement of syn-
thetic radiolabeled agonists (Table 7). Ligand binding to re-
combinant murine TP expressed in CHO cells (Sawyer et al.
2002; Kiriyama et al. 1997) has also been examined. Ligand
efficacies for hTP have been determined using recombinant
receptor in COS-m6 (Hirata et al. 1996), CHO (Hirata et al.
1996, 1994b), and HEK293 cell lines (Capra et al. 2013) as
well as in human hand vein (Arner et al. 1991), lung
(McKenniff et al. 1988) tissues and platelets (Dorn 1989,
1991; Mayeux et al. 1988; Tymkewycz et al. 1991;
Ushikubi et al. 1989b), all with synthetic agonists (Table 7).
TXA2 cannot be used as an agonist itself, as it is an unstable
AA metabolite with a half-life of about 30 seconds (Ricciotti
and FitzGerald 2011). PGH2 can also bind and activate TP
receptors (Gluais et al. 2005), but its short in vitro half-life of
5 min (Yu et al. 2011) severely limits its usefulness in such
studies. Conversion of PGH2 to multiple prostaglandins prod-
ucts in vivo shortens the half-life even further. The most com-
monly used selective TP agonists are U-46619, I-BOP, and
STA2 (Abramovitz et al. 2000; Hirata et al. 1996) and the most
commonly used selective TP antgonists are SQ29548 and
S-145 (Wright et al. 1998; Ushikubi et al. 1989b). Ah-
23848, Ramatroban, and Vaproprost have also been used
(Jones et al. 2009) (Table 2).

Mechanism of Cell Activation

The TP receptor is rather promiscuous in its G-protein cou-
pling and thus the ultimate effect of activating the TP receptor
is dependent on the availability of particular G-proteins which
in turn is cell type and tissue dependent (Table 3). Early work
characterized hTP receptor in platelets as coupling with Gαq

(Shenker et al. 1991), known to stimulate IP3 and diacylglyc-
erol (DAG) production via PLC-β and a subsequent increase
in intracellular [Ca2+] and PKC. Later work with recombinant
proteins expressed in HEK293 cells reveals that two specific
members of the Gαq family, Gα11 and Gα16, couple to hTP
(Kinsella et al. 1997; Walsh et al. 2000b). Although both hTP
isoforms were shown to couple through the Gαq family, only

hTRXβ also coupled to Gαi, which leads to a decrease in
cAMP production by inhibiting adenylate cyclase, whilst
hTRXα appears to also couple with Gαs, as stimulation with
the I-BOP agonist leads to an increase in cAMP production
(Hirata et al. 1996). The interaction between hTP and the
specific G-protein appears to be regulated by different do-
mains of the receptor where residue R60 of hTP is involved
in the binding of Gαq and Gαs, but not Gαi (Hirata et al. 1996;
Hirata et al. 1994b). Both hTRXα and hTRXβ couple to
Gα12, and quite likely to Gα13 as well (Offermanns et al.
1994; Becker et al. 1999), and upon stimulation, intracellular
[Ca2+] increases in an IP3/DAG independent manner (Walsh
et al. 2000b). Apparently, Gα12 couples both hTP isoforms to
verapamil-sensitive, L-type Ca2+ channels. The hTRXα re-
ceptor couples to Gα13, leading to an increase in Na+/H+ ex-
change. Agonist binding to the alpha isoform is enhanced
when coupled to Gα13 (Becker et al. 1999). Activation of
Gα12 or Gα13 also leads to activation of guanine nucleotide
exchange factor (GEF) for Rho, p115RhoGEF, that initiates
Rho-mediated signaling (Kozasa et al. 1998). Both hTP iso-
forms also bind to the high molecular weight (70 kDa) Gh

protein (Vezza et al. 1999). Upon stimulation, the hTRXα-
Gh complex enhances IP3/DAG production via activation of
PLC-d1 and ultimately an increase in intracellular [Ca2+] and
active PKC (Feng et al. 1996). The hTRXβ-Gαh complex
does not activate IP3/DAG production and its biological func-
tion has yet to be determined. Interestingly, Gαh also functions
as a tissue transglutaminase that is inhibited by GTP binding,
suggesting that the β-isoform may be involved in regulation
of the transglutaminase function.

Regulation

Regulation of expressed hTP is modulated by the glycosyla-
tion state of the receptor by multiple mechanisms. Walsh et al.
(1998) reported that reduction of N-glycosylation of hTRXα
through the use of N to Qmutants reveals that loss of N4, N16
or both glycosylations results in a reduction of agonist binding
by 53%, 42% and 92% respectively. The reductions are
caused by a reduction in maximal binding (Bmax) and not
by changes in affinity. The reduction in Bmax is not a function
of membrane expression, as the expression of mutants lacking
either N4 or N16 glycosylation are the same as wild type. In
addition, the membrane expression of the double mutant is
reduced by 45% compared to wild type. As would be expect-
ed, N-glycosylation also affects the second messenger signal-
ing. Intracellular [Ca2+] mobilization by hTRXα for which
glycosylation is removed from N4, N16 or both showed re-
ductions in [Ca2+] of 22%, 11%, and 58% respectively, sig-
nificantly less than the reduction in ligand binding.
Intracellular cAMP production is likewise reduced in the ab-
sence of glycosylation at N4, N16 or both where reductions of
12%, 25%, and 58% respectively were observed. Similar
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results would be expected for hTRXβ, with the exception of
cAMP production, as the structures are identical with the ex-
ception of the cytosolic C-terminal tail. This expectation is
supported by the observation by Walsh et al. (1998) that
tunicamycin, a potent inhibitor of N-linked glycosylation,
treatment of HEK293 cell lines individually expressing re-
combinant hTRXα and hTRXβ reduces Ca2+ mobilization
by 84% and 88% respectively. The larger reduction in Ca2+

mobilization for hTRXα in this experiment compared to the
double mutant is likely due to retention of residual signal
transducing activity by the double mutant.

Regulation through desensitization occurs through both ho-
mologous (receptor specific) and heterologous (highly specif-
ic for other receptors) modalities, each isoform taking a dif-
ferent pathway (Parent et al. 1999; Murray et al. 1990). Habib
et al. (1997) examined the agonist-dependent phosphorylation

Table 7 Binding affinity (Ki) and signaling efficiency (EC50) of prostanoids and agonists on the recombinant TP receptors expressed in cell cultures
and in human platelets, lung, and vascular smooth muscle

Ki (nM)

Receptor U46619 I-BOP STA2 PGE2 PGF2a Reference

hTP/HEK293a 35 ± 5 - - 29,000 ± 6,702 8,700 ± 670 Abramovitz et al. 2000

hTP/HEK293b 100 16 - 2000c 5000c Capra et al. 2013

hTP/COS-m6c - 25 - - - Hirata et al. 1996

mTP/CHOd 67 0.56 14 - - Sawyer et al. 2002, Kiriyama et al. 1997

hTP/plateletse 16 ± 5 - - - Modesti et al. 1989

hTP/plateletse 39 ± 4.7 - - - - Miki et al. 1992

hTP/plateletsf 221 ± 21 - 87 ± 19 - - Armstrong et al. 1993

hTP/plateletsg 8.5 ± 2.5 0.21 ± 0.03 - - - Dorn 1989

hTP/vascular smooth muscleg 88 ± 10 0.18 ± 0.02 - - - Dorn 1991

hTP/purified in Tris/asolectine 19,900 - 870 - - Ushikubi et al. 1989a

EC50 (nM)

Receptor STA2 I-BOP U46619 TXA2 PGH2 Reference

hTPα/COS-m6h 2 - - - - Hirata et al. 1996

hTPβ/COS-m6h 2 - - - - Hirata et al. 1996

hTPα/CHOi - 17 - - - Hirata et al. 1996

hTPβ/CHOi - NA - - - Hirata et al. 1996

hTP/CHOh 4 - - - - Hirata et al. 1994b

hTP/HEK293h - 25 99 - - Capra et al. 2013

hTP/hand veinj - - 40 - - Arner et al. 1991

hTP/lung parenchymalk - - 32 - - McKenniff et al. 1988

hTP/bronchiolar ringl - - 16 - - McKenniff et al. 1988

hTP/plateletsm - 0.209 ± 0.024 - - - Dorn 1989

hTP/plateletsn - - - 163 ± 21 45 ± 2 Mayeux et al. 1988

hTP/plateletsn - - 4.8 ± 0.2 - - Tymkewycz et al. 1991

hTP/plateletso 90 - - - - Ushikubi et al. 1989b

Abbreviations: h, human; HEK293, human embryonic kidney cells; COS M-6, Green monkey kidney cells; CHO. Chinese hamster ovary cells. The Ki

values were determined from [3H]agonist displacement assays. The EC50 determined from intracellular changes in IP3, cAMP, [Ca2+ ] or the indicated
physiological changes. NA= no activity. a) Ki determined from the displacement of [3 H]SQ29548; b) IC50 estimated from a graph of agonist vs.
[3 H]SQ29548 and the Ki value calculated using Cheng-Prusoff equation (Suganami et al. 2016); c) IC50 estimated from graph of agonist vs. [3 H]S-145
and the Ki value calculated using Cheng-Prusoff equation; d) Ki determined from the displacement of [3 H]S-145; e) Ki determined from the displace-
ment of [3 H]U46619; f) Ki calculated from reported IC50 of agonist vs [3 H]SQ29548 using Cheng-Prusoff equation; g) Ki for high binding site
calculated from IC50 of agonist vs. [125 I]-BOP using Cheng-Prusoff equation; h) EC50 determined from IP3 generation; i) EC50 determined from
cAMP generation determined from titration curves; j) EC50 determined from % maximal contraction of vein ring segments; k) EC50 determined from
% maximal contraction of lung parenchymal strip; l) EC50 determined from % maximal contraction of bronchiolar ring segments; m) EC50 determined
from [Ca2+ ] increase; n) EC50 determined from initiation of platelet aggregation; o) EC50 determined from inhibition of PGI2 analog iloprost (3 nM)
induced cAMP increase.
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of both hTPα and hTPβ transfected into HEK293 cells. Using
the specific stable TP-specific agonist U46619 they found that
both isoforms are phosphorylated with similar time and dose
dependency and phosphorylation reduces both the production
of IP3 and the increase in intracellular [Ca

2+]. Current thought
is that the phosphorylation prevents proper docking of G-
proteins to the receptor, thus preventing or reducing signal
transmission. Further, their data suggest that the phosphoryla-
tion leading to desensitization is mediated primarily by ki-
nases other than PKA or PKC. However, they did report that
PKC and PKA ma rg i n a l l y i n f l u en ce r e c ep t o r
phosphorylation, but not at residues that influence
desensitization and suggest that phosphorylation by these
kinases may be involved in a heterologous desensitization.
In a related set of experiments, Zhou et al. (2001) have shown
that treatment of HEK293 cells expressing recombinant hTPα
with the TP-specific agonist I-BOP induces both receptor
phosphorylation and Ca2+ release in a time- and dose-
dependent manner. Following pretreatment (10 min) with I-
BOP, a second challenge with I-BOP abolishes Ca2+ induc-
tion, clearly demonstrating homologous desensitization.
Further, co-transfection of hTPα with GRK5 and GRK6 aug-
ments the I-BOP phosphorylation and inhibits the I-BOP-
induced Ca2+ release. Without pre-stimulation with I-BOP,
the GRKS do not facilitate receptor phosphorylation, showing
that GRKs must be recruited to the receptor by agonist-
induced phosphorylation before GRK-facilitated phosphory-
lation can occur. Wang et al. (1998) suggest a potential source
for the initial phosphorylation. They report that a cGMP-
dependent G kinase phosphorylates the TP receptor that in
turn inhibits IP3 release and increases intracellular [Ca2+];
specific α or β isoforms were not investigated. They also
show that PKA is not involved. Inactivation of hTPβ and
not hTPα is also facilitated by internalization. Parent et al.
(1999) report that following stimulation with U46619 of
hTPβ transfected in HEK293 cells, the receptor internalizes
to a to a plateau of about 40% in 2-3 hours whereas transfected
hTPα do not internalize after 3 hours of stimulation. Further
internalization requires the presence of GRK (GRK2 and po-
tentially either GRK 3, GRK5, or GRK6), arrestin-2 or -3 and
dynamin, suggesting the involvement of clatherin-coated pits
that lead to punctate vesicle formation. Overexpression of
arrestins significantly promotes internalization whereas GRK
co-expression only increases internalization slightly, suggest-
ing that arrestins are the limiting factor for internalization.
Utilizing hTPβ transfected into HEK293 cells, Kelly-Hickie
and Kinsella (2006) show that PKC does indeed phosphory-
late hTPβ and this leads to 20% partial and transient agonist-
induced impairment of activity. In addition, they observed that
GRK-mediated, agonist-induced phosphorylation leads to a
sustained desensitization. Utilizing specific serine to alanine
mutations in transfected hTPβ receptors they found that S145
on a cytoplasmic loop is the target of PKC phosphorylation

and that S239 and S357 on the C-terminal tail are the targets
for GRK phosphorylation. In a complementary study Kelley-
Hickie et al. (2007) demonstrated that like hTPβ, phosphory-
lation of S135 by PKC partially and transiently impairs hTPα
signaling. Unlike hTPβ, GRK phosphorylation of the C-
terminal tail is not involved in sustained desensitization.
Instead they found that both PKC and cGMP-dependent pro-
tein kinase (PKG) phosphorylated hTPα at T337 and S331
respectively, leading to profound desensitization of hTPα,
each kinase of which is stimulated through the TP signaling
pathway.

Heterologous desensitization occurs through both the de-
sensitization of the G-protein rather than the receptor itself and
through the action of other receptors. Examples of the former
have been reported by several groups. Both Gα12 an Gα13 are
known signal transducers for hTP. They have been shown to
be phosphorylated by PKC in response to increasing cAMP
levels created by other receptor signaling and that this phos-
phorylation results in the loss of hTP signaling (Manganello
et al. 1999; Offermanns et al. 1996). The phosphorylation
reduces the affinity of the α subunit for the βγ subunits and
thus prevents signaling of both receptor isoforms through the
affected G-protein (Kozasa and Gilman 1996). Murray et al.
(1990) have reported that stimulation of the hIP receptor with
receptor specific agonists results in a PKC-independent desen-
sitization of only one of the two isoforms hTP, the one with
strong binding to the antagonist GR3291 shown by others to
be the hTPα receptor (Habib et al. 1999). These results were
confirmed byWalsh et at (Walsh et al. 2000a) and they further
show that the desensitization of hTPα occurs through direct
PKA phosphorylation of S329 which is located on the C-
terminal domain of the hTPα receptor.

FP receptor

Introduction

The human prostaglandin F2α receptor (hFP, PTGFR,
UniprotKB-P43088) is expressed as a 395 amino acid tran-
script with a calculated molecular weight of 40.0 kDa. There
are six reported splice isoform variants (Liang et al. 2008a)
obtained from mRNA data that differ only after residue 266,
each of which are calculated to have only 6 transmembrane
helices rather than the seven found in the canonical isoform
(Cserzo et al. 2002). No X-ray structures are available.
Although none of these variants have been found naturally
occurring at the protein level to date, all have been transfected
into HEK293 cells and are translated into functional protein
(Liang et al. 2008a; Vielhauer et al. 2004) (see below). There
are two reported coding SNP variants (Q8L and L218S)
(https://www.ncbi.nlm.nih.gov/clinvar/, Landrum et al.
2016) neither of which has been reported to affect function.
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There are two N-linked glycoforms predicted for N4 and N19
but are not experimentally confirmed (http://www.cbs.dtu.dk/
services/NetNGlyc/, Blom et al. 2004). However, N-
glycosylation of the FP receptor in rats has been shown to
be necessary for biological activity (Kitanaka et al. 1994).
O-glycosylation is predicted for S234 (http://www.cbs.dtu.
dk/services/NetOGlyc/, Steentoft et al. 2013) and has not
been observed experimentally. There are potential
phosphorylation sites predicted for S29, S94, and S279 on
extracellular loops, S62 on a cytoplasmic loop, and S337
and S341 on the C-terminal intracellular domain (http://
www.cbs.dtu.dk/services/NetPhos/, Blom et al. 1999). Over
a dozen potential GRK phosphorylation sites are predicted for
the C-terminal domain as well (http://gps.biocuckoo.cn/, Xue
et al. 2011). None of these phosphorylation sites have been
confirmed experimentally.

Expression and Characterization

The human FP receptor (hFP) is widely expressed with the
highest amounts in smooth muscle, female tissues, urinary
bladder, and the gall bladder (http://www.proteinatlas.org,
Uhlén et al. (2015)). Only the cannonical isoform (hFP) has
thus far been shown to produce an intracellular signaling in
response to PGF2α or the analog and specific agonist
fluprostenol (see below). Agonist-induced signaling for re-
combinant variant 1 (isoform 2) and 4 (hFPs, isoform 5) have
been tested and results show that the latter does not produce an
intracellular signal in response to PGF2α (Liang et al. 2008a)
and the former does not even bind the agonist (Vielhauer et al.
2004). These findings make sense, as it has been shown that
the seventh transmembrane domain, missing in all variants, is
required for agonist binding (Neuschäfer-Rube et al. 2003).
Ligand binding properties for FP have been characterized for
human recombinant receptors, for recombinant mouse recep-
tor (mFP), as well as bovine receptor (bFP) in corpus luteum
tissue homogenates by displacement of radiolabeled agonists
(Table 8). Ligand efficacies for recombinant hFP, mFP and rat
receptor (rFP) as well as in rat hepatocytes and astrocytes have
been determined with a variety of agonists. FP receptors are
the least selective of the prostanoid receptors; reported EC50

values are given in Table 8. The most selective agonists are
Fluprostenol, Cloprostenol, and Latanoprost (Abramovitz
et al. 2000; Anderson et al. 1999; Sharif et al. 2000b) whereas
the most highly selective antagonists are OBE022, THG113
and AS604872 (Pohl et al. 2018; Peri et al. 2002; Jones et al.
2009) (Table 2).

Mechanism of Cell Activation

The hFP receptor couples primarily through Gaq leading to an
IP3/Ca

2+ signaling pathway (Table 3) (Breyer et al. 2001;
Abramovitz et al. 1994). Potential coupling to Gαs has also

been reported as an explanation for the increase in cAMP that
follows agonist-induced desensitization of FP in bovine iris
sphincter (Tachado et al. 1993). Coupling with other G-
proteins has not been reported. However, the rabbit kidney
recombinant FP receptor known to couple Gαi has a 98.3%
sequence homology to hFP, suggesting a potential for Gαi

coupling. Recombinant ovine FP (FPA) expressed in
HEK293 cells has been reported to couple through Gα12/13,
resulting in stimulation of the small G-protein Rho (Pierce
et al. 1999). However, the lower overall sequence homology
between ovine FPA and hFP (83.9%) make it less likely that
hFP might also couple with Gα12/13, especially since the C-
terminal domains that interact with the G-proteins have a low-
er sequence homology (78.7%).

As noted above, there are six truncated variants of FP, none
of which have been shown to exhibit biological signaling
activity when expressed alone. However, an hFP dimer with
variant 4 (hFP-altFP4) expressed in HEL293 cells has been
shown to be activated by the prostamide PGF2α analog
bimatoprost whereas hFP alone shows less than 20% the re-
sponse and altFP4 shows no response at all to this amide
analog (Liang et al. 2008a). Further, both the hFP monomer
and the heterodimer exhibit identical signaling responses to
PGF2α. Clearly, the addition of the altFP species extends the
agonist repertoire to amide analogs, lending a possible
biological function for these receptor isoforms. Although not
yet shown, heterodimer formation with the other altFP
isoforms may also modify the agonist specificity of the FP
receptor.

Regulation

Regulation of hFP has been shown to be modulated in several
different ways. Tachado et al. (1993) confirmed the coupling
of bovine FP to Gαq leading to the activation of PLC. They
also observed that PGF2α stimulation of FP leads to short-term
desensitization that results in an increase in cAMP and atten-
uation of PLC activity. Both events involve PKC, known to
activate adenylate cyclase. The authors suggest a possible ex-
planation involving FP switching from Gαq signaling to Gαs

signaling, the latter known to activate adenyl cyclase, thus
increasing basal cAMP. The suggestion is qualified by the
potential for a yet-to-be discovered FP receptor that normally
signals through Gαs. It is interesting to note that the potential
phosphorylation sites on the C-terminal domain are high prob-
ability sites for PKC phosphorylation and that phosphoryla-
tion of other receptors in this region is known to modify G-
protein binding specificity. Agonist-induced hFP desensitiza-
tion has also been observed for recombinant hFP expressed in
HEK293 and NIH3T3 cells (Kunapuli et al. 1997), but the
connection to either cAMP or PKC has not been explored.
FP regulation on the transcriptional level has also been report-
ed. Liang et al. (2008b) examined regulation of hFP
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expression in human uterine myocytes. Here they found that
hFP mRNA expression is negatively regulated by progester-
one and cAMP and upregulated by the inflammatory cyto-
kines IL-1β and TNFα that in turn activate the transcription
factor NFkB and PKC, the latter also shown to participate in
the upregulation of hFP. The results explain the decrease in
myometrial expression of hFP during pregnancy and the in-
crease associated with labor.

Conclusion

In this review the expression, characterization, regulation, and
mechanism of action of prostanoid receptors are summarized
with a focus on human receptors. Prostanoid receptors control
numerous biological functions not only through the diversity
in prostaglandins themselves, but through the diversity of re-
ceptor isoforms and the heterogeneity of G-protein coupling.
Commonality is found in regulation where agonist-induced

receptor desensitization is accomplished through phosphory-
lation by PKA, PKB, PKC or a variety of different GRKs.
Although much is known about prostanoid receptor signaling,
there are still many missing pieces. It is our hope that this
review will help underscore these areas and stimulate research
to find these missing pieces.
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Table 8 Binding affinity (Ki) and signaling efficiency (EC50) of prostanoids and agonists on the recombinant FP receptors expressed in cell cultures
and in various tissues

Ki (nM)

Receptor PGE2 PGF2a PGD2 fluprostenol Iloprost U46619 bimatoprost Reference

hFP/HEK293a 119 ± 12 3.2 ± 0.3 6.7 ± 0.5 - 11 ± 1 241 ± 8 - Abramovitz et al. 2000

mFP/CHOa 100 3 47 - - 1000 - Narumiya et al. 1999,
Wheeldon and Vardey
1993

hFP/COS-M6b 85 2.8 7.0 3.5 1200 146 - Abramovitz et al. 1994

bFP/corpus
leuteumc

110 10 17 - - - - Anderson et al. 1999

hFP-altFP4 dimer - 100 - - - - - Liang et al. 2008a

bFP/corpus
leuteuma

3400 ± 710 130 ± 6 2500 ± 760 98 ± 9 - - 6310 ± 1650 Sharif et al. 2003

EC50 (nM)

Receptor PGE2 PGF2a PGD2 fluprostenol Iloprost U46619 bimatoprost Reference

hFP/HEK293a - 10 ± 1.7 - - - - - Kunapuli et al. 1997

rFP/rat myocytesa - 50 ± 12 - - - - - Kunapuli et al. 1998

hFP/COS7b - 60.0 - - - - - Neuschäfer-Rube et al. 2003

hFP/HEK293c - 11.2 - - - - - Woodward et al. 2000

rFP/A7r5a 2607 ± 270 30.90 ± 2.82 222.0 ± 71.4 4.45 ± 0.19 NA 5900 ± 1230 - Griffin et al. 1998

hFP/HEK293c - - - - - - 4762 Woodward et al. 2003

mFP/Swiss 3T3a - - - 4 - - - Sharif et al. 2000b

rFP/hepatocytes - 1000 - 50 - - - Meisdalen et al. 2007

hFP/HEK293 - 29 ± 2 - 4.6 ± 0.4 - - 168 ± 165 Sharif et al. 2003

Abbreviations: h, human; HEK293, human embryonic kidney cells; COS7, monkey fibroblast-like cells; CHO. Chinese hamster ovary cells; A7r5, rat
aorta cells; Swiss 3T3, Swiss albino mouse embryo tissue cells. The Ki values were determined from [3H]PGF2α displacement assays. The EC50

determined from intracellular changes in [IP3] or [Ca
2+ ]. a) IC50 estimated from a graph of agonist vs. [3 H]PGF2α and the Ki value calculated using

Cheng-Prusoff equation (Suganami et al. 2016); b) Ki value calculated from reported IC50 for displacement of using Cheng-Prusoff equation; c) EC50

determined from change in [IP3].
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